PARALLEL ADAPTIVE WAVEFRONT
ALGORITHMS SOLVING LYAPUNOV
EQUATIONS FOR THE CHOLESKY FACTOR
ON MESSAGE PASSING MULTIPROCESSORS*

JOSE M. CLAVER™ and VICENTE HERNANDEZ
T Departamento de Informdtica, Universitat Jaume I,
Campus de Penyeta Roja, Castellon 12071, Spain.
T+ Departamento de Sistemas Informdticos y

Computacion, Universidad Politécnica de Valencia,
Valencia 46071, Spain.

December 9, 1998

Abstract

The order of the matrices involved in several algebraic problems decreases during the solution
process. In these cases, parallel algorithms which use adaptive solving blocks sizes offer better
performance results than the ones obtained on parallel algorithms using traditional constant
block sizes. Recently, new parallel wavefront algorithms solving the Lyapunov equations for the
Cholesky factor using Hammarling’s method on message passing multiprocessors systems have
been designed [5]. In this paper, new parallel adapative versions of these parallel algorithms are
described and experimental results obtained on an SGI Power Challenge are presented.

1 Introduction

Lyapunov equations are related to a great variety of problems in control theory and signal processing.
One of these problems is the design of balanced realizations of dynamic linear systems [12, 14, 18],
of which the most extended application of this technique is model reduction [13, 17]. One approach
is to compute the Cholesky factors of the solution of two Lyapunov equations and the SVD of the
product of these factors. Other applications like the Hankel-norm approximation problem [6], the
frequency domain approximation problem [15] and the solution of Riccati equations using Newton’s
method also require the solution of these equations.
We focus our study on the discrete-time Lyapunov equations

AXAT - X +BBT =0,
ATXA-X+CTC =0.

Among the different algorithms to solve these equations [2, 7, 12], Hammarling’s algorithm is
specially appropiate, since it directly computes the Cholesky factor of the solution [8, 9]. Several
wavefront based [16] algorithms have been implemented on shared memory multiprocessors using
this method [4, 11]. More recently, parallel wavefront algorithms for solving Lyapunov equations
using the same method on message passing multiprocessors systems have been developed [5]. These

*This research was partially supported by the CICYT grant TIC96-1062-C03-03

algorithms are based on previous wavefront algorithms to solve triangular linear systems [10], which
have shown good efficiency in their solution. But, on algebraic problems in which the order of the
matrices decrease on the solution process, the selection of the computational granurality is critical.
In the last stages of the problem solution, there are waiting times when constant size solving blocks
are used during all problem. The size of solving blocks must be lower in the last stages to avoid this
situation. In this paper a parallel adaptive wavefront algorithm which selects the best block size in
each moment of the problem solution is proposed.

In section 2 Hammarling’s algorithm and its dependency graph are presented. Parallel wavefront
algorithms are described in section 3. The parallel adaptive wavefront algorithms are presented in
section 4. In section 5 experimental results on message passing multiprocessors are shown. Finally,
the conclusions of this work are exposed.

2 Hammarling’s Method.

The discrete-time Lyapunov equation we want to study is

R __T

AXA - X+ BB =0,
where A4 and B are the coefficient matrices A€ IR**" and Be IR™*™, with n < m. When n > m
, it is possible to apply the same algorithm as described in [8]. If the eigenvalues of the matrix A,
{A1,. .., A}y satisfy |[A\;| < 1,4 =1,2,...,n, then a unique and non-negative definite solution matrix
- - --T
X exist. Therefore, it is possible to obtain the Cholesky decomposition of the solution X=LL ,
where [,€ IR**" is a lower triangular matrix. However, this equation can also be solved directly for
the Cholesky factor L by using Hammarling’s algorithm [8, 9].

In the first step, the original Lyapunov equation is transformed into a simpler equation called
the reduced Lyapunov equation. For this purpose, the real Schur decomposition of 4 ,

A=QSQT,

is computed, where € IR"*" is an orthogonal matrix and S € IR**™ is a block lower triangular
matrix, with 1x1 and 2x2 diagonal blocks. Each 1x1 block contains a real eigenvalue of the coefficient
matrix A, as each 2x2 block is associated with a pair of complex conjugate eigenvalues. Block
algorithms for computing the real Schur decomposition on high performance computers are described
in [1].

Thus, the resulting equation is

SXST - X = —BBT,

where X = QT X Q and B = Q7 B. Next, the product BBT is reduced to a simpler form by
computing the L@ factorization of B

B=(G 0)P,

where G € IR"*" is lower triangular and P € IR™*™ is orthogonal. So, from the solution L of the
reduced equation

S(LLT) ST - (LLT) = -GGT,

the Cholesky factor of the original equation is obtained as L= QL.

2.1 The Serial Algorithm

Now, following the method described by Hammarling, the matrices S, L and G are partitioned as

[sn1 O (L1 0 ~_f gu O
s=(% s)e=(h n)ve=(% a)

where s1; is either an scalar or a 2 x 2 block. If sy is an scalar, 17 and g1, are also scalars, and s,
1, and g are column vectors of n — 1 elements. If si; is a 2 X 2 block, l1; and g1; are 2 x 2 blocks
and s, 1, and g are (n — 2) x 2 blocks.

From now on, and for simplicity, we assume that all the eigenvalues of S are real. This problem
will be denoted the real case of the Lyapunov equation. Hence, the next three equations are obtained:

l11 = 911/m,
(81151 — In_l)l = —ag — ,65 and
S1 (LlL{) SlT — (LlL{) = _GGT = _G’le1 — ny

where a = g11/l11, B = sulii, y = av — s11g, v = S1l + sli1, and I,,—; stands for the identity
matrix of order n — 1.

The diagonal element, [1; is directly computed from the first equation. So, the lower triangular
linear system from the second equation can be solved by forward substitution obtaining 1. Finally,
the last equation is a discrete-time Lyapunov equation of order n — 1 in which the matrix G is of
the form

G:(Gla Y)a

i.e., it is a block matrix composed of an (n — 1) x (n — 1) lower triangular matrix, Gy, and an n — 1
column vector y. Therefore, it is possible to obtain the Cholesky decomposition of the product GGT
using the L factorization

G=(G 0)P,

where P€ IR**" is orthogonal and G€ R(™~1*("=1) is lower triangular. Thus, the new reduced
Lyapunov equation

S, (L LT) ST — (L LT) = — GG

can be treated again in the same way. This procedure can be repeated until the problem is com-
pletely solved. Fig. 1 shows an algorithmic representation of Hammarling’s method.

Algorithm res_ser.
forj=1,n
1. Compute the diagonal element.
a=/1-5G,)%LG.§) =G, j)/a; 8 = LG, 5) - SG.d)
2. Solve the lower triangular linear system for 1.

fori=j+1,n

i—1
L(i,j) = (—a-G(i,j)—,@-S(i,j)—S(j,j)-k > S(i,k)-L(k,5))/ (5@, i)-S(j,7)— 1)

=j+1

end for

3. Compute the vector y.
fori=j+1,n .
=j+1
end for

4. Compute the Cholesky factor of the matrix G of order n — j.
fori=j5+1,n
4.1. Compute the Givens rotation (sin#;;, cosf;;) such that:
.. . cosf;; sinf;; |
GG y@]| o =[x 0]
4.2. Apply the Givens rotation.

for k=1i,n
_ . cosf; sinéb;
[G(k':l) Y(k)] - [G(k/"l) Y(k)] |: —sin0i COSei
end for
end for

end for
end res_ser

Fig. 1. Hammarling’s serial algorithm.

2.2 Study of the Data Dependencies.

Hammarling’s algorithm is column oriented. Thus, for solving the j-th column, it is necessary to
know the elements L(j : i — 1,j),j < i, prior to computing the element L(i,). Consider now the
computation of the (j+1)-th column of L. The first element that should be computed is L(j+1, j+1)
but, according to step 1 of the serial algorithm, G(j + 1,7 + 1) must be previously used in iteration
j to nullify the (5 + 1)-th element of y. The next element to be computed is L(j + 2,7 + 1), which
requires the updated element G(j + 2,5 + 1). Following this process, the data dependencies for
solving a 4x4 discrete-time Lyapunov equation is shown in Fig 2.

