Parallel Computation of the SVD of a Matrix
Product *

José M. Claver!, Manuel Mollar! and Vicente Herndndez?

! Dpto. de Informética, Univ. Jaume I, E-12080 Castellén, Spain.
2 Dpto. de Sistemas Informéaticos y Computacién, Universidad Politécnica de
Valencia, E-46071 Valencia, Spain.

Abstract. In this paper we study a parallel algorithm for computing
the singular value decomposition (SVD) of a product of two matrices
on message passing multiprocessors. This algorithm is related to the
classical Golub-Kahan method for computing the SVD of a single matrix
and the recent work carried out by Golub et al. for computing the SVD
of a general matrix product/quotient. The experimental results of our
parallel algorithm, obtained on a network of PCs and a SUN Enterprise
4000, show high performances and scalability for large order matrices.

1 Introduction

The problem of computing the singular value decomposition (SVD) of a product
of matrices occurs in a great variety of problems of control theory and signal
processing (see [14, 15, 18]). The product singular value decomposition (PSVD)
is defined as follows.

For any given matrices, A € IR™*" B € IR"*P, there exist two matrices
U e R™™ and V € IR™P with orthogonal columns, an orthogonal matrix
Q € R**™ and a full rank upper triangular matrix R € IR**", such that

A=UYsRQT, B=QR 'ygvT (1)
with
Yy =diag(ay,...,ay), Xp =diag(f,...,0n)- (2)
The n pairs (a4, 3;) are called the product singular values of (4, B) and the
singular values of the product AB are the products «;3;, for i =1,...,n.

The PSVD was introduced by Fernando and Hammarling [8] as a new gener-
alization of the SVD, based on the product AB”. It complements the generalized
singular value decomposition (GSVD) introduced by Van Loan [20] and Paige
and Sanders [19], now called quotient-SVD (QSVD), as proposed in [5]. The par-
allel computation of the GSVD has been treated in [2, 3]. A complete study of
the properties of the PSVD can be found in [6]. The computation of the PSVD
is typically carried out with an implicit Kogbetliantz algorithm, as proposed in
[8]. Parallel implementations of this algorithm are presented in [16, 17].

* This research was partially supported by the spanish CICYT project under grant
TIC96-1062-C03-01-03.

In this work we are interested in the computation of the SVD of the product
AB. The method used is based on the algorithm designed by Golub et al. in
[12]. Their algorithm is related to the Golub-Kahan procedure for computing the
singular value decomposition of a single matrix in that a bidiagonal form of the
sequence, as an intermediate result, is constructed [10]. The algorithm derived
in [12] applies this method to two matrices as an alternative way of computing
the product SVD. In this paper we describe a parallel algorithm for computing
the singular values of the product of two matrices and study its implementation
on two different message passing multiprocessors using ScaLAPACK.

The rest of the paper is organized as follows. Section 2 describes the im-
plicit bidiagonalization as first step of this method. In section 3 we present a
sequential version of this algorithm using LAPACK and the characteristics of
our ScaLAPACK based parallel algorithm. In section 4 we analyze the perfor-
mance and scalability of our parallel algorithm on both shared and distributed
memory multiprocessors.

2 Implicit Bidiagonalization

Given two matrices A and B, we want to compute the SVD of the product
AB without explicitly constructing of their product. This method involves two
stages:

1. The implicit bidiagonalization of the product AB.

2. The computation of the SVD of the bidiagonal matrix.

For the first stage we need about O(n?) flops; for the second stage we need
about O(n?) flops. Well-known Golub-Reinsch [11], Demmel-Kahan [7] or Fer-
nando and Parlett [9] algorithms can be employed to perform the second stage.
Thus, we have focused our efforts on the first stage.

For this purpose, we generate a sequence of matrix updates with the appli-
cation of different Householder transformations [13]. In order to illustrate the
procedure we show its evolution operating on a product of two 4x4 matrices A
and B. Here, z stands for a nonzero element, and 0 a zero element.

First, we perform a Householder transformation @9 on the rows of B and
the columns of A, chosen to annihilate all but the first component of the first
column of B:

TTTT TTTT

AB:AQEQOB’ TTTT Ozxzx

A(—AQ{, A= , B=

B« QuB TrTT Oxzxzzx
0= TTTX Ozzzx

Then, we perform a Householder transformation @ 4 on the rows of A, chosen
to annihilate all but the first component of the first column of A:

TTTT
Ozzzx
Ozzzx
Ozzzx

QaA =

Notice that the resulting matrix product) 4 AB presents the same structure:

rrreT rTrIrT XX XX
Ozzz| |Ozzz| |Ozzx
Ozzx Ozzz| |Ozzw
Ozzxx Ozxx Ozzxx

We are interested in the first row of this product (indicated in boldface above).
This row can be constructed as the product of the first row of A and the matrix
B. Once it is constructed, we find a Householder transformation operating on
the last (n — 1) elements of the row, which annihilates all but the two first
components of of this row:

A(1,)BQp=[zz00].

Thus, when this transformation is applied to B, the first step of the bidiagonal-
ization is completed as

zx 00
Ozxx
Ozxx
Ozxx

QAABQp =

Next, we consider A(2 : n,2 : n) and B(2 : n,2 : n), and using the same
procedure, we bidiagonalize the second column/row of the matrix product. The
procedure is repeated until the full matrix product is bidiagonalized.

3 Parallel Algorithm

We have implemented a BLAS-2 routine (denoted by BD) for computing implic-
itly the bidiagonal of product of two n x n matrices using the LAPACK library
[1].

Algorithm 1 [BD]

fori=1,2,...n—1

Compute the Householder reflector that nullify B(i+1:n,i): DLARFG
Apply the Householder reflector to B from the left: DLARF
Apply the reflector to A from the Right: DLARF
Compute the reflector that nullify A(i+1:n,i): DLARFG
Apply the reflector to A from the left: DLARF
Compute de implicit product AB (A(i,i:n)B(i:n,i:n)): DGEMV
Compute the reflector that nullify AB(i,min(i+2,n):m): DLARFG
Store diagonal and off-diagonal elements of the matrix product

Apply the reflector to B from Right: DLARF

end for

Last diagonal element of the matrix product is A(n,n)B(n,n)

Algorithm 1 shows, in a detailed manner, the procedure followed by our BD
routine, where the LAPACK routines used are described to the right hand of
each step. The routine obtains two vectors corresponding to the diagonal and
the upperdiagonal of the bidiagonalized matrix product.

In order to obtain the SVD of the resulting bidiagonal we can use either
the xLASQ or the xBDSQR LAPACK routines, that implement the Fernando-
Parlett[9] and the Demmel-Kahan [7] algorithms, respectively.

Our parallel implementation, see algorithm 2, that includes the corresponding
ScalLAPACK routines used, (denoted by PBD), is implemented in ScaLAPACK
[4]. In this parallel library, the matrices are block cyclically distributed among
a P = p x g mesh of processors.

Algorithm 2 [PBD]
Input:
A, B € IR**™: distributed matrices
Output:
D, E € IR": local vectors to store the fragments of the resulting bidiagonal

Create ScaLAPACK descriptors for D and E
fori=1,2,...n—1
Compute the Householder reflector that nullify B(i+1:n,i): PDLARFG

Apply the Householder reflector to B from the left: PDLARF
Apply the reflector to A from the Right: PDLARF
Compute the reflector that nullify A(i+1:m.i): PDLARFG
Apply the reflector to A from the left: PDLARF
Store diagonal (D(i) < B(i,i)) element: PDELSET
Compute de implicit product AB (A(i,i:n)B(i:n,i:n)): PDGEMV
and part of D as a resulting distributed vector

Store off-diagonal (E(7)) element: PDELSET
Compute the reflector that nullify AB(i,min(i+2,n):m): PDLARFG
Store diagonal and off-diagonal elements of the matrix product

Apply the reflector to B from Right: PDLARF

end for

Last diagonal element of the matrix product is A(n,n)B(n,n)

4 Experimental Results

In this section we analyze the performance of our parallel algorithm obtained on
two different architectures, a SUN Enterprise 4000 and a network of PCs(Personal
Computers). We compare the performance of the serial and the parallel routines
on the SUN and the PC cluster.

The SUN 4000 is a shared memory non bus-based multiprocessor (the main
memory has 512 MBytes) with 8 UltraSparc processors at 167 MHz and a second

level cache of 512 KBytes. It has a 4 x4 crossbar interconnection network between
pairs of processors and main memory.

The network of PCs consists of 16 PCs interconnected by a Myricom Myrinet
network (MMn). Each PC is a Pentium IT at 300 MHz, with 512 KBytes of second
level cache memory and 128 MBytes SDRAM of local memory per processor,
under Linux operating system. The Miricom Myrinet is an 8 x 8 bidirectional
crossbar network with a bandwidth of 1.28 Gbits/s per link.

All experiments were performed using Fortran 77 and IEEE double-precision
arithmetic. We made use of the LAPACK library and the ScaLAPACK parallel
linear algebra library [4]. The use of these libraries ensures the portability of the
algorithms to other parallel architectures.

The communication in the ScaLAPACK library is carried out using the MPI
communications library. We have used optimized MPI libraries on both the SUN
(vendor supplied) and the MMn (GM version) machines.

Our first experiment is designed to evaluate the efficiency of our parallel
algorithm PDB. In Figures 1 and 2 we report the efficiencies obtained for our al-
gorithm, using P = 2,4, 6 and 8 processors, on the MMn and the SUN platforms,
respectively. Notice that high performances are obtained for medium-scale and
large-scale problems on both machines. On the SUN, the efficiency of our parallel
algorithm grows more quickly than in the MMn machine when the order of the
matrices is increased. The reason is the better relative speed of communication
on the SUN.

>
0.
f=
ks
9O 0.
i 9
— —_———— —
04 dow +- -+ P=8
S 2 ¥ % P=6
03r [¥ # G--o P4
e B 4
- B H—xX =
02b /+, P=2
X s
T
0.1 -*

o

200 400 600 800 1000 1200 1400 1600 1800
n

Fig. 1. Efficiencies obtained on the MMn using P = 2, 4, 6 and 8 processors
for different problem orders.

1k |
/»Q\ _-0
0.9 & - T |
Jox 9- T -er *
0.8f , N oK b
/ o T~ x *
0.7F q)/ * /+/ ‘F\\F\ "’,#» 4
> 1 / R
19) L , , |
‘50.6 , R
(] / /
E0.51 ok b
i PR
A ’ +- - -+ P=8
0.4F /G) ; f/ %% P=6 E
0.3t // /‘/ G---0 P=4 Bl
/l *, $—x P=2
0.25“#/ b
o.1f/]
0

200 400 600 800 1000 1200 1400 1600 1800
n

Fig. 2. Efficiencies obtained on the SUN using P = 2, 4, 6 and 8 processors for
different problem orders.

In our following experiment we analyze the scalability of the parallel al-
gorithm on the MMn platform. In Figure 3 we fix the memory requirements
per node of the algorithm to n/p = 500, 1000, 1500 and 2000, and report the
megaflops per node for P =1 x p? = 1,4,9, and 16 processors. Notice that the
performance is slightly degraded as the number of processors gets larger, and
this performance degradation is minimum as the memory requirements per node
are increased.

[o2]

)]
o

|

n/p=500 1

Megaflops per processor
N
o

N
o
I
1
1
X

n/p=1000 |

++ n/p=1500

—_
o
T

¥—— n/p=2000

0 2 4 6 8 10 12 14 16

Number of processors

Fig. 3. Mflops per processor obtained on the MMn for constant data load n/p.

5 Concluding Remarks.

We have studied the parallelism of a new method for computing the SVD of a
matrix product via the implicit bidiagonalization of this product as intermediate
step.

The experimental results show the high efficiency of our algorithm for a
wide range of scale problems on shared and distributed memory architectures.
Moreover, this algorithm shows an excellent scalability on a PC cluster.

Our algorithm can be easily extended for computing the SVD of a general
matrix product. Currently, we are working on a BLAS-3 routine in order to
increase the performance of both serial and parallel algorithms.

References

1. Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz, J., Green-
baum, A., Hammarling, S., Mckenney, A., Ostrouchov, S., Sorensen, D.: LAPACK
User’s Guide, Release 1.0., SIAM, Philadelphia (1992).

2. Bai, Z: A parallel algorithm for computing the generalized singular value decompo-
sition, Journal of Parallel and Distributed Computing 20 (1994) 280-288.

3. Brent, R., Luk, F. and van Loan, C.: Computation of the generalized singular value
decomposition using mesh connected processors, Proc. SPIE Vol. 431, Real time
signal processing VI (1983) 66-71.

4. Blackford, L., Choi, J., D’Azevedo, E., Demmel, J., Dhillon, I., Dongarra, L., Ham-
marling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley, R.: SCALA-
PACK User’s Guide, STAM (1997).

5. De Moor, B. and Golub, G. H.: Generalized singular value decompositions: A pro-
posal for a standardized nomenclature, Num. Anal. Proj. Report 89-04, Comput.
Sci. Dept., Stanford University (1989).

6. De Moor, B.: On the structure and geometry of the PSVD, Num. Anal. Project,
NA-89-05, Comput. Sci. Dept., Stanford University (1989).

7. Demmel, J., Kahan, W.: Accurate singular values of bidiagonal matrices, STAM J.
Sci. Stat. Comput. 11 (1990) 873-912.

8. Fernando, K. and Hammarling, S.: A generalized singular value decomposition for a
product of two matrices and balanced realization, NAG Technical Report TR1/87,
Oxford (1987).

9. Fernando, K. and Parlett, B.: Accurate singular values and differential qd algo-
rithms. Numerische Mathematik 67 (1994) 191-229.

10. Golub, G., W. Kahan, Calculation of the singular values and the pseudoinverse of
a matrix, STAM J. Numer. Anal. 2 (1965) 205-224.

11. Golub, G., Reinsch, W.: Singular value decomposition and the least square solution,
Numer. Mathematik 14, (1970) 403-420.

12. Golub, G., Sglna, K, and van Dooren, P.: Computing the SVD of a General Matrix
Product/Quotient, submitted to STAM J. on Matrix Anal. & Appl.,(1997).

13. Golub, G., Van Loan, C.: Matrix Computations, North Oxford Academic, Oxford
(1983).

14. Heat, M., Laub, A., Paige, C., Ward, R.: Computing the singular value decompo-
sition of a product of two matrices, STAM J. Sci. Stat. Comput. 7 (1986) 1147-1159.

15. Laub, A., Heat, M., Paige, G., Ward, R.: Computation of system balancing trans-
formations and other applications of simultaneous diagonalization algorithms, IEEE
Trans. AC 32 (1987) 115-122.

16. Mollar, M., Hernandez, V.: Computing the singular values of the product of two
matrices in distributed memory multiprocessors, Proc. 4th Euromicro Workshop on
Parallel and Distributed Computation, Braga (1996).

17. Mollar, M., Herndndez, V.: A parallel implementation of the singular value decom-
position of the product of triangular matrices, 1st NICONET Workshop, Valencia
(1998)

18. Moore, B.: Principal component analysis in linear systems: Controlability, observ-
ability, and model reduction, IEEE Trans. AC 26 (1981) 100-105.

19. Paige, C., Sanders, M.: Towards a generalized singular value decomposition, STAM
J. Numer. Anal. 18 (1981) 398-405.

20. Van Loan, C.: Generalizing the singular value decomposition, STAM J. Numer.
Anal. 13 (1976) 76-83.

This article was processed using the ITEX macro package with LLNCS style

