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Abstract. In this paper, we describe new parallel cyclic wavefront algo-
rithms for solving the semidefinite discrete-time Lyapunov equation for the
Cholesky factor using Hammarling’s method by the message passing para-
digm. These algorithms are based on previous cyclic and modified cyclic
algorithms designed for the parallel solution of triangular linear systems.
The experimental results obtained on an SGI Power Challenge show a high
performance for large scale problems and better scalability than previous
wavefront algorithms for solving these equations.

1 Introduction

Discrete-time Lyapunov equations arise in a great variety of problems of control
theory and signal processing like, e. g., model reduction of linear control systems
by means of the design of balanced realizations, Hankel-norm approximation prob-
lems, frequency domain approximation problems, solution of Riccati equations using
Newton’s method, etc. [12, 14].

Among the different solvers for these equations [2, 6], Hammarling’s algorithm [7]
is specially appropriate for model reduction via balanced realizations, as it directly
computes the Cholesky factor of the solution. All these methods present a cubic com-
putational cost and, already for medium-size problems, require the use of parallel
computers. Thus, several wavefront algorithms based on Hammarling’s algorithm
have been implemented for shared memory multiprocessors in [3, 10].

When dealing with large-scale problems, parallel distributed memory multipro-
cessors present the advantage of their scalability. In the last few years, parallel
algorithms have been proposed for solving triangular linear systems on this type of
architectures [8, 5, 13]. These parallel algorithms can be classified as fan-in/fan-out,
wavefront, and cyclic algorithms. Following these ideas, parallel distributed fan-
in/fan-out and cyclic algorithms, based on the Schur method [2] or the Hessenberg-
Schur method [6], have been developed for solving Sylvester equations [11]. More
recently, parallel distributed wavefront Lyapunov solvers, based on Hammarling’s
method, have been presented in [4].

The cyclic algorithms potentially offer the best performance, due to their min-
imal communication, on parallel distributed memory multiprocessors with a high
latency. However, their performance deteriorates when the number of processors is
increased. In this paper we describe several modifications of the cyclic algorithms
based on the combination of cyclic and wavefront algorithms to overcome this defi-
ciency.

In section 2 we review Hammarling’s algorithm and its data dependency graph.
In section 3 we present the parallel cyclic algorithms and, in section 4, a new sort
of parallel cyclic wavefront algorithms. In section 5 we report experimental results
on message passing based multiprocessors. Finally, the conclusions of the work are
outlined in section 6.
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2 Hammarling’s Method

Consider the semidefinite discrete-time Lyapunov equation,
AXAT — X+ BBT =0, (1)

where A € IR™*™ is the coefficient matrix, B € IR"*™ is part of the right-hand side
matrix, BBT, and X € IR™*" is the matrix of unknowns. Hereafter, we assume
that n < m. Note that in case n > m, it is possible to apply the same algorithm
described in [7]. If the eigenvalues of matrix A, denoted by {\y, ..., A\, }, satisfy |\;| <
1,i =1,2,...,n, then a unique, non-negative definite solution matrix X exists. In
such case, it is possible to obtain the Cholesky decomposition of the solution X =
LLT, where L € IR™*" is a lower triangular matrix. However, using Hammarling’s
algorithm [7], equation (1) can also be solved directly for the Cholesky factor L.

In the first step of Hammarling’s algorithm, equation (1) is transformed into a
(simpler) reduced Lyapunov equation. For this purpose, the real Schur decomposition
of A is computed as A = QSQT. Here, Q € IR"*" is an orthogonal matrix and
S € IR"*" is a block lower triangular matrix with 1 x 1 and 2 x 2 diagonal blocks.
Each 1 x 1 block contains a real eigenvalue of the coefficient matrix A, and each
2 x 2 block is associated with a pair of complex conjugate eigenvalues. Algorithms
for computing the real Schur decomposition on parallel computers are described
in [1, 9].

Applying the orthogonal similarity transformations defined by @, we obtain the
reduced Lyapunov equation

SxsT - X =-BBT,

where X = QTXQ and B = QT B. Next, the product BBT is reduced to a simpler
form by computing an LQ factorization of B,

B=(G0)P,

where G € IR"*" is lower triangular and P € IR™*™ is orthogonal. Finally, the
solution L of the reduced Lyapunov equation

S(L") st - (LL") = -GGT, (2)

provides the Cholesky factor of the original equation as L = QL.