Lll

(G} (Lss

L35
g G43 L43 @ Ly

N

ency graph for a 4 X 4 Lyapunov equation.

(E—(5)
N .

h
2)
@@

I

Fig. 2. Data depen

It is important to ouline, from the analysis of the data dependencies, that the highest inherent
parallelism is achieved when the elements on the same antidiagonal of L are computed simultaneously.
The solving sequence is shown in Fig. 3.

1
2 3
3 4 5
4 5 6 7
n—1 n n+l n+2 -+ 2n-3
| n n+l n+2 n+3 - 2n—-2 2n-—1 |

Fig. 3. Resolution sequence by antidiagonal of L.

This idea was previously introduced by O’Leary [16] in the context of the Cholesky decompositon
and it was used to design triangular linear system solvers on distributed memory multiprocessors
[10]. In [4, 11] this strategy was used to solve Lyapunov equations by Hammarling’s method on
shared memory multiprocessors.

3 Wavefront algorithms

It can be observed, from the analysis of the previous section, that element L(i,5) can be computed
once elements L(1 :4,1:j—1) and L(1 : i — 1,5) have been computed (the elements above the
diagonal are zero), and elements G(j : i, j) have been updated. The total amount of antidiagonals
for a matrix S € IR"*" is adiag = 2n — 1. Therefore, our algorithm sweeps the adiag antidiagonals
of L and, using the procedure wfI(%,j) described in Fig. 4, computes in parallel in each step all the
elements L(7, j) which belong to the same antidiagonal (see [5] for more details).

Procedure wfl(i,j): Compute L(i,7)
if i = j then
1. Compute the diagonal element L(i,i).
else
2. Compute the subdiagonal element L(i, 7).
3. Update G.
3.1. Compute the vector y(i).
3.2. Apply the previous Givens rotations (sin 6j41:i—1,j,€086;41:5—1,5) = rot(6;41:5-1,5)
[GG j+1:i=1) y(i) | =[Gli,j+1:i-1) y(@)]-rot(fjt1:i-1,)
3.3. Compute and apply the Givens rotation (sin6;;, cos;;) such that:
.. . cosf;; sinfy;
[GGD) y@) 1] _ singi]- COSQZZ]' =[x 0]
end if
end wfl(i,j).

Fig. 4. Procedure wf1(i,j).

This algorithm reaches the theoretical highest degree of parallelism when the number of proces-
sors satisfies p > n/2. In this case, the number of steps required to compute the solution is equal to
the number of antidiagonals of L. In practice, p is much smaller and more than one step is required
to compute each antidiagonal (to simplify, we assume that n is a multiple of p). Taking into account
the column orientation of Hammarling’s algorithm, the matrix L is solved by blocks of columns,
that is, if n is the dimension of the problem and ¢ is an integer such that ¢ = n/p, each processor
P;,i=0,...,p—1, solves serially the columns L(:,%), L(:,% + p), ..., L(:,i + ¢p). Then, the solution
will be distributed cyclically by columns. This is specially appropriate for architectures like linear
arrays or a rings of processors, solving in each step an antidiagonal of elements in a column block.
Thus, in a column block h = 0,...,c— 1, the antidiagonal elements i = hp,...,n +p— 1 of L are

L(i,hp),LGi — 1,hp+1),...,L(i —p+ 1, h(p+ 1) — 1).

We don’t consider elements over the major diagonal and which are out of the order of the solution.

In order to compute L(%,7), the procedure wfl needs the rows S(i,:) and G(i,:), the updated
diagonal elements S(j,5)...S(i —1,i — 1), the computed elements L(j : ¢ — 1,7) and the rotations
(sinji1,5,c080;41,5),...,(sindi_1,;,cos6;_1 ;). Hence, as each column of L is solved by one pro-
cessor, the processor that computes the element L(i,j) also owns the elements of the column j
previously computed as well as their associated rotations. However, this processor needs the j-th
row of S and GG, and the diagonal elements j,...,i — 1 of S. Then, a row block distribution for
matrices S and G between all the processors is proposed [10]. Fig. 5 shows this data distribution
for four processors, p = 4.

PO

P3

P2

P1

Fig. 5. Data distribution of matrices S and G for the wavefront algorithm taking p=4).

When the order of the matrix S is small, a copy of S can be stored in every processor and no
exchange is required, since it is never modified.

If we select an unidirectional ring topology, since processor P,,,q(j,») computes element L(i, j),
update row G(i,j +1: i) and sends them with row S(i,j + 1 : i) to processor P, od(mod(j,p)+1,p)- 1N
Fig. 6, the solving sequence for n = 9 and p = 3 is illustrated, where the processor number and the
step in which is computed is shown for each element L(i, j).

0,1

0,2 1,3

0,3 1,4 2,5

0,4 1,5 2,6 0,10

0,5 1,6 2,7 0,11 1,12

0,6 1,7 2,8 0,12 1,13 2,14

0,7 1,8 2,9 0,13 1,14 2,15 0,16

0,8 1,9 2,10 0,14 1,15 2,16 0,17 1,18

0,9 1,10 2,11 0,15 1,16 2,17 0,18 1,19 2,20

Fig. 6. Resolution sequence of L for the alwfI algorithm(n=9, p=3).

It is important to notice that the solution L is cyclically distributed by columns. The algorithm
uses a buffer in order to store the rows of S and GG, adapting the data distribution during the solution
process. The initial buffer size is 2n — 2/p, correspoonding to n/p pairs of rows of S and G. This
amount of stored data are progresively reduced by one row. For this purpose two procedures are
defined. The procedure send_head(Buffer) takes the rows of S and G, which are stored on the top of
the buffer, sends them to the next processor and then deletes them. The procedure add_tail(Buffer,
rowS, rowG) adds rows rowS and rowG to the end of the buffer. The algorithm works using a
pipeline structure (see Fig. 7).

Algorithm alwfl.
Memory: Buffer((S(0,n),G(0,n)),...,(S(n/p-1,n),G(n/p-1,n))), L(n,n/p)
Procedures: send_head(Buffer), add_tail(Buffer,rowS,rowG)
for j=0,n—-1
fori=j,n—-1

if 7 € mycol
ifi=j
receive(S(j, 1), G(5,9));
send_head(Buffer);
wf1(7.);
else
receive(S(i,j:1), G (i,§:1));
wfl(i.§);
add_tail(Buffer,S(i,j +1:4),G(i,j + 1 :1));
send_head (Buffer);
end if
end_if
end_for
end _for
end alwfl.

Fig. 7.-The alwf1 algorithm.

In order to simplify the algorithm description, considerations about special conditions for the
first and last steps of the problem are not considered in this figure.

3.1 Increasing the computational granularity

In order to increase the ratio of the time spent in computation vs data communications,we can
increase the computational granularity. This procedure optimizes the data locality, This increase
can be either oriented to vectors (medium grain) or blocks (coarse grain). The inherent consequence
of this approach will be, in some cases, the reduction of the parallelism in the problem, specially in
the last steps. The increase of the computation time depends not only on the number of processors
and the order of the problem, but also on the computing speed of each node and the communications
bandwidth and the latency of a particular machine.

In order to solve the problem using a coarse grain approach, the matrix L is partitioned in
blocks of size n, x my. To simplify, the dimension n of the matrix L is assumed to be a mul-
tiple of ny and msp. Thus, L is partitioned in (n/ny) x (n/ms) blocks L;j, where the block
L;j = L(ing = (i + L)ny — 1,imyp = (§j + 1)mp — 1) (elements L(k,j), k < j, are zero). The pro-
cedure w fb which computes the block L;; is shown in Fig. 8.

Procedure wfb(i, j, ny, ms): Compute the block L;;
for j' = jmy, (j + 1)mb —1
for i' =inb, (i + 1)np — 1
wf1(i’,)
end for
end for
end wfd.

Fig.8. Procedure wfb(i,7j).

The procedure wfb may be vector (row or column) oriented [5]. This approach supposes high
memory locality and consequently, a better performance.

The data distribution and the underlying topology for this case is the same as for the fine
grain approach. In the coarse grain algorithm, block L;; is computed by processor Py,,4(j,p), Which
update the block G(ing : (i + 1)ny — 1,(j + 1)my : (i + 1)np — 1) and sends them along with the
block S(ing : (i + 1)np — 1, (j + 1)my : (i + 1)np — 1) to processor Ppoq(mod(jp)+1,p)- Fig. 9 shows
the solving sequence of L forn =9, p=3,ny =2 and my = 1.

0,1
0,1 1,2

0,2 1,3 2,4

0,2 1,3 2,4 0,6

0,3 1,4 2,5 0,7 1,8

0,3 1,4 2,5 0,7 1,8 2,9

0,4 1,5 2,6 0,8 1,9 210 0,11

0,4 1,5 2,6 0,8 1,9 2,10 0,11 1,12

0,5 1,6 2,7 0,9 1,10 2,11 0,12 1,13 2,14

))

Fig. 9. Solving sequence of L for algorithm alwft (n=9, p=38, ny=2, my = 1).

The coarse grain algorithm (alwfb) works in a very similar way to the algorithm alwf (see Fig.
10). Each processor completely solves a column block of L in each step, i.e. processor P; solves
serially the column blocks

L(:,(i4+cp)mp : (i + ep+ 1)mp — 1), where ¢ =0,1,..., 2 -1

> mpp

The procedures add_tail and send_buffer act simultaneously in this case with n; rows each time.

Algorithm alwjfb.
Memory: Buffer(S(n/p,n),G(n/p,n)), L(n/p,n)
Functions: send_head(Buffer,ny), add_tail(Buffer, row_blockS, row_blockG)
for j =0,n/my —1
for i =0,n/np —1
if j € mycolblock
if (i + 1)y — 1> jmy
if block € diagonal
receive((S,G)(inp : (i + V)np — 1,5mp : (0 + 1)ny — 1))
send_head(Buffer,ny)
'U)fb(i,j, nbamb)
add_tail(Buffer,((S, G)(min((i + 1)ne, (j + L)myp) : (i + 1)np — 1,
min((i + Dng, (+ D)my) : (i +)np — 1))
else
receive((S,G)(inp : (i + V)ny — 1,5mp : (0 + 1)ny — 1))
wﬂ(iaja nbamb)
add_tail(Buffer,((S,G)(iny : (i + 1)ny — 1,
G+ Dmy = (i + Dy — 1))
send_head(Buffer,ny)
end if
end if
end if
end for
end for
end alwfb.

Fig. 10.- Algorithm alwfb

4 Adaptive wavefront algorithms

In order to improve the performance of wavefront block algorithms we have designed algorithms
which have an adaptive value of the computational granularity during the problem solution. This
approach has been carried out for shared memory multiprocessors by Hodel and Polla [11] and Claver

et al. [3, 4] but not for distributed memory multiprocessors.

Algorithm alawfb(ngy,mgp,n)

Memory: Buffer(S(n/p,n),G(n/p,n)), L(n/p,n)
Functions: cond(j), send_head(Buffer,ny), add_tail(Buffer, row_blockS, row_blockG)

mp = Mgp
np = Ngp
nfe = n/nsb

mfy =n/mg
for j=0,mf, —1

if cond(j)
my = my/T
mfy = rmfy
j=rj
ny = ny/r
nfy =rnf
end if

fori=0,nf, —1
if j € mycolblock
if (i + 1)ny — 1> jmy
if block € diagonal
receive((S,G)(inp : (1 + V)ny — 1,5myp : (0 + D)ny — 1))
if (my-id == p — 1)&(cond(j + 1))
fork=0,r—1
send_head(Buffer,ny/r)
end for
else
send_head(Buffer,ny)
end if
'U)fb(i,j, nbamb)
add_tail(Buffer,((S, G)(min((i + 1)ns, (j + L)myp) : (i + 1)np — 1,
min((Z + Dnp, (j + D)my) = (i + 1)np — 1))
else
receive((S,G)(inp : (i + V)ny — 1,mp : (0 + 1)ny — 1))
wfb (i, j, ny, mp)
add_tail(Buffer,((S,G)(iny : (i + 1)ny — 1,
(G+Dmp: i+ 1)ny — 1))

if (my-id == p — 1)&(cond(j + 1))
fork=0,r—1
send_head(Buffer,ny /r)
end for
else
send_head(Buffer,ny)
end if
end if
end if
end if
end for
end for
end alawfb.

Fig. 11.- Algorithm alawfb

The proposed algorithm alawfb (see Fig. 11) adapts its solving block np X my each time the
processors go to solve the next solving column block. The new solving block size will be, if this
change is required, (ny/r) x (mp/r), where r is an integer r = 1,2,3,.... We have called it the
"reduction factor” of the solving blocks.

In order to decide the block partition, a boolean function cond is defined (see Fig. 12). The
function cond has as parameters the current solving column block j and the number of processors.
The function decides that the algorithm must reduce the solving block if the steps to solve the
current column block are less than an a priori defined value called condblock.

Boolean function cond(j)
if ny > Npmin
if (1% < condblock) return true
else return false
end if
else return false
end if
end cond.

Fig. 12.- Boolean function cond(j).

The algorithm alwfb adapts the solving block until a minimum block size, npmin X Mpmin 18
reached. This minimum solving block depends on the computer caracterstics.

5 Experimental Results

These parallel algorithms have been implemented on an SGI Power Challenge (PCh). This computer
reflects one current tendency in the construction of high performance computers. The PCh is a shared
memory multiprocessor (the main memory has 1 GB) with 12 superscalar R10000 processors at 200
MHz, which have 64kB and 2MB of primary and secondary cache memory, respectively.

The parallel algorithms have been implemented using language C and the massage passing en-
viroment PVM. Communications are tuned and implemented through the main memory. All the
algorithms were compiled with the maximum sequential optimization flags and all computations
were carried out in double precision. The parallel algorithms were compared with the Hammarling’s
serial algorithm by blocks, in particular blocks of size 16x32. This block serial algorithm offers
better performance that the non- blocked serial version. For example, on large problems (n > 1000),
improvements of 100% have been achieved. That is due to the great size of secondary cache memory
of the processors.

In algorithm alwfb, the solving block sizes selected are gp x ¢, where p is the number of processors
and ¢ =1,2,3,.... We chose these block sizes because the resulting matrix L is cyclically distributed
among all the processors, optimizing the time spent on communications.

Fig. 13 shows the speed up results of algorithm alwfb for different values of ¢ and n on the PCh
using 8 processors. Notice that good performances are only obtained for problems of large orders.
The large cache memory for each processor (2 MB) and the high cost of the communication set up
give rise to this behaviour. Furthermore, the bus topology on the PCh creates a communication
bottleneck, since only one message can be sent at each time. This one will become more serious as
the number of processors is increased.

The value of ¢ that obtains the best performance also depends on the number of processors
and the order of the problem. It is important to observe that (see [5]), the value of ¢ affects the
performance more as the number of processors increases. This effect is ilustrated in Fig. 14, in
which we present efficiency results of algorithm alwfb for n=1200 on 2, 4, 6, 8 and 10 processors
using different solving block sizes.

10

7 P
X
7/
/7
6 L .
s 7/
2
+0g=2 //>(// Phgyol
sl 0 g4 Pk /}(o i
- S
— X - //o
X =6 // ///// °
_ 7
%4, * =8 ///2/]
o Vv
@ o g=12 1,0 P
Q 7/ e =
Q s -
D3 X q=16 L7 - |
7 // *//// X
+ g=24 ////Q// PN 4
oL © g=32 /////* - + i
7 ///,/dj/ + X
& 2T x
1ir ///’/////ﬁ/ + * * b
géf‘/;/’" ; *
Il Il Il Il Il Il
800 400 600 800 1000 1200 1400 1600

Fig. 13.- Speed up of algorithm alwfb on the PCh using 8 processors and different values of q.

1.2 ' ____I-=»
_ o -—--""
0 p=2 _ P
X p=4 o7 _x_
1F ..* p=6 O X~ %\\\ R
+ p=8 .~ T~
o p=10 X T~
P d// % * T
08k 2,0 % ~ |
3 *
’y
,
> 7)</ _
206 / R
£ //{ Yo *
| ! N
@ ! o N
X' R
04F ¥ o. o il
p o <
] o *\\\\\ *
o \\\\\
0.2F o T
o
0 L L L L L L
0 5 10 15 20 25 30 35
q

Fig. 14.- Efficiency of algorithm alwfb on the PCh for n=1200, p=2,4,6,8,10 and different values
of q.

Fig. 15 shows the speed up results of adative algorithm alawfb for different values of n and for
diferent initial values of ¢ using 8 processors. The reduction factor used in these implementations
is 7 = 2, due to the fact that it is the best value we have found in our experimental tests. The
smallest, block size used is q=2 or q=3, depending on the initial value taken for q. The condition
value condblock that determines the block partition in the algorithm alwfb is, also due to the results
obtained in the experimental tests, condblock = 37”. Notice that algorithm alawfb presents, on
problems of large orders, better performances than algorithm alwfb, but on small orders, similar
behavior is observed. It is important to see that the performances of the algorithm are more
independent of ¢ than algorithm alwfb. Thus, it is possible to see that several speed up curves
for different initial values of ¢ are very close.

11

X
7 // 1
ST a=2 /// 8
6 --o00=4 v +
x °
--+ Q=6 /////@' ///
5- --xQ=8 = 7 1
= ..0g=12 /g////,/f
o /e -
®4- ..x qg=16 7% b
4 st
) ..t g=24 e -
A -
3 ..+ g=32 //4 o 7
e
A" P
2r ST 1
f’ /’;é
-
/é -
r 22T b
¥
L L L L L L
800 400 600 800 1000 1200 1400 1600

n

Fig. 15.- Speed up of algorithm alawfb on the PCh for blocks qp x q, where p=8 and
q=2,4,6,8,12,16,24,32.

1.2 T T — _T_-o
o p= //,/’”O*#
145 ~-x p=4 Ler .
" p=6 D///xﬂ_vii¥9<
1F --+ p=8 ///v/ e |
o p=10 /@:/ RN
0.91- ,/X « x % Sxo A
/
12 *
208" " i
2 7
[} /
8 ;'
&o.7r | A T 1
1% // *\\
L <R T g
0.6 g:, -,
*l
/
051 fo 0 0 o e}]
6 o
0.4r B
o
03 Il Il Il Il Il Il
0 5 10 15 20 25 30 35
q

Fig. 16.- Efficiency of algorithm alawfb on the PCh for n=1200, p=2,4,6,8,10 and different values
of q.

Fig. 16 shows this effect for n = 1200 and different number of processors. Notice that, for a wide
range of initial values of ¢, efficiency results for algorithm alawfb are mantained. So, block selection
affects to the performance less on the algorithm alafb than on the algorithm alwfb. Efficiencies great
than one have been obtained, since these wavefront algorithms have practically no waits (see [5] for
a datailed computational cost of this sort of algorithms) and a better management of cache memory
is performed in parallel versions for large problems.

12

6 Conclusions

New parallel adaptive wavefront algorithms for the solution of large and dense discrete-time Lya-
punov equations using Hammarling’s method on message passing multiprocessors have been pre-
sented. These algorithms can be easily adapted to the continuous-time version of the Lyapunov
equations.

This method is based in the use of adaptive wavefront of antidiagonals, obtaining good per-
formances for large problems (n > 1000), in one of the most currently popular high performance
computer, the SGI Power Challenge. The parallel algorithm alawfb offers better performances than
the parallel algorithm alwfb due to the use of an adaptive solving block, and allows the system to
obtain the best speed ups for a wide range of problem sizes n just with the same initial value of
solving block selection. This behaviour is true for a different number of processors.

The performances of the algorithms grows with the order of problems tested, n. However,
scalability problems for these algorithms are not solved when the number of processors is increased
because bus topology causes a bottleneck for algorithms where simultaneous comunications are
required.

References

[1] Z. Bai and J. Demmel, On a block implementation of Hessenberg multishift QR iteration, Int.
Journal of High Speed Computing, Vol. 1, (1989), 97-112.

[2] R. H.Bartels and G. W. Stewart, Algorithm 432. Solution of the matrix equation AX+XB=C
[F4], Comm. ACM 15, (1972) 820-826.

[3] J. M. Claver, Algoritmos de grano fino y medio para resolver la ecuacion de Lyapunov en
un multiprocesador con memoria compartida, Tech. Rep. DI 08/11/94, Universitat Jaume I,
(1994). (in spanish)

[4] J.M. Claver, V. Herndndez and E.S. Quintana, Solving discrete-time Lyapunov equations for
the Cholesky factor on a shared memory multiprocessor, Parallel Processing Letters, Vol. 6 No
3 (1996) 365-376.

[5] J. M. Claver and V. Hernandez, Parallel wavefront algorithms solving Lyapunov equations for
the Cholesky factor on message passing multiprocessors, Tech. Rep. DI 01/04/97, Jaume I
University, (1997).

[6] K. Glover, All optimal Hankel-norm approximations of linear multivariable systems and their
L-error bounds, Int. Journal of Control 39,(1984), 1115-1193.

[7] G. H. Golub, S. Nash and C. Van Loan, A Hessenberg-Schur method for the problem
AX+4+XB=C, IEEE Trans. A.C. Vol. 24, (1979) 909-913.

[8] S. J. Hammarling, Numerical solution of the stable, non-negative definite Lyapunov equation,
IMA J. of Numarical Analysis 2, (1982) 303-323.

[9] S. J. Hammarling, Numerical solution of the discrete-time, convergent, non negative definite
Lyapunov equation, System & Control Letters 17 (North Holland, 1991) 137-139.

[10] M. T. Heath and Charles H. Romine, Parallel solution of triangular systems on distributed-
memory multiprocessors, STAM J. Sci. Statist. Comput. Vol. 9 No.3, (1988) 558-588.

[11] A. S. Hodel and K. Polla, Parallel solution of large Lyapunov equations, STAM J. Matrix Anal.
Appl. 18, (1992) 1189-1203.

13

[12] A. J.Laub, Computation of balancing transformations, Proc. of the Joint Automate Control
Conf. Vol. TI, (1980).

[13] A. J. Laub, M. T. Heat, G. C. Paige, R. C. Ward, Computations of system Balancing transfor-
mations and other applications of simultaneous diagonalization algorithms, IEEE Trans. A.C.
32, (1987) 115-122.

[14] B. C. Moore,Principal component analysis in linear systems: Controlability, observability, and
model reduction, IEEE Trans. A.C. 26, (1981), 100-105.

[15] T.Mullis and R. A. Roberts, Synthesis of minimum roundoff noise fixed point digital filters,
IEEE Trans. Circuits and Syst. 23, (1976) 551-562.

[16] D. P. O’Leary and G. W. Stewart, Data-flow algorithms for parallel matrix computations,
Comm. ACM 28, (1986) 840-853.

[17] L. Pernebo and L. M. Silverman, Model reduction via balanced state space representations,
IEEE Trans. A.C. 2, (1982) 382-387.

[18] K. Zhou, Frecuency-weighted Lo, norm and optimal Hankel norm model reduction, IEEE Trans.
A.C. Vol. 40, No 10, (1995) 1687-1699.

14

