Parallel Processing Letters
(© World Scientific Publishing Company

PARALLEL DISTRIBUTED SOLVERS FOR
LARGE STABLE GENERALIZED LYAPUNOV EQUATIONS!

PETER BENNER

Zentrum fir Technomathematik, Fachbereich 8/Mathematik und Informatik, Universitdt
Bremen, D-2833/-Bremen, Germany. E-mail: benner@math.uni-bremen.de

JOSE M. CLAVER and ENRIQUE S. QUINTANA-ORTI

Dpto. de Informdtica, Universitat Jaume I, Aptdo. 242, 12071-Castellén, Spain. E-mails:
claver @inf.uji.es and quintana@inf.uji.es

Received (received date)
Revised (revised date)
Communicated by (Name of Editor)

ABSTRACT

In this paper we study the solution of stable generalized Lyapunov matrix equa-
tions with large-scale, dense coefficient matrices. Our iterative algorithms, based on the
matrix sign function, only require scalable matrix algebra kernels which are highly effi-
cient on parallel distributed architectures. This approach avoids therefore the difficult
parallelization of direct methods based on the QZ algorithm. The experimental analysis
reports a remarkable performance of our solvers on an IBM SP2 platform.

Keywords: Generalized Lyapunov matrix equations, mathematical software, matrix sign
function, parallel distributed multiprocessors.

1. Introduction

Consider the generalized Lyapunov equation
ATXE+ETXA+Q = 0, (1)

where A,E,X,Q € R™", Q = Q7, and X = X7 is the unknown matrix. Lyapunov
equations are of fundamental importance in many analysis and synthesis algorithms
in control theory. They arise naturally in linear control problems driven by linear
autonomous first-order ordinary differential equations (ODE). As many methods of
nonlinear control use the linear system obtained from a linearization of the nonlinear
ODE around a working point, these methods also require the sound and efficient

1 J.M. Claver and E.S. Quintana-Orti were supported by CICYT Project TIC96-1062-C03-C03.

solution of equations of the form (1). The generalized equations of type (1) with
E # I, (n x n identity matrix) arise naturally from control systems driven by
second-order ODEs, descriptor systems, or partial differential equations (PDE).
See, e.g., [9, 22, 24, 26, 29, 33] and the references given therein, to list only a
few recent references. In particular, in recent years, model reduction for large-
scale control problems has become one of the most important issues in systems
and control theory. Most of the algorithms proposed so far need to solve one or
more Lyapunov equations (1); see, e.g., [15, 27] and the overview given in [28].
Moreover, compression techniques for large-scale descriptor systems lead to dense,
unstructured, and large equations of the form (1) that have to be solved in several
fundamental control-theoretic computations, see, e.g., [30, 31].

Hereafter, we assume that E is nonsingular and hence, A—\FE is a regular matrix
pencil, that is det(A — pE) # 0 for some complex scalar u (u € C). Additionally,
we assume \; + A; # 0 for all \;,\; € 0 (4, E), where

o(AE):={Ae CU{x} : A=0a/p, det(BA — aFE) =0, with A =00 if =0}

denotes the generalized spectrum of A — A\E. These assumptions guarantee (and
are necessary) that (1) has a unique solution [20]. Moreover, they also imply the
nonsingularity of A and that all eigenvalues of A — AE are finite.

The matrix pencil A — AE is called stable if all its eigenvalues are contained
in the open left half plane, denoted by o (A,E) C C~. This property holds for
most applications we are interested in, and ensures the feasibility of our solvers
based on the matrix sign function. The property will be assumed throughout this
paper and the associated Lyapunov equation will be called stable Lyapunov equa-
tion (the anti-stable case, i.e., 0 (A,E) C C7, can be treated analogously [4]).
Moreover, if) is positive/negative (semi-)definite, then the solution X of (1) is
also positive/negative (semi-)definite [20, 23]. We say then that the equation is a
(semi-)definite generalized Lyapunov equation.