2.1  The Serial Algorithm

Following the method described in [7], the matrices S, L and G in (2) are initially
partitioned as

s11 O li1 O 0
SZ(:&)’ L:<111L1>’ and G:<gé1G1>’ 3)

where s1; is either a scalar or a 2 x 2 block. In the scalar case, [1; and g;; are also
scalars, and s, 1, and g are column vectors of n — 1 elements. Otherwise, s11, l11,
and g1 are 2 x 2 blocks, and s, 1, and g are (n — 2) x 2 blocks.

For the sake of simplicity, hereafter we assume that all the eigenvalues of S are
real. This problem will be denoted as the real case of the Lyapunov equation. Hence,
the next three equations are obtained from (2) and (3)

i1 911/\/ 1- 3%1:
(51151 — I,—1)1 =—ag— 0s, and (4)
Si (L LT) ST — (L IT) = —~GGT = —GhGT — yy T,



where a = g11/l11, 8 = s11l11, y =av—s;1g,v=S11+sli1,and I,_; stands for
the identity matrix of order n — 1.

The diagonal element [, is directly computed from the first equation in (4). The
lower triangular linear system in the second equation is then solved for 1 by forward
substitution. Finally, the last equation is a discrete-time Lyapunov equation of order
n — 1, where G has the following structure

é: (G17Y)7

that is, G is a block matrix composed of an (n—1) x (n—1) lower triangular matrix,
G1, and an n — 1 column vector y. Therefore, it is possible to obtain the Cholesky
decomposition of the product GGT using the LQ factorization,

where G € IR(®~D*("=1) is Jower triangular and P € IR"*" is orthogonal. This
procedure can be repeated with the reduced Lyapunov equation,

Si (L LT) ST = (L LT) = -GGT,

of order n — 1, until the problem is completely solved. Fig. 1 presents an algorithmic
description of Hammarling’s method.

Algorithm SH.
foryj=1:n
1. Compute the diagonal element.
2. Solve the lower triangular linear system for I.
fori=j5+1:n
i—1
(aG(i,j)+BS(i,j)+S(j,j) E S(i,k—)L(k—,j))
.. k=j+1
LG.j) = TSGISG.1)
end for

3. Compute the vector y.
fori=j5+1:n
y(i) == o (L(j,j)s(iyj) + 2 S(i,k)L(k,j)> — 804, 5)G(, j)
k=j+1
end for
4. Compute the Cholesky factor of the matrix G of order n — j.
fori=j+1:n
4.1. Compute the Givens rotation (sin ;, cos ;) such that:
. . cosf; sinf; |
[G(Z’l) Y(Z)] {—sinGi COSQi:| a [* 0]
4.2 Apply the Givens rotation.
fork=1i:n

Gk, y(8)] = [Gk,) y(R) ] [

end for

cos@; sinf;
—sin#; cosb;

end for
end for
end SH

Fig. 1. Hammarling’s serial algorithm.



2.2 Study of the Data Dependencies.

Hammarling’s algorithm is column-oriented; that is, when the j-th column of the
solution is to be computed, it is necessary to obtain the elements L(j : i—1, j),j < 4,
before computing the element L(i, j). Consider now the computation of the (j + 1)-
th column of L. The first element that must be computed is L(j + 1,5 + 1) but,
according to step 1 of the serial algorithm, G(j+ 1,7+ 1) is required in iteration j to
nullify the (j+1)-th element of y. The next element to be computed is L(j+2,j+1),
which requires L(j+1, j+ 1) and the updated element G(j + 2, j+1). Following this
process, the data dependencies for solving a 4 x 4 discrete-time Lyapunov equation
is shown in Fig. 2.
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It is important to outline from the analysis of the data dependencies, that the
highest inherent parallelism is achieved when the elements on the same antidiagonal
of L are computed simultaneously. This idea was previously introduced by O’Leary
[15] in the context of the Cholesky decomposition problem and it was also used to
design triangular linear system solvers on distributed memory multiprocessors in
[8]. In [3, 10], this strategy was used to solve Lyapunov equations by Hammarling’s
method on shared memory multiprocessors.

3 Parallel Cyclic Algorithms

The parallel cyclic algorithms described in this paper are based on previous work by
Heath and Romine [8], and Eisenstat et al. [5] for solving triangular linear systems
on distributed memory multiprocessors. In these algorithms the matrices of the
problem are partitioned and distributed among the processors by rows (or columns).
This data layout presents good load balancing properties for matrix factorization
procedures that generally precede the solution of triangular linear systems. In order
to simplify the presentation of our algorithms we define a function map(j) that
indicates the processor which stores the j-th row (column) of a matrix.

In the cyclic parallel triangular linear system solvers, all necessary information
is stored in a segment of constant size p — 1 that circulates among a ring of p
processors. After receiving the segment, processor j computes an element of the
solution. Next, the segment is updated and sent to the next processor (j + 1). The
goal here is to overlap the circulation of the segment with the updating of several
variables needed to compute the next element belonging to the same processor.
Other kind of interconnection topologies like a bus can be appropriate for these
algorithms since, as only one message is circulating at each time, no communication
bottleneck exists.



Using the same ideas, Lyapunov equations can be solved by columns, with all
the processors collaborating to compute each column. The solution of a column is
divided into two stages: In the first stage, denoted as substitution, all the elements
of a column are computed by solving a triangular linear system. In the second stage,
denoted as triangularization, the right-hand side matrix G is updated by computing
an LQ factorization that nullifies vector y. In this algorithm, the solution matrix L
is stored cyclically by rows, like matrices S and G.

The proposed algorithm, PHCF, is shown in Fig. 3. In the substitution stage,
the segment consists of the last p — 1 computed elements of a column of L, and
during segment circulation the unknown elements not computed are updated. In
the triangularization stage the segment stores 2(p — 1) elements with the p— 1 sines
and p — 1 cosines computed. The circulation of the segment must be overlapped
with the updating of the right-hand side matrix G and the vector y.

Algorithm PHCF.
Memory: S(n/p,n),G(n/p,n), L(n/p,n), seg(n), Cos(n), Sin(n)
forj=0:n-1
1. Substitution stage of L(:, j)
1.1. Compute the diagonal element.
broadeast(L(j, j), S(j, )
1.2. Compute the subdiagonal elements.
fori=j+1:n—-1
1.2.1. Receive the segment seg(p — 1).
receive(map(i — 1), seg(max(i —p+ 1,7+ 1) :i —1))
1.2.2. Compute L(i, 7).
1.2.3. Send updated segment.
send(map(i + 1), seg(max(i — p+ 2,7 + 2) : 1))
1.2.4. Update L(:, j).
end for
2. Triangularization stage.
2.1. Compute vector y.
2.2. Update matrix G.
fori=j+1:n—-1
2.2.1. Receive segments Sin and Cos.
receive(map(i — 1), Cos(min(i — p,j + 1) : i — 1))
receive(map(i — 1), Sin(min(i —p,j +1) : i — 1))
2.2.2 Apply the previous Givens rotations.
2.2.3. Compute the Givens rotations (sin 6;, cos ;)
2.2.4. Send segments Sin and Cos.
send(map(i + 1), Cos(min(i —p+1,j+2) : i — 1))
send(map(i + 1), Sin(min(i —p+ 1,7+ 2) : i — 1))
2.2.5. Apply the Givens rotations to the rest of elements.
end for
end for
end PHCF.

Fig. 3 Algorithm PHCF.

A different approach is to overlap the two solving stages, substitution and tri-
angularization. In this algorithm (denoted as PHCF2), when a new element of the
Cholesky factor is computed, the right-hand side matrix is immediately updated.
Thus, two segments of size (p—1) and 2(p—1) are simultaneously circulating among
the processors and possible idle times are reduced.



We also propose a different approach to increase the granularity of the algorithm
while maintaining the initial data distribution. In our algorithm PHCR each proces-
sor computes at each step ¢ elements of the same row. Due to the data dependency
of Hammarling’s algorithm, we cannot separate the substitution and triangular-
ization stages as was previously done in algorithm PHCF. In this algorithm, y is
actually a matrix of size n x ¢ and the circulating segment is of size 3q(p — 1).

4 Cyclic Wavefront Algorithms

Following the analysis by Eisensat et al., we have developed similar pipelined and
short-cut algorithms that are variants of those in [5]. The algorithms in [5] were
designed for a type of multiprocessor systems where the ratio between the compu-
tational speed of the processors and the communication bandwidth of interconnec-
tion network was low. Current parallel architectures have experimented an increase
of computational speed higher than that of the communication bandwith. On the
other hand, many current bus-based multiprocessor systems have reduced the num-
ber of processors (4-12) since a high number leads to a dramatic reduction in the
performance.

We propose a new sort of parallel algorithms, denoted as cyclic wavefront al-
gorithms (PHCWF), where each processor solves simultaneously r columns, and r
segments are circulating among the processors (with r < p, rk = n, and k a positive
integer number). A row cyclic distribution of S and G is used, and the solution
matrix is also stored cyclically by rows. Thus, the Lyapunov equation is solved by
using an antidiagonal wavefront of size r. When r > p, there are only a maximum
of p segments circulating among the processors. The segments will be sent either as
a unique message of size 3(p — 1) or as two segment messages of size (p — 1) and

2(p—1).

5 Experimental Results

These parallel algorithms have been implemented on an SGI Power Challenge
(PCh). This computer reflects a current tendency in the construction of high per-
formance computers. The PCh is a shared memory bus-based multiprocessor (the
main memory has 1 GByte) with 12 superscalar R10000 processors at 200 MHz,
and 64kBytes and 2MBytes per processor of primary and secondary cache memory,
respectively.

The parallel algorithms have been implemented using C and the PVM message-
passing library. Communications are tuned and implemented through the main
memory. The parallel algorithms were compared with a serial block version of Ham-
marling’s algorithm. We used double-precision arithmetic in our experiments and
all the algorithms were compiled with the appropriate optimization flags.

The cyclic algorithms PHCF, PHCF2 and PHCR report a low performance as
in the case of cyclic triangular linear systems solvers [5, 13]. As we found out in
the theoretical analysis of our algorithms, idle times are not reduced when the
granularity is increased.

The only way to reduce idle times is increasing the number of segments circulat-
ing among the processors while taking advantage simultaneously of data locality in
the cache memory. The latter can be achieved by using cyclic wavefront algorithms.

Fig. 4 shows the efficiencies obtained for algorithm PHCWF on the PCh using
4 and 8 processors. In this implementation, for each column of the solution that is
computed, two segments circulate among the processors.



In this figure, r is the number of columns solved simultaneously (there are 2r
segments circulating); when r = 1 the behavior of PHCWF is equal to that of algo-
rithm PHCF2 (performance in this case are lower than the performance obtained for
PHCWF with r = 2, and therefore these results are not reported). We can observe
a low performance for large problems, r = 2 and 4 processors. This low performance
arises for larger problems and r = 1. We are performing further experiments to find
out the reasons for this behavior.

Notice that a high performance is obtained only for large-scale problems (the
reasons are the large size of the cache memories and the high cost of the communi-
cation start-up). It is also possible to observe that the efficiencies obtained are very
similar when r is higher than a given value.
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Fig. 4. Efficiency obtained of the algorithm PHCWF on the PCh using 4 (left)
and 8 (right) processors, for different problem sizes and values of r.

Fig. 5 shows that, in some cases, a higher performance is obtained when the
number of processors is increased. Hence, cyclic wavefront algorithms have better
scalability than wavefront algorithms designed to solve Lyapunov equations [4], in
which the efficiency decreases as the number of processors is increased.
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Fig. 5. Efficiency obtained of the algorithm PHCWF on the PCh for n = 1024
and n = 1536, using different number of processors and values of r.

6 Conclusions

New parallel cyclic wavefront algorithms have been presented for the solution of
large and dense discrete-time Lyapunov equations using Hammarling’s method on



message passing multiprocessors. These algorithms can be easily adapted to the
continuous-time version of the Lyapunov equation.

The algorithms combine two techniques previously used to solve triangular linear
systems and introduce new ideas to solve problems arising in the algorithms.

Cyclic wavefront, algorithms show a good performance when the problem or-
der and the number of processors is increased. Efficiencies near to 80% have been
obtained for 10 processors and n = 1536. This behavior has been tested on a bus-
based multiprocessor, the SGI Power Challenge, and excellent scalability has been
reported for these algorithms.
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