
PARALLEL ADAPTIVE WAVEFRONT

ALGORITHMS SOLVING LYAPUNOV

EQUATIONS FOR THE CHOLESKY FACTOR

ON MESSAGE PASSING MULTIPROCESSORS�

JOSE M� CLAVER� and VICENTE HERNANDEZ��

�Departamento de Inform�atica� Universitat Jaume I�

Campus de Penyeta Roja� Castell�on ������ Spain�
��Departamento de Sistemas Inform�aticos y

Computaci�on� Universidad Polit�ecnica de Valencia�

Valencia ������ Spain�

December �� ����

Abstract

The order of the matrices involved in several algebraic problems decreases during the solution
process� In these cases� parallel algorithms which use adaptive solving blocks sizes o�er better
performance results than the ones obtained on parallel algorithms using traditional constant
block sizes� Recently� new parallel wavefront algorithms solving the Lyapunov equations for the
Cholesky factor using Hammarling�s method on message passing multiprocessors systems have
been designed ���� In this paper� new parallel adapative versions of these parallel algorithms are
described and experimental results obtained on an SGI Power Challenge are presented�

� Introduction

Lyapunov equations are related to a great variety of problems in control theory and signal processing�
One of these problems is the design of balanced realizations of dynamic linear systems ���� ��� ����
of which the most extended application of this technique is model reduction ���� �	�� One approach
is to compute the Cholesky factors of the solution of two Lyapunov equations and the SVD of the
product of these factors� Other applications like the Hankel
norm approximation problem ���� the
frequency domain approximation problem ���� and the solution of Riccati equations using Newton
s
method also require the solution of these equations�

We focus our study on the discrete
time Lyapunov equations

AXAT �X �BBT � ��
ATXA�X � CTC � ��

Among the di�erent algorithms to solve these equations ��� 	� ���� Hammarling
s algorithm is
specially appropiate� since it directly computes the Cholesky factor of the solution ��� ��� Several
wavefront based ���� algorithms have been implemented on shared memory multiprocessors using
this method ��� ���� More recently� parallel wavefront algorithms for solving Lyapunov equations
using the same method on message passing multiprocessors systems have been developed ���� These

�This research was partially supported by the CICYT grant TIC��������C�����

�

algorithms are based on previous wavefront algorithms to solve triangular linear systems ����� which
have shown good e�ciency in their solution� But� on algebraic problems in which the order of the
matrices decrease on the solution process� the selection of the computational granurality is critical�
In the last stages of the problem solution� there are waiting times when constant size solving blocks
are used during all problem� The size of solving blocks must be lower in the last stages to avoid this
situation� In this paper a parallel adaptive wavefront algorithm which selects the best block size in
each moment of the problem solution is proposed�

In section � Hammarling
s algorithm and its dependency graph are presented� Parallel wavefront
algorithms are described in section �� The parallel adaptive wavefront algorithms are presented in
section �� In section � experimental results on message passing multiprocessors are shown� Finally�
the conclusions of this work are exposed�

� Hammarling�s Method�

The discrete
time Lyapunov equation we want to study is

AXA
T
� X � BB

T
� ��

where A and B are the coe�cient matrices A� IRn�n and B� IRn�m� with n � m� When n � m
� it is possible to apply the same algorithm as described in ���� If the eigenvalues of the matrix A�
f��� � � � � �ng� satisfy j�ij � �� i � �� �� � � � � n� then a unique and non
negative de�nite solution matrix

X exist� Therefore� it is possible to obtain the Cholesky decomposition of the solution X�LL
T
�

where L� IRn�n is a lower triangular matrix� However� this equation can also be solved directly for
the Cholesky factor L by using Hammarling
s algorithm ��� ���

In the �rst step� the original Lyapunov equation is transformed into a simpler equation called
the reduced Lyapunov equation� For this purpose� the real Schur decomposition of A �

A� QSQT �

is computed� where Q � IRn�n is an orthogonal matrix and S � IRn�n is a block lower triangular
matrix� with �x� and �x� diagonal blocks� Each �x� block contains a real eigenvalue of the coe�cient
matrix A� as each �x� block is associated with a pair of complex conjugate eigenvalues� Block
algorithms for computing the real Schur decomposition on high performance computers are described
in ����

Thus� the resulting equation is

SXST �X � �BBT �

where X � QT X Q and B � QT B� Next� the product BBT is reduced to a simpler form by
computing the LQ factorization of B