Numerical solution methods for generalized Lyapunov equations are studied
in [12, 23]. The methods investigated there are generalizations of the Bartels-
Stewart method [3] and Hammarling’s algorithm [14] introduced for standard Lya-
punov equations (E = I,,). Note that Hammarling’s algorithm is only applicable
for (semi-)definite Lyapunov equations. The initial stage in all these methods is the
application of the QZ algorithm [13] (or the QR algorithm [13] if E = I,,) to the
matrix pencil A — AE. This is followed by a quite less expensive back substitution
process. The parallelization of back substitution stage on shared memory multipro-
cessors is analyzed in [18]. The need for parallel computing in this area can be seen
from the fact that already for a system with state-space dimension n = 1000, (1)
represents a set of linear equations with 505000 unknowns (having already exploited
the symmetry of X). Systems of such a dimension driven by ODEs are not uncom-
mon in chemical engineering applications, are standard for second order systems,
and represent rather coarse grids when derived from the discretization of a PDE;
see, e.g., [11, 21, 26].

Several experimental studies, based on block scattered distributions, report the

difficulties in parallelizing the double implicit shifted QR algorithm on parallel dis-
tributed multiprocessors [16]. An attempt to increase the granularity employs the
multishift techniques [32, 17]. A different approach relies on a block Hankel distri-
bution [16], which improves the balancing of the computational load. Nevertheless,
the parallelism and scalability of these parallel QR algorithms are still far from those
of matrix factorizations, triangular linear systems solvers, etc. (see, e.g., [5, §]).

Although the parallelization of the QR algorithm has been thoroughly studied
(see [16, 17] and the references therein), in order to solve (1) we need instead the
QZ algorithm. We are not aware of any parallel implementation of this algorithm
so far, probably due to its higher complexity. Moreover, since both the QR and the
QZ algorithms are composed of the same type of fine-grain computations, similar
parallelism and scalability results are to be expected from the QZ algorithm.

In this paper we study a different approach, based on the matrix sign function,
for solving stable generalized Lyapunov matrix equations. The computation of the
matrix sign function only requires well-known matrix kernels (matrix product and
matrix inversion) which are highly efficient on parallel architectures [5]. We have
chosen this method as it has proved its efficiency for some basic linear algebra com-
putations involving medium-size matrices (i.e., of order O(10%)) and has therefore
been chosen as one of the basic algorithms in ScaLAPACK [5]. Moreover, it has also
shown its efficiency for parallel control-relevant computations; see, e.g., [21, 11].

In Section 2 we review the algorithms suggested in [4] for solving stable general-
ized Lyapunov equations with the matrix sign function. The algorithms and a brief
study of the computational and communication cost are described in Section 3. In
Section 4 we analyze the performance of our parallel solvers on an IBM SP2 parallel
distributed architecture. Concluding remarks are given in Section 5.

2. Solving Lyapunov Equations with the Matrix Sign Function

In this section we briefly summarize two methods, presented in [4], for solving
stable generalized Lyapunov equations by means of the matrix sign function.
The matriz sign function of a matrix Z € R™", with no eigenvalues on the
imaginary axis, can be defined via the Jordan decomposition of Z,
_ J- 0 -1
z=s[% %]
where the Jordan blocks in J= € RF** and J+* € R™"™H*"=F) gatisty o(J, I;) C
C™ and o(J*t,I,,_;) C CT. Then

sen(z) = 5| g 0 s e

Note that sign (Z) is unique and independent of the order of the eigenvalues in the
Jordan decomposition of Z; see, e.g., [19].

The matrix sign function can be computed via the Newton iteration for the
equation Z2? = I,, where the starting point is chosen as Z, i.e.,

Zo + Z, Ziyr < (Ze+2Z7Y) /2 for k=0,1,2,... (3)

It is shown in [25] that sign (Z) = limy_, 00 Z.-

Although the convergence of the Newton iteration is globally quadratic, the
initial convergence may be slow. Accelerating the Newton iteration is possible, e.g.,
via determinantal scaling [6]

Zi « | det (Z)| "+ Zg.

A generalization of the matrix sign function method to a matrix pencil Z — Y
was given by Gardiner and Laub [10] in case Z and Y are nonsingular. They
consider the iteration (with determinantal acceleration)

1
Zo 7, Zpy1 2—(2,c +aYZ,'Y) fork=0,1,2,..., (4)
Ch

where ¢j, = (“ie;t(g}“))“)%. The sequence {Y;}2, converges to Ysign (Y~'Z) [10].

2.1. The stable case

The sign function method was first introduced by Roberts [25] in order to solve
stable Sylvester and Lyapunov matrix equations, with E = I,, and algebraic Riccati
equations.

In the generalized case, when A — AE is stable, we can use the generalized
Newton iteration (4) applied to the matrix pencil

A 0 E 0
mow=[A 0] N

Denoting the limit of the iteration (4) by Hu, the solution of the Lyapunov equa-
tion (1) is given by the solution of the overdetermined and consistent set of linear
equations (for details see [10, 4])

(HOO+K)[_‘;?E]:O. (5)

Exploiting the structure of the matrix pencil in H — AK, the generalized Newton
iteration can be simplified to

Ag « A, Apy1 « %(Ak—}—EA;lE),
Qo « Q, Qe + 3(Qu+ETATQLAL'E),

such that X = 1E~7 (limy_, Q1) E™'. For E = I, this has already been observed
by Roberts in [25] while the case E # I, is treated in [4].

Iteration (6) saves a considerable amount of workspace and computational cost
compared to applying the generalized Newton iteration to H — AK.

k=0,1,2,... (6)

2.2. The stable and semidefinite case

The stable semidefinite generalized Lyapunov equation can be written as

ATXE+ ET'XA+CTC = 0, (7)

where C € IR"*". In this case, the solution matrix X can also be written in factored
form, X = £Y7TY, as X is semidefinite.

In many applications, the Cholesky factor Y of X is required rather than the
solution X itself, see, e.g., [14, 15, 28]. A generalization of Hammarling’s algorithm
as proposed in [23] computes this factor without forming the product CTC and
the solution X explicitly. The advantage of working with Y instead of X is that
the condition number of X can be up to the square of that of Y. Hence, using Y,
subsequent computations are usually performed with higher accuracy, in particular
if X is ill-conditioned.

The method presented in the previous subsection can be modified in order to
compute the Cholesky factor of X directly. Consider the iteration for @) in (6).
Suppose Q = CTC, this iteration can be re-written as

11 o 1'[¢
T z k k —

C()(—C, Ck+10k+1(—2|:CkA;1E:| |:CkAI;1E:| fork—O,l,Z,.... (8)
Thus, in the resulting algorithm the current iterate C}, is augmented at each itera-
tion by the product CA, 'E.

The implementation of Hammarling’s algorithm in [23] requires a work array
of dimension at least n x n for C if it is supposed to be overwritten by Y. This
suggests to use (8) only as long as 2Fr < n/2 which is also the bound for which the
original iteration (6) becomes cheaper than (8) [4]. This bound is given by

ko> [1og;2 ;J ‘= Kwitehs 9)

where | z | denotes the integer part of z.

If k£ has reached the bound given above, we propose to form the augmented
matrix Cpy1 = [CF, (CkA"E)T]T € R***", where C;, € R***" and so = r.
Then from its QR factorization,

~ ~ R r
Crp1 = UkniRirn = U [o] %2’;:1_ ree

where 741 := rank (C’k+1), it follows that CF, Ciy1 = FR{, Ri+1. Hence

we can set Cpy1 1= Rk+1/\/§ and sgy1 = rgy1. Note that in order to obtain the
Cholesky factor of X, a QR factorization of C}1 has to be computed at convergence
even if k does not reach the bound in (9). In order to determine the rank of Cyy1
correctly, it may be more reasonable to employ a QR factorization with column
pivoting [13] or even a rank-revealing QR (RRQR) factorization [7]. This is also
described in detail in [4].

We can employ the same stopping criterion in both cases. The convergence
limg_, o, A = —FE suggests the stopping criterion

4k + Elly < tol - || E[lx (10)

for a user-defined tolerance tol. An appropriate procedure in practice [4] is to use
tol =10 - n - 4/ (£ is the machine precision), and perform two additional iteration

steps after the stopping criterion is satisfied. Due to the quadratic convergence of
the Newton iteration, this is usually enough to reach the attainable accuracy.

3. Serial and Parallel Algorithms

We first describe the serial generalized Lyapunov solvers based on the matrix
sign function. Algorithm 1 is obtained by the iterative scheme in (6) employing
determinantal scaling.

Algorithm 1 [SIGE]
Input: A,E,Q € R™" with Q = QT, 0 (A,E) C C.
Output: Solution X € R™" of (1).
1. Compute yg = |det(E)|% by LU factorization of E.
V = A, X = Q.
2. WHILE ||V + E||1 > tol-||E|
2.1. A = LUP by LU factorization with partial pivoting.
2.2. 4 = |det(A)= = [0, lugsl», v = va/7e-
2.3. W = PTU 'L 'E by forward and backward substitution.
24 A4 =1 (%V-i—nyW).
25 X = L (AX +9WTXW).
26.V = A
END WHILE
3. E = LUP by LU factorization with partial pivoting.
X = LLTU TPXPTU L' by forward and backward substitution.
END
Algorithm 2 is obtained by the iterative scheme in (8).
Algorithm 2 [S1Gs]
Input: ALE€R™", CeR™*", 0(4,E)C C".
Output: Cholesky factor Y of the solution X € R™*" of (7).
1. Compute yg = |det(E)|% by LU factorization of E.
V = A, Y = C, k = 0.
2. WHILE ||V + E|1 > tol-||E|x
2.1. A = LUP by LU factorization with partial pivoting.
2.2. 4 = |det(A)[= = [I5- lujl*, v = va/7m-
2.8. W = PTU'L7'E by forward and backward substitution.
24 A =1 (%V+7EW).
25.V = A, Y = V7 k= k+1.

iy
2.6. IFk < |log, 2| THEN Y = L[g]

b

V2 | YW
Ly Y
ELSE % ['y’YYW] = U[0] by QR factorization.
END IF
END WHILE

3. E = LUP by LU factorization with partial pivoting.

Y = %YPTU_IL_1 by forward and backward substitution.

END

The most expensive computations involved in Algorithms SIGE and SIGS in terms
of flops (floating-point arithmetic operations) are LU factorizations, triangular lin-
ear systems, and matrix products. Algorithm sI1GS also involves a (rank-revealing)
QR factorization. The QR factorization with column pivoting (QRP) [13] can be
employed in practice as an RRQR factorization. Table 1 compares the computa-
tional costs of these algorithms in flops.

| [sice | sias |
Step 1 Zn® Zn®
Step 2 Bn® | Un® +26rn? (b < kswiten)
2n® (k> Eswitch)
Step 3 %n3 %713 + 2rn?

Table 1. Flop counts per step for SIGE and SIGS; (k is the number of iterations).

Solving the generalized Lyapunov solvers with the Bartels-Stewart method [3]
requires about 74n® flops; in case r < n, Hammarling’s algorithm [14] requires about
70n3 4+ 2rn? + 2r2n — r3 flops. Roughly speaking, ten iterations (Step 2) of (6) are
about as expensive as solving (1) by the generalized Bartels-Stewart method [12, 23].
It can be observed that convergence of (6) or (8) often requires 7-10 iterations. All
these methods require approximately the same amount of work space.

The parallelization of matrix algebra kernels on parallel distributed architectures
has been actively analyzed in recent years. Matrix (LU) factorizations, triangular
linear system solvers, and matrix products are highly parallel and scalable [5, 8].
The parallel performance of the QRP is similar to the BLAS-2 LU factorization.

Our parallel algorithms are implemented by means of the parallel matrix alge-
bra building blocks in ScaLAPACK [5]. In this parallel library, the matrices are
cyclically distributed by blocks among a p, X p. mesh of processors; for scalability
purposes, we only employ square topologies (p, = p.). Our theoretical analysis
of the parallel algorithms follows the performance model for the spectral division
problem presented in [2]. The following problem and machine parameters are used:

— n: The dimension of the problem.

- p= /P x y/P: The dimension of the mesh of processors.

— 7: Cost of a flop.

— a: Cost of transfering a void message between two processors.

— B: Cost of transfering a floating-point number between two processors.

Approximate computation and communication costs for the building blocks in-
volved in algorithms SIGE and SIGS are given in Table 2. Lower order expressions and
load imbalance communication and computation costs due to the block distribution
block size are neglected.

A theoretical performance model, based on the costs in Table 1, can be con-
structed for our parallel solvers. For example, the total cost of one iteration of

Computation Communication cost
Block cost X”TfT Latency xa ‘ Bandwith~! xf}—j_)ﬁ
LU factorization 2 (6 + logp)n 3+ Llogp
Triang. solver 1 n 1+ % logp
Matrix product 2 (1+ 1 logp)y/p 1+ 1logp
QRP factorization 1 3n logp 3 logp

Table 1. Computation and communication cost per node for the building blocks.

solver SIGE is approximately
3 2
2 21 + 8+ logp)npa + (8 + L logp) %ﬂ.

The communication-computation ratio

26 n? 1
g—TX 13 n?
p (8+10gp)n\/13a+(8+flogp)75ﬂ

shows the efficiency of the parallel algorithm as the problem size is increased.

4. Experimental Results

In this section we compare the performance of the generalized Lyapunov matrix
solvers. In our examples, the computed solution is obtained with the accuracy
that could be expected from the conditioning of the problem as implied by the
coefficient matrices A, E,Q and the solution X from (1). Roughly speaking, this
condition number is proportional to the 2-norm condition number of W := (ET ®
AT) + (AT @ ET); for details and numerical examples demonstrating the numerical
reliability of the proposed algorithms see [4].

All experiments were performed using Fortran 77 and IEEE double-precision
arithmetic (¢ & 2.2 x 10716) on an 1BM sP2 platform with 80 sP2 rRS6000 nodes at
120 MHz, and 256 MBytes RAM per processor. In our tests, each node obtained
around 200 Mflops for the matrix product (routine DGEMM). Internally, the nodes are
connected by a TB3 high performance switch, with latency o = 31 x 1079 sec. and
bandwith 3= ~ 90 MBytes/sec. We use the native BLAS, and LAPACK, BLACS,
and ScaLAPACK libraries [1, 5] to ensure the portability of the algorithms.

We generate random matrices A = V, diag (au,...,an) Wy, E = V,W,, where
the scalars a;, 1 < i < n, are uniformly distributed in [-10,0), W, is an n x n
lower triangular matrix with all unit entries, and V,, is an n x n matrix with unit
entries on and below the anti-diagonal and all other entries equal to zero. Then, C
is generated as a random r x n matrix and Q = CTC. Notice that the convergence
criteria used in our algorithms does not involve the right-hand side matrices C' or Q.
The execution time per iteration of the Lyapunov solvers based on the matrix sign
function does not depend on the characteristics/structure of the matrix. Hence,
this simple example allow us to analyze the degree of parallelism of our approach.

In our first experiment we compare the execution time of direct methods (the
Bartels-Stewart method, BT-ST, and Hammarling’s algorithm, HAMM) with the it-

erative Lyapunov solvers based on the matrix sign function. The execution time of
the matrix sign function solvers depends on the number of iterations required to
converge. In this experiment we perform 10 iterations of the matrix sign function
schemes, so that the theoretical cost of the direct methods and the iterative methods
is similar. Figure 1 shows that, in practice, serial solvers based on matrix sign func-
tion perform much better than expected due to the highly efficient implementation
of their computational kernels. Our experiments reported a better performance of
the serial solvers based on the matrix sign function even when 20 iterations were
required.

Execution time (sec.)
'~
Execution time (sec.)
o

[N
o
-
(N
+

10

300 400 500 600 700 800 900 1000 300 400 500 600 700 800 900 1000
Problem size (n) Problem size (n)

Fig. 2. Execution time of the serial generalized Lyapunov solvers with 7 = 1 (left) and 7 = n (right) on 1 processor of the IBM SP2.

In our next experiment we evaluate the performance of the parallel solvers SIGE
and s1GS. Unfortunately, we are not aware of any parallel implementation of the
QZ algorithm and therefore a comparison with direct methods can not be given. In
Figure 2 we report the execution time of the parallel solvers on 2 x 2, 3 x 3, and
4 x 4 processors, with » = 1, n/2, and n. In the semidefinite case, when the rank
of @ is low (r <« n), solving the Lyapunov equation for the Cholesky factor is more
efficient than solving the equation for the explicit solution X. Otherwise, the high
overhead of S1GSs may only be justified by a significant gain in numerical accuracy.

Table 3 shows the speed-up of the parallel algorithms computed as the ratio
between the parallel execution time on ,/p x /p processors and the serial execution
time. The table reports acceptable speed-ups for 4 and 9 processors; the speed-up is
however quite low for 16 processors due to the small size of the problems evaluated.

n SIGE sias (r =1) SIGS (r =n)
p=4|p=9|p=16 | p=4|p=9|p=16 | p=4|p=9|p=16
500 3.3 3.3 3.6 2.5 2.9 3.1 2.1 2.1 2.0
750 3.5 4.9 5.1 3.1 4.5 5.0 2.5 3.2 3.2
1000 3.3 6.5 7.7 3.2 5.7 6.9 2.6 4.3 4.5
Table 1. Speed-up for SIGE and SIGS on \/1_) X \/]_7 processors of the IBM SP2.

As we can not compute the serial execution time, and therefore the speed-up,
for larger problems, we analyze instead the scalability of the parallel algorithms.

L osies el ‘ R +- -~ SIGS, r=1 ,i/"ﬁ
x % SIGS, r=n/2 e T S 2:22 ::/2 T
o--© SIGS, r=n “ T ry
-~ 5 *—x SIGE
5 IGE -
8 s &
[} [}
£ E
< =
o 2 S
510 § 2
g g10°
w w
600 800 1000 1200 1400 1600 500 1000 1500 2000
Problem size (n) Problem size (n)
3
10
n [}
2 °
8 e
° =
£ g
= %
c Q
k] o
5 ©
810t B s o——o SIGE n/p=500 r=n
o] s
* - - SIGS n/p=750r=n
+ -+ SIGE n/p=500 r=1
% - % SIGS n/p=750 r=1
500 1000 1500 2000 2500 3000 2 4 6 8 10 12 14 16
Problem size (n) Number of nodes

g. 3. Execution time on 2 X 2 (top left) 3 X 3 (top right), and 4 X 4 (bottom left) processors of the IBM SP2 and mflop ratio per node (bottom right).

We fix the memory requirements per node of the solvers to n/p = 500 and 750. We
then obtain the megaflop ratio per node dividing the theoretical cost (in flops) of
the algorithm by the execution time; the ratio considers both the computational
and communication costs of the algorithms. The bottom right plot in Figure 2
reports the scalability of the algorithms. The performance is slightly degraded as
the number of processors gets larger, and the results agree with those of the basic
building blocks (LU factorization, triangular linear systems, etc.)

5. Concluding Remarks

We have studied the parallelism of two numerical methods for solving stable
generalized Lyapunov matrix equations. Our new solvers, based on the matrix sign
function, are currently the only feasible approach for solving these equations when
the coefficient matrices are large and dense. Moreover, these algorithms only require
scalable matrix algebra kernels which are highly efficient on parallel distributed
architectures. We use standard libraries enhances the portability of the algorithms.

The experimental results on an 1BM SP2 platform show the advantage of the
serial algorithms over the standard approaches based on the QZ algorithms (the
Bartels-Stewart method and Hammarling’s algorithm) and the performance and

10

scalability of our new parallel solvers.

Acknowledgements
We thank the Mathematics and Computer Science Division at Argonne National
Laboratory for the use of the 1IBM spP2.

References

1.
2.

10.

11.

12.

13.

14.

15.

16.

E. ANDERSON ET AL. LAPACK Users’ Guide, SIAM, Phil., PA, 2nd ed., 1994.

Z. BAI ET AL. The spectral decomposition of nonsymmetric matrices on dis-
tributed memory parallel computers, SIAM J. Sci. Comp., 18 (1997), pp. 1446—
1461.

R. BARTELS AND G. STEWART, Solution of the matrix equation AX + XB =
C': Algorithm 432, Comm. ACM, 15 (1972), pp. 820-826.

P. BENNER AND E. QUINTANA-ORTI, Solving stable generalized lyapunov
equations with the matriz sign function, Tech. Rep. SFB393/97-23, Fak. f.
Mathematik, TU Chemnitz, 09107 Chemnitz, FRG, 1997.

L. S. BLACKFORD ET AL., ScaLAPACK Users’ Guide, SIAM, Phil., PA, 1997.

R. BYERS, Solving the algebraic Riccati equation with the matrix sign function,
Lin. Alg. Appl., 85 (1987), pp. 267-279.

T. CHAN, Rank-revealing QR factorizations, Lin. Alg. Appl., 88/89 (1987),
pp. 67-82.

J. DONGARRA, A. SAMEH, AND D. SORENSEN, Implementation of some con-
current algorithms for matriz factorization, Parallel Comp., 3 (1986), pp. 25-34.

Z. GAJIC AND M. QURESHI, Lyapunov Matriz Equation in System Stability
and Control, Academic Press, Math. in Sci. and Eng. Series, San Diego, CA, 1995.

J. GARDINER AND A. LAUB, A generalization of the matriz-sign-function
solution for algebraic Riccati equations, Int. J. Control, 44 (1986), pp. 823-832.

—, Solving the algebraic Riccati equation on a hypercube multiprocessor, in
Hypercube Concurrent Comp. and Appl., Vol. II, G. Fox, ed., ACM Press, New
York, NY, 1988, pp. 1562-1568.

J. GARDINER, A. LAUB, J. AMATO, AND C. MOLER, Solution of the
Sylvester matriz equation AXB+ CXD = E, ACM Trans. Math. Software,
18 (1992), pp. 223-231.

G. GoLuB AND C. VAN LOAN, Matriz Computations, Johns Hopkins University
Press, Baltimore, 2nd ed., 1989.

S. J. HAMMARLING, Numerical solution of the stable, non-negative definite
Lyapunov equation, IMA J. Numer. Anal., 2 (1982), pp. 303-323.

U. HELMKE AND J. MOORE, Optimization and Dynamical Systems, Springer-
Verlag, London, 1994.

G. HENRY AND R. VAN DE GEWN, Parallelizing the QR algorithm for the
unsymmetric algebraic eigenvalue problem: myths and reality, SIAM J. Sci.
Comp., 17 (1996), pp. 870-883.

11

17

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

G. HENRY, D. WATKINS, AND J. DONGARRA, A parallel implementation
of the nonsymmetric QR algorithm for distributed memory architectures, LA-
PACK Working Note 121, University of Tennessee at Knoxville, 1997.

A. S. HopeL AND K. POOLLA, Parallel solution of large Lyapunov equations,
SIAM J. Matrix Anal. Appl., 13 (1992), pp. 1189-1203.

P. LANCASTER AND L. RoDMAN, The Algebraic Riccati Equation, Oxford
University Press, Oxford, 1995.
P. LANCASTER AND M. TISMENETSKY, The Theory of Matrices, Academic
Press, Orlando, 2nd ed., 1985.

A. LAUB AND J. GARDINER, Hypercube implementation of some parallel al-
gorithms in control, in Advanced Computing Concepts and Tech. in Control Eng.,
M. Denham and A. Laub, eds., Springer-Verlag, Berlin, 1988, pp. 361-390.

V. MEHRMANN, The Autonomous Linear Quadratic Control Problem, Theory
and Numerical Solution, no. 163 in Lecture Notes in Control and Information
Sciences, Springer-Verlag, Heidelberg, 1991.

T. PENZL, Numerical solution of generalized Lyapunov equations, Adv. Comp.
Math., 8 (1997), pp. 33-48.

P. PeTkov, N. CHRISTOV, AND M. KONSTANTINOV, Computational Meth-
ods for Linear Control Systems, Prentice-Hall, Hertfordshire, UK, 1991.

J. ROBERTS, Linear model reduction and solution of the algebraic Riccati
equation by use of the sign function, Int. J. Control, 32 (1980), pp. 677-687.

I. ROSEN AND C. WANG, A multi-level technique for the approzimate solution
of operator Lyapunov and algebraic Riccati equations, SITAM J. Numer. Anal.,
32 (1995), pp. 514-541.

M. G. SArFoNOV AND R. Y. CHIANG, Model reduction for robust control:
A Schur relative error method, Int. J. Adapt. Cont. Sign. Proc., 2 (1988),
pp. 259-272.

G. SCHELFHOUT, Model Reduction for Control Design, PhD thesis, KU Leuven,
Dept. Electrical Engineering, 3001 Leuven—Heverlee, Belgium, 1996.

V. SimA, Algorithms for Linear-Quadratic Optimization, vol. 200 of Pure and
Applied Mathematics, Marcel Dekker, Inc., New York, NY, 1996.

A. VARGA, On stabilization methods of descriptor systems, Sys. Control Lett.,
24 (1995), pp. 133-138.

A. VARGA AND T. KATAYAMA, Computation of J—inner—outer factorizations
of rational matrices, Int. J. Robust and Nonlinear Cont., 7 (1997).

D. WATKINS AND L. ELSNER, Chasing algorithms for the eigenvalue problem,
SIAM J. Matrix Anal. Appl., 12 (1991), pp. 374-384.

K. Zuou, J. DoYLE, AND K. GLOVER, Robust and Optimal Control, Prentice-
Hall, Upper Saddle River, NJ, 1996.

12