B �
�
G �

�
P�

where G � IRn�n is lower triangular and P � IRm�m is orthogonal� So� from the solution L of the
reduced equation

S
�
LLT

�
ST �

�
LLT

�
� �GGT �

the Cholesky factor of the original equation is obtained as L� QL�

�

��� The Serial Algorithm

Now� following the method described by Hammarling� the matrices S�L and G are partitioned as

S �

�
s�� �
s S�

�
� L �

�
l�� �
l L�

�
y G �

�
g�� �
g G�

�
�

where s�� is either an scalar or a �� � block� If s�� is an scalar� l�� and g�� are also scalars� and s�
l� and g are column vectors of n � � elements� If s�� is a � � � block� l�� and g�� are � � � blocks
and s� l� and g are �n� ��� � blocks�

From now on� and for simplicity� we assume that all the eigenvalues of S are real� This problem
will be denoted the real case of the Lyapunov equation� Hence� the next three equations are obtained�

l�� � g���
p
�� s����

�s��S� � In��� l � ��g � �s and
S�
�
L�L

T
�

�
ST
� �

�
L�L

T
�

�
� �GGT � �G�G

T
� � yyT

where � � g���l��� � � s��l��� y � �v � s��g� v � S�l � sl��� and In�� stands for the identity
matrix of order n� ��

The diagonal element l�� is directly computed from the �rst equation� So� the lower triangular
linear system from the second equation can be solved by forward substitution obtaining l� Finally�
the last equation is a discrete
time Lyapunov equation of order n � � in which the matrix G is of
the form

G �
�
G�� y

�
�

i�e�� it is a block matrix composed of an �n� ��� �n� �� lower triangular matrix� G�� and an n� �
column vector y� Therefore� it is possible to obtain the Cholesky decomposition of the product GGT

using the LQ factorization

G �
�
G �

�
P �

where P� IRn�n is orthogonal and G� IR�n�����n��� is lower triangular� Thus� the new reduced
Lyapunov equation

S�
�
L�L

T
�

�
ST
� �

�
L�L

T
�

�
� � GG

T

can be treated again in the same way� This procedure can be repeated until the problem is com

pletely solved� Fig� � shows an algorithmic representation of Hammarling
s method�

Algorithm res ser�
for j � �� n

�� Compute the diagonal element�
� �

p
�� S�j� j���L�j� j� � G�j� j����� � L�j� j� � S�j� j�

�� Solve the lower triangular linear system for l�
for i � j � �� n

L�i� j� � ��� �G�i� j��� �S�i� j��S�j� j� �
i��P

k�j��

S�i� k� �L�k� j����S�i� i� �S�j� j����

end for
�� Compute the vector y�

for i � j � �� n

y�i� � � � �L�j� j� � S�i� j� �
iP

k�j��

S�i� k� � L�k� j��� S�j� j� �G�i� j�

end for

�

�� Compute the Cholesky factor of the matrix G of order n� j�
for i � j � �� n

���� Compute the Givens rotation �sin �ij � cos �ij� such that��
G�i� i� y�i�

� � cos �ij sin �ij
� sin �ij cos �ij

�
�
�
� �

�
���� Apply the Givens rotation�

for k � i� n�
G�k� i� y�k�

�
�
�
G�k� i� y�k�

� � cos �i sin �i
� sin �i cos �i

�

end for
end for

end for
end res ser

Fig� �� Hammarling�s serial algorithm�

��� Study of the Data Dependencies�

Hammarling
s algorithm is column oriented� Thus� for solving the j
th column� it is necessary to
know the elements L�j � i � �� j�� j � i� prior to computing the element L�i� j�� Consider now the
computation of the �j���
th column of L� The �rst element that should be computed is L�j��� j���
but� according to step � of the serial algorithm� G�j ��� j ��� must be previously used in iteration
j to nullify the �j � ��
th element of y� The next element to be computed is L�j � �� j � ��� which
requires the updated element G�j � �� j � ��� Following this process� the data dependencies for
solving a �x� discrete
time Lyapunov equation is shown in Fig ��

L����
��

�G����
��

�L����
��

�G����
��

�L����
��

�G����
��

�L����
��

L����
��

�

�

G����
��

�

�

L����
��

�

�

G����
��

�

�

L����
��

�

L����
��

�

�

G����
��

�

�

L����
��

�

L����
��

�

Fig� �� Data dependency graph for a �� � Lyapunov equation�

It is important to ouline� from the analysis of the data dependencies� that the highest inherent
parallelism is achieved when the elements on the same antidiagonal of L are computed simultaneously�
The solving sequence is shown in Fig� ��

�
									

�
� �
� � �
� � � 	
���

���
���

���
� � �

n� � n n� � n� � � � � �n� �
n n� � n� � n� � � � � �n� � �n� �

�
���������

Fig� �� Resolution sequence by antidiagonal of L�

�

This idea was previously introduced by O
Leary ���� in the context of the Cholesky decompositon
and it was used to design triangular linear system solvers on distributed memory multiprocessors
����� In ��� ��� this strategy was used to solve Lyapunov equations by Hammarling
s method on
shared memory multiprocessors�

� Wavefront algorithms

It can be observed� from the analysis of the previous section� that element L�i� j� can be computed
once elements L�� � i� � � j � �� and L�� � i � �� j� have been computed �the elements above the
diagonal are zero�� and elements G�j � i� j� have been updated� The total amount of antidiagonals
for a matrix S � IRn�n is adiag � �n� �� Therefore� our algorithm sweeps the adiag antidiagonals
of L and� using the procedure wf��i�j� described in Fig� �� computes in parallel in each step all the
elements L�i� j� which belong to the same antidiagonal �see ��� for more details��

Procedure wf��i�j�� Compute L�i� j�
if i � j then

�� Compute the diagonal element L�i� i��
else

�� Compute the subdiagonal element L�i� j��
�� Update G�

���� Compute the vector y�i��
���� Apply the previous Givens rotations �sin �j���i���j � cos �j���i���j� � rot��j���i���j ��

G�i� j � � � i� �� y�i�
�
�
�
G�i� j � � � i� �� y�i�

�
� rot��j���i���j �

���� Compute and apply the Givens rotation �sin �ij � cos �ij� such that��
G�i� i� y�i�

� � cos �ij sin �ij
� sin �ij cos �ij

�
�
�
� �

�
end if

end wf��i�j��

Fig� �� Procedure wf��i�j��

This algorithm reaches the theoretical highest degree of parallelism when the number of proces

sors satis�es p � n��� In this case� the number of steps required to compute the solution is equal to
the number of antidiagonals of L� In practice� p is much smaller and more than one step is required
to compute each antidiagonal �to simplify� we assume that n is a multiple of p�� Taking into account
the column orientation of Hammarling
s algorithm� the matrix L is solved by blocks of columns�
that is� if n is the dimension of the problem and c is an integer such that c � n�p� each processor
Pi� i � �� � � � � p� �� solves serially the columns L��� i�� L��� i� p�� � � � � L��� i� cp�� Then� the solution
will be distributed cyclically by columns� This is specially appropriate for architectures like linear
arrays or a rings of processors� solving in each step an antidiagonal of elements in a column block�
Thus� in a column block h � �� � � � � c� �� the antidiagonal elements i � hp� � � � � n� p� � of L are

L�i� hp�� L�i� �� hp� ��� � � � � L�i� p� �� h�p� ��� ���

We don
t consider elements over the major diagonal and which are out of the order of the solution�
In order to compute L�i� j�� the procedure wf� needs the rows S�i� �� and G�i� ��� the updated

diagonal elements S�j� j� � � � S�i� �� i� ��� the computed elements L�j � i� �� j� and the rotations
�sin �j���j � cos �j���j�� � � � � �sin �i���j � cos �i���j�� Hence� as each column of L is solved by one pro

cessor� the processor that computes the element L�i� j� also owns the elements of the column j
previously computed as well as their associated rotations� However� this processor needs the j
th
row of S and G� and the diagonal elements j� � � � � i � � of S� Then� a row block distribution for
matrices S and G between all the processors is proposed ����� Fig� � shows this data distribution
for four processors� p � ��

�

P2

P0

P3

P1

Fig� �� Data distribution of matrices S and G for the wavefront algorithm taking p����

When the order of the matrix S is small� a copy of S can be stored in every processor and no
exchange is required� since it is never modi�ed�

If we select an unidirectional ring topology� since processor Pmod�j�p� computes element L�i� j��
update row G�i� j � � � i� and sends them with row S�i� j � � � i� to processor Pmod�mod�j�p����p�� In
Fig� �� the solving sequence for n � � and p � � is illustrated� where the processor number and the
step in which is computed is shown for each element L�i� j��

�� �
�� � �� �
�� � �� � �� �
�� � �� � �� � �� ��
�� � �� � �� 	 �� �� �� ��
�� � �� 	 �� � �� �� �� �� �� ��
�� 	 �� � �� � �� �� �� �� �� �� �� ��
�� � �� � �� �� �� �� �� �� �� �� �� �	 �� ��
�� � �� �� �� �� �� �� �� �� �� �	 �� �� �� �� �� ��

Fig� �� Resolution sequence of L for the alwf� algorithm�n��� p�	��

It is important to notice that the solution L is cyclically distributed by columns� The algorithm
uses a bu�er in order to store the rows of S and G� adapting the data distribution during the solution
process� The initial bu�er size is �n� ��p� correspoonding to n�p pairs of rows of S and G� This
amount of stored data are progresively reduced by one row� For this purpose two procedures are
de�ned� The procedure send head�Bu
er� takes the rows of S and G� which are stored on the top of
the bu�er� sends them to the next processor and then deletes them� The procedure add tail�Bu
er�
rowS� rowG� adds rows rowS and rowG to the end of the bu�er� The algorithm works using a
pipeline structure �see Fig� 	��

Algorithm alwf��
Memory� Bu
er��S���n��G���n���� � � ��S�n�p
��n��G�n�p
��n���� L�n�n�p�
Procedures� send head�Bu
er�� add tail�Bu
er�rowS�rowG�
for j � �� n� �

for i � j� n� �

�

if j � mycol
if i � j

receive�S�j� j�� G�j� j���
send head�Bu
er��
wf��j�j��

else
receive�S�i�j�i��G�i�j�i���
wf��i�j��
add tail�Bu
er�S�i� j � � � i�� G�i� j � � � i���
send head �Bu
er��

end if
end if

end for
end for

end alwf��

Fig� 	�
The alwf� algorithm�

In order to simplify the algorithm description� considerations about special conditions for the
�rst and last steps of the problem are not considered in this �gure�

��� Increasing the computational granularity

In order to increase the ratio of the time spent in computation vs data communications�we can
increase the computational granularity� This procedure optimizes the data locality� This increase
can be either oriented to vectors �medium grain� or blocks �coarse grain�� The inherent consequence
of this approach will be� in some cases� the reduction of the parallelism in the problem� specially in
the last steps� The increase of the computation time depends not only on the number of processors
and the order of the problem� but also on the computing speed of each node and the communications
bandwidth and the latency of a particular machine�

In order to solve the problem using a coarse grain approach� the matrix L is partitioned in
blocks of size nb � mb� To simplify� the dimension n of the matrix L is assumed to be a mul

tiple of nb and mb� Thus� L is partitioned in �n�nb� � �n�mb� blocks Lij � where the block
Lij � L�inb � �i � ��nb � �� imb � �j � ��mb � �� �elements L�k� j�� k � j� are zero�� The pro

cedure wfb which computes the block Lij is shown in Fig� ��

Procedure wfb�i� j� nb�mb�� Compute the block Lij

for j� � jmb� �j � ��mb� �
for i� � inb� �i� ��nb � �

wf��i�� j��
end for

end for
end wfb�

Fig��� Procedure wfb�i� j��

The procedure wfb may be vector �row or column� oriented ���� This approach supposes high
memory locality and consequently� a better performance�

The data distribution and the underlying topology for this case is the same as for the �ne
grain approach� In the coarse grain algorithm� block Lij is computed by processor Pmod�j�p�� which
update the block G�inb � �i � ��nb � �� �j � ��mb � �i � ��nb � �� and sends them along with the
block S�inb � �i � ��nb � �� �j � ��mb � �i � ��nb � �� to processor Pmod�mod�j�p����p�� Fig� � shows
the solving sequence of L for n � �� p � �� nb � � and mb � ��

	

�� �
�� � �� �
�� � �� � �� �
�� � �� � �� � �� �
�� � �� � �� � �� 	 �� �
�� � �� � �� � �� 	 �� � �� �
�� � �� � �� � �� � �� � �� �� �� ��
�� � �� � �� � �� � �� � �� �� �� �� �� ��
�� � �� � �� 	 �� � �� �� �� �� �� �� �� �� �� ��

Fig� �� Solving sequence of L for algorithm alwft �n��� p�	� nb��� mb � ���

The coarse grain algorithm �alwfb� works in a very similar way to the algorithm alwf �see Fig�
���� Each processor completely solves a column block of L in each step� i�e� processor Pi solves
serially the column blocks

L��� �i� cp�mb � �i� cp� ��mb � ��� where c � �� �� � � � � n
mbp

� ��

The procedures add tail and send bu
er act simultaneously in this case with nb rows each time�

Algorithm alwfb�
Memory� Bu
er�S�n�p�n��G�n�p�n��� L�n�p�n�
Functions� send head�Bu
er�nb�� add tail�Bu
er� row blockS� row blockG�
for j � �� n�mb � �

for i � �� n�nb � �
if j � mycolblock

if �i� ��nb � � � jmb

if block � diagonal
receive��S�G��inb � �i� ��nb � �� jmb � �i� ��nb � ���
send head�Bu
er�nb�
wfb�i� j� nb�mb�
add tail�Bu
er���S�G��min��i� ��nb� �j � ��mb� � �i� ��nb � ��

min��i� ��nb� �j � ��mb� � �i� ��nb � ���
else

receive��S�G��inb � �i� ��nb � �� jmb � �i� ��nb � ���
wft�i� j� nb�mb�
add tail�Bu
er���S�G��inb � �i� ��nb � ��

�j � ��mb � �i� ��nb � ���
send head�Bu
er�nb�

end if
end if

end if
end for

end for
end alwfb�

Fig� ���
 Algorithm alwfb

� Adaptive wavefront algorithms

In order to improve the performance of wavefront block algorithms we have designed algorithms
which have an adaptive value of the computational granularity during the problem solution� This
approach has been carried out for shared memory multiprocessors by Hodel and Polla ���� and Claver

�

et al� ��� �� but not for distributed memory multiprocessors�

Algorithm alawfb�nsb �msb�n�
Memory� Bu
er�S�n�p�n��G�n�p�n��� L�n�p�n�
Functions� cond�j�� send head�Bu
er�nb�� add tail�Bu
er� row blockS� row blockG�
mb � msb

nb � nsb
nfb � n�nsb
mfb � n�msb

for j � ��mfb � �
if cond�j�

mb � mb�r
mfb � rmfb
j � rj
nb � nb�r
nfb � rnfb

end if
for i � �� nfb � �

if j � mycolblock
if �i� ��nb � � � jmb

if block � diagonal
receive��S�G��inb � �i� ��nb � �� jmb � �i� ��nb � ���
if �my id �� p� ����cond�j � ���

for k � �� r � �
send head�Bu
er�nb�r�

end for
else

send head�Bu
er�nb�
end if
wfb�i� j� nb�mb�
add tail�Bu
er���S�G��min��i� ��nb� �j � ��mb� � �i� ��nb � ��

min��i� ��nb� �j � ��mb� � �i� ��nb � ���
else

receive��S�G��inb � �i� ��nb � �� jmb � �i� ��nb � ���
wfb�i� j� nb�mb�
add tail�Bu
er���S�G��inb � �i� ��nb � ��

�j � ��mb � �i� ��nb � ���
if �my id �� p� ����cond�j � ���

for k � �� r � �
send head�Bu
er�nb�r�

end for
else

send head�Bu
er�nb�
end if

end if
end if

end if
end for

end for
end alawfb�

Fig� ���
 Algorithm alawfb

�

The proposed algorithm alawfb �see Fig� ��� adapts its solving block nb � mb each time the
processors go to solve the next solving column block� The new solving block size will be� if this
change is required� �nb�r� � �mb�r�� where r is an integer r � �� �� �� � � �� We have called it the
�reduction factor� of the solving blocks�

In order to decide the block partition� a boolean function cond is de�ned �see Fig� ���� The
function cond has as parameters the current solving column block j and the number of processors�
The function decides that the algorithm must reduce the solving block if the steps to solve the
current column block are less than an a priori de�ned value called condblock�

Boolean function cond�j�
if nb � nbmin

if �n�jnb

nb

� condblock� return true
else return false
end if

else return false
end if

end cond�

Fig� ���
 Boolean function cond�j��

The algorithm alwfb adapts the solving block until a minimum block size� nbmin � mbmin is
reached� This minimum solving block depends on the computer caracterstics�

� Experimental Results

These parallel algorithms have been implemented on an SGI Power Challenge �PCh�� This computer
re�ects one current tendency in the construction of high performance computers� The PCh is a shared
memory multiprocessor �the main memory has � GB� with �� superscalar R����� processors at ���
MHz� which have ��kB and �MB of primary and secondary cache memory� respectively�

The parallel algorithms have been implemented using language C and the massage passing en

viroment PVM� Communications are tuned and implemented through the main memory� All the
algorithms were compiled with the maximum sequential optimization �ags and all computations
were carried out in double precision� The parallel algorithms were compared with the Hammarling
s
serial algorithm by blocks� in particular blocks of size ��x��� This block serial algorithm o�ers
better performance that the non
 blocked serial version� For example� on large problems �n � ������
improvements of ���� have been achieved� That is due to the great size of secondary cache memory
of the processors�

In algorithm alwfb� the solving block sizes selected are qp�q� where p is the number of processors
and q � �� �� �� � � �� We chose these block sizes because the resulting matrix L is cyclically distributed
among all the processors� optimizing the time spent on communications�

Fig� �� shows the speed up results of algorithm alwfb for di�erent values of q and n on the PCh
using � processors� Notice that good performances are only obtained for problems of large orders�
The large cache memory for each processor �� MB� and the high cost of the communication set up
give rise to this behaviour� Furthermore� the bus topology on the PCh creates a communication
bottleneck� since only one message can be sent at each time� This one will become more serious as
the number of processors is increased�

The value of q that obtains the best performance also depends on the number of processors
and the order of the problem� It is important to observe that �see ����� the value of q a�ects the
performance more as the number of processors increases� This e�ect is ilustrated in Fig� ��� in
which we present e�ciency results of algorithm alwfb for n����� on �� �� �� � and �� processors
using di�erent solving block sizes�

��

200 400 600 800 1000 1200 1400 1600
0

1

2

3

4

5

6

7

n

S
pe

ed
 u

p

- - + q= 2

- - o q= 4

- - x q= 6

- - * q= 8

. . o q= 12

. . x q= 16

. . + q= 24

. . * q= 32

Fig� ���
 Speed up of algorithm alwfb on the PCh using � processors and di
erent values of q�

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

1.2

q

E
ffi

ci
en

cy

- -o p=2
-.-.x p=4
. . * p=6
- - + p=8
. . o p=10

Fig� ���
 E�ciency of algorithm alwfb on the PCh for n������ p����������� and di
erent values
of q�

Fig� �� shows the speed up results of adative algorithm alawfb for di�erent values of n and for
diferent initial values of q using � processors� The reduction factor used in these implementations
is r � �� due to the fact that it is the best value we have found in our experimental tests� The
smallest block size used is q�� or q��� depending on the initial value taken for q� The condition
value condblock that determines the block partition in the algorithm alwfb is� also due to the results
obtained in the experimental tests� condblock � �p

� � Notice that algorithm alawfb presents� on
problems of large orders� better performances than algorithm alwfb� but on small orders� similar
behavior is observed� It is important to see that the performances of the algorithm are more
independent of q than algorithm alwfb� Thus� it is possible to see that several speed up curves
for di�erent initial values of q are very close�

��

200 400 600 800 1000 1200 1400 1600
0

1

2

3

4

5

6

7

8

n

S
pe

ed
 u

p

- - * q= 2

- - o q= 4

- - + q= 6

- - x q= 8

. . o q= 12

. . x q= 16

. . * q= 24

. . + q= 32

Fig� ���
 Speed up of algorithm alawfb on the PCh for blocks qp� q� where p�� and
q������������������	��

0 5 10 15 20 25 30 35
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

q

E
ffi

ci
en

cy

- - o p=2

-.-.x p=4

. . * p=6

- - + p=8

. . o p=10

Fig� ���
 E�ciency of algorithm alawfb on the PCh for n������ p����������� and di
erent values
of q�

Fig� �� shows this e�ect for n � ���� and di�erent number of processors� Notice that� for a wide
range of initial values of q� e�ciency results for algorithm alawfb are mantained� So� block selection
a�ects to the performance less on the algorithm alafb than on the algorithm alwfb� E�ciencies great
than one have been obtained� since these wavefront algorithms have practically no waits �see ��� for
a datailed computational cost of this sort of algorithms� and a better management of cache memory
is performed in parallel versions for large problems�

��

� Conclusions

New parallel adaptive wavefront algorithms for the solution of large and dense discrete
time Lya

punov equations using Hammarling
s method on message passing multiprocessors have been pre

sented� These algorithms can be easily adapted to the continuous
time version of the Lyapunov
equations�

This method is based in the use of adaptive wavefront of antidiagonals� obtaining good per

formances for large problems �n � ������ in one of the most currently popular high performance
computer� the SGI Power Challenge� The parallel algorithm alawfb o�ers better performances than
the parallel algorithm alwfb due to the use of an adaptive solving block� and allows the system to
obtain the best speed ups for a wide range of problem sizes n just with the same initial value of
solving block selection� This behaviour is true for a di�erent number of processors�

The performances of the algorithms grows with the order of problems tested� n� However�
scalability problems for these algorithms are not solved when the number of processors is increased
because bus topology causes a bottleneck for algorithms where simultaneous comunications are
required�

References

��� Z� Bai and J� Demmel� On a block implementation of Hessenberg multishift QR iteration� Int�
Journal of High Speed Computing� Vol� �� ������� �	
����

��� R� H�Bartels and G� W� Stewart� Algorithm ���� Solution of the matrix equation AX�XB�C
�F��� Comm� ACM ��� ���	�� ���
����

��� J� M� Claver� Algoritmos de grano �no y medio para resolver la ecuacion de Lyapunov en
un multiprocesador con memoria compartida� Tech� Rep� DI ��������� Universitat Jaume I�
������� �in spanish�

��� J�M� Claver� V� Hern�andez and E�S� Quintana� Solving discrete
time Lyapunov equations for
the Cholesky factor on a shared memory multiprocessor� Parallel Processing Letters� Vol� � No
� ������ ���
�	��

��� J� M� Claver and V� Hernandez� Parallel wavefront algorithms solving Lyapunov equations for
the Cholesky factor on message passing multiprocessors� Tech� Rep� DI �������	� Jaume I
University� ����	��

��� K� Glover� All optimal Hankel
norm approximations of linear multivariable systems and their
L
error bounds� Int� Journal of Control ���������� ����
�����

�	� G� H� Golub� S� Nash and C� Van Loan� A Hessenberg
Schur method for the problem
AX�XB�C� IEEE Trans� A�C� Vol� ��� ���	�� ���
����

��� S� J� Hammarling� Numerical solution of the stable� non
negative de�nite Lyapunov equation�
IMA J� of Numarical Analysis �� ������ ���
����

��� S� J� Hammarling� Numerical solution of the discrete
time� convergent� non negative de�nite
Lyapunov equation� System � Control Letters �	 �North Holland� ����� ��	
����

���� M� T� Heath and Charles H� Romine� Parallel solution of triangular systems on distributed

memory multiprocessors� SIAM J� Sci� Statist� Comput� Vol� � No��� ������ ���
����

���� A� S� Hodel and K� Polla� Parallel solution of large Lyapunov equations� SIAM J� Matrix Anal�
Appl� ��� ������ ����
�����

��

���� A� J�Laub� Computation of balancing transformations� Proc� of the Joint Automate Control
Conf� Vol� II� �������

���� A� J� Laub� M� T� Heat� G� C� Paige� R� C� Ward� Computations of system Balancing transfor

mations and other applications of simultaneous diagonalization algorithms� IEEE Trans� A�C�
��� ����	� ���
����

���� B� C� Moore�Principal component analysis in linear systems� Controlability� observability� and
model reduction� IEEE Trans� A�C� ��� ������� ���
����

���� T�Mullis and R� A� Roberts� Synthesis of minimum roundo� noise �xed point digital �lters�
IEEE Trans� Circuits and Syst� ��� ���	�� ���
����

���� D� P� O
Leary and G� W� Stewart� Data
�ow algorithms for parallel matrix computations�
Comm� ACM ��� ������ ���
����

��	� L� Pernebo and L� M� Silverman� Model reduction via balanced state space representations�
IEEE Trans� A�C� �� ������ ���
��	�

���� K� Zhou� Frecuency
weighted L� norm and optimal Hankel norm model reduction� IEEE Trans�
A�C� Vol� ��� No ��� ������ ���	
�����

��

