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Abstract. In this paper new parallel algorithms to solve the Lyapunov equations for the Cholesky
factor using Hammarling’s method on message passing multiprocessors are described. These
algorithms are based on previous work carried out on the parallel solution of triangular linear
systems by using row block data distribution and a wavefront of antidiagonals. The algorithms
are theoretically analyzed and experimental results obtained on an SGI Power Challenge and a
Cray T3D are presented.
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1. Introduction

Lyapunov equations are related to a great variety of problems in control theory and
signal processing. One of these problems is model reduction [15, 22] by means of
the design of balanced realizations of dynamic linear systems [14, 19, 25]. For this
purpose we must compute the Cholesky factors for the solutions of two Lyapunov
equations and the SVD of the product of these factors. Other applications like the
Hankel-norm approximation problem [7], the frequency domaine approximation
problem [20] and the solution of Riccati equations using Newton’s method also
require that these equations be solved. We focus our study on the discrete-time
Lyapunov equations

AXAT - X + BBT =0,
ATXA-X+CTC =0.

Among the different algorithms for solving these equations [2, 8, 14], the Ham-
marling’s algorithm is specially appropiate, since it directly computes the Cholesky
factor of the solution [9, 10]. Several wavefront algorithms using Hammarling’s
method [5, 6, 12] have been implemented on shared memory multiprocessors.
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Recently, parallel algorithms for solving triangular linear systems on distributed
memory multiprocessors have been developed. These algorithms are: fan-in/fan-out
[24], wavefront [11] and cyclics [4, 16, 17]. Therefore, fan-in/fan-out [13] and cyclic
algorithms [18, 23], based on the Schur method or the Hessenberg-Schur method
have been developed for solving Sylvester and continuous-time Lyapunov equations
using distributed memory multiprocessors. This paper is focused on wavefront
algorithms, since they have shown good efficiency in the solution of triangular
linear systems.

In section 2, Hammarling’s algorithm and its data dependency graph are pre-
sented. Parallel algorithms with row block data distribution using wavefront of
antidiagonals for the solver are described in section 3. A theoretical time analysis
of the proposed algorithms is carried out in section 4. In section 5, experimental
results on message passing multiprocessors are shown. Finally, the conclusions of
the work are described.

2. Hammarling’s Method.
The discrete-time Lyapunov equation we want to study is

-=--T -  --T

AXA - X+ BB =0,
where A and B are the coefficient matrices A€ IR®*® and B€ IR™*™, with n < m.
When n > m, it is possible to apply the same algorithm as described in [9]. If
the eigenvalues of the matrix 4, {A1, ..., A\n}, satisfy [\l <1,i=1,2,...,n, then a
unique, non-negative definite solution matrix X exists. Therefore, it is possible to

_  __T _
obtain the Cholesky decomposition of the solution X=[LI, , where L€ IR**" is a
lower triangular matrix. However, this equation can also be solved directly for the
Cholesky factor I, by using Hammarling’s algorithm [9, 10].
In the first step, the original Lyapunov equation is transformed into a simpler

equation called the reduced Lyapunov equation. For this purpose, the real Schur
decomposition of 4 ,

A= QSQT,

is computed, where € IR"*" is an orthogonal matrix and S € IR**" is a block
lower triangular matrix, with 1 x 1 and 2 x 2 diagonal blocks. Each 1 block contains
a real eigenvalue of the coefficient matrix A, as each 2 x 2 block is associated with
a pair of complex conjugate eigenvalues. Block algorithms for computing the real
Schur decomposition on high performance computers are described in [1].

Thus, the resulting equation is

SXST — X = —-BBT,

where X= QXQT and B= QB. Next, the product BBT is reduced to a simpler
form by computing the L@ factorization of B

B=(G 0)P,
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where G € IR**® is lower triangular and P € IR™*™ is orthogonal. So, from the
solution L of the reduced equation

S(LLT) ST — (LLT) = -GGT,

the Cholesky factor of the original equation is obtained as L= QL.

2.1. The Serial Algorithm

Following the method described by Hammarling, the matrices S, L and G are par-

titioned as
(11 0 (i1 O _fgun O
s=(V s )e=(Vn)ve=(%a)

where s is either an scalar or a 2 x 2 block. If s17 is an scalar, l11 y g11 are also
scalars, and s, 1, and g are column vectors of n — 1 elements. If sy is a 2 x 2 block,
l1; and g11 are 2 x 2 blocks and s, 1, and g are (n — 2) x 2 blocks.

From now on, for the sake of simplicity, we assume that all the eigenvalues of S
are real. This problem will be denoted as the real case of the Lyapunov equation.
Hence, the next three equations are obtained:

l1 = 911/\/]—_5%17

(51151 — In—1)1 = -—ag—fBs and
Sy (L LT) ST — (L, LT) = -GGT = -G\GT —yyT,

where
a=gi/lii, B=s11l1,y =av—sig,v=_51+sl

and I,,_; stands for the identity matrix of order n — 1.

The diagonal element Iy is directly computed from the first equation. So, the
lower triangular linear system for the second equation can be solved by forward
substitution obtaining 1. Finally, the last equation is a discrete-time Lyapunov
equation of order n — 1 in which the matrix G is of the form

G:(Gla y)a

i.e., it is a block matrix composed of an (n — 1) x (n — 1) lower triangular matrix,
G4, and an n — 1 column vector y. Therefore, it is possible to obtain the Cholesky
decomposition of the product GGT using the LQ factorization

G=(G0)P,

where P€ IR**" is orthogonal and G€ IR(™®~V*(®=1) ig Jower triangular. Thus, the
new reduced Lyapunov equation

Sy (L LT) ST = (L LT) = - GG

can be treated again in the same way. This procedure can be repeated until the
problem is completely solved. Figure 1 shows an algorithmic representation of
Hammarling’s method.
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Algorithm res_ser.
forj=1:n
1. Compute the diagonal element.
Q 1=y 1- S(]a])QaL(]aj) = G(],J)/aaﬁ = L(Ja]) ) S(Ja])
2. Solve the lower triangular linear system for 1.
fori=j+1:n

L) = (-0 Gii) = B+ S(.1) = 5G.9) - 5 G- Lik.f)

end for
3. Compute the vector y.
fori=j+1:n
y(@) == a-(L(j,4) - S(i, ) + . Z+1 S(i, k) - Lk, ) — 5(3,4) - G(i, )
end for ’
4. Compute the Cholesky factor of the matrix G of order n — j.
fori=j+1:n
4.1. Compute the Givens rotation (sin6;;, cos8;;) such that:
.. . cosf;; sinb;;
[GGi.d) y(@) ] —Sinﬁjij cosﬁi;] =[x 0]
4.2 Apply the Givens rotation.
fork=i:n o "
[Gli) y(09)] = [Glki) ¥ ] [ Ol g
end for
end for
end for
end res_ser

Figure 1. Hammarling’s serial algorithm.

2.2.  Study of the Data Dependencies

Hammarling’s algorithm is column oriented. Thus, for solving the j-th column,
it is necessary to know the elements L(j : ¢ — 1,7),j < 4, before computing the
element L(7,j). Consider now the computation of the (j 4+ 1)-th column of L. The
first element that must be computed is L(j + 1,7 + 1) but, according to step 1 of
the serial algorithm, it is necessary to make previous use of G(j + 1,5 + 1) in the
j — th step in order to nullify the (j + 1)-th element of y. The next element to be
computed is L(j + 2, j + 1), which requires L(j 4+ 1, j + 1) and the updated element
G(j + 2,7+ 1). Following this process, data dependency graph for solving a 4x4
discrete-time Lyapunov equation is shown in figure 2.
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Figure 2. Data dependency graph for a 4 X 4 Lyapunov equation.

It is important to outline, from the analysis of the data dependencies, that the
highest inherent parallelism is achieved when the elements on the same antidiagonal
of L are computed simultaneously. The solving sequence is shown in figure 3.

This idea was previously introduced by O’Leary [21] in the context of the Cholesky
decomposition problem and it was used to design triangular linear system solvers on
distributed memory multiprocessors [11]. In [6, 12], this strategy was used to solve
Lyapunov equations by Hammarling’s method on shared memory multiprocessors.

1

2 3

3 4 5

4 5 6 7

n—1 n n+l1ln+2 - --- 2n—-3
n n+ln+2n+3 - 2n—-2 2n—1 |

Figure 3. Solving sequence by antidiagonals of L.

3. Wavefront algorithms

From the analysis of the previous section, it can be observed that element L(i, j)
can be computed if elements L(1 : 4,1 : j — 1) and L(1 : i — 1,) have been
computed (the elements above the diagonal are zero), and elements G(j : i, j) have
been updated once. The total amount of antidiagonals for a matrix S € IR**" is
adiag= 2n — 1. Therefore, our algorithm sweeps the adiag antidiagonals of S and
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G, using the procedure wfl(i,j) described in figure 4, and computes in parallel at
each step all the elements L(7, j) which belong to the same antidiagonal.

Procedure wf1(i,j): Compute L(i, )
if (i = j) then
1. Compute the diagonal element.
a(j) = /1= 55,02
L(i,i) := G(i, i)/ a(j)
B(j) == L(i,i) - S(i,19)
else
2. Compute the subdiagonal element.

L(i,j) = (=a(j) - G(i,5) — BG) - S(i,5) — S, 4) - lil S(i, k) - L(k, )

k=j+1
/(8(i,i) - 5(5,5) = 1)
3. Update G.
3.1. Compute the vector y(i).

y(@) := a(j) - (L(,5) - S, 5) + . > ) S(i, k) - L(k, 7)) — S(4,7) - G(i, j)
=j+
3.2. Apply the previous rotations.
fork=j+1:i—1
. N ) ; cosfy; sinfy;
GGk ¥0) ] = [GGR) ¥@)] | s s
end for
3.3. Compute and apply the Givens rotation (sin;;, cos8;;) such that:
.. . COS GU sin Gij _
(GG y@) ]| oty | = [+ 0]
end if
end wfl(i,j).

Figure 4. Procedure wfl(1,5).

This algorithm reaches the theoretical highest degree of parallelism when the
number of processors satisfies p > n/2. In this case, the number of steps required to
compute the solution is equal to the number of antidiagonals of adiag. In practice,
p is much smaller and more than one step is required to compute each antidiagonal
(to simplify, we assume that n is a multiple of p). Taking into account the column
orientation of Hammarling’s algorithm, and in order to reduce the problems in
memory access, matrix L is solved following blocks of columns. Thus, if n is the
dimension of the problem and ¢ is an integer such that ¢ = n/p, the processor
P;,i=0,...,p—1, solves sequentially the columns L(:,4), L(:,i+p),..., L(:,i+cp).
Then, the solution will be stored cyclically by columns. This is specially appropriate
for architectures like linear arrays or ring of processors, solving concurrently at each
step an antidiagonal of elements in a column block. Therefore, given a column block
h=0,...,c—1, the antidiagonal elements i = hp,...,n+p—1 of L corresponding
to this block are
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Lippy Lim1,hp+15 - - - s Licpt1,h(p+1) -1

We don’t consider elements over the major diagonal or which are out of the order
of the solution.

In order to compute L(i,j), the procedure wfl needs the rows S(i,:) and G(i,:
), the diagonal elements S(j,5),...,S( — 1,4 — 1), the computed elements L(j :
i —1,7) and the rotations (sinfj4+1,;,c086;115),...,(sinf;_1 ;,cosb;_1 ;). Hence,
as each processor completely solves a column of L, the processor which computes
element L(4, j) also posesses the elements of the j—th column which were previously
computed as well as their associated rotations. However, this processor needs the
j —th row of S and G, and the diagonal elements j,...,i — 1 of S. Then, a row
block distribution for matrices S and G and a copy of the diagonal of S among all
the processors is proposed [11]. Figure 5 shows this data distribution taking p = 4.

PO

P3

P2

P1

Figure 5. Data distribution of matrices S and G for the wavefront algorithm (p = 4).

When the order of matrix S is small, a copy of S can be stored in every processor,
since it is never modified.

If an unidirectional ring topology is selected, the processor P,,q(;,p) computes
element L(i, j), updates row G(i,j +1 : 1) and sends it along with row S(i,7+1 : 4)
to the processor Pod(mod(jp)+1,p)- In figure 6 the solving sequence for n = 9 and
p = 3 is shown, where the processor number and the step in which it is computed
is shown for each element L(i, j).

It is important to notice that the solution L is cyclically distributed by columns.
The algorithm alwf! uses a buffer in order to store the rows of S and G, adapting
the data distribution during the solution process. The initial buffer size is 2n?/p,
corresponding to pairs of rows of S and G. The amount of information stored
is progressively being reduced by one row. For this purpose, two procedures are
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0,1

0,2 1,3

0,3 1,4 2,5

0,4 1,5 2,6 0,10

0,5 1,6 2,7 0,11 1,12

0,6 1,7 2,8 0,12 1,13 2,14

0,7 1,8 2,9 0,13 1,14 2,15 0,16

0,8 1,9 2,10 0,14 1,15 2,16 0,17 1,18

0,9 1,10 2,11 0,15 1,16 2,17 0,18 1,19 2,20

Figure 6. Solving sequence of L for the alwf! algorithm (n =9, p = 3).

defined. The procedure send_head(Buffer) takes the rows of S and G , which are
stored on the top of the buffer, sends them to the next processor and then deletes
them. The procedure add_tail(Buffer, rowS, rowG) adds the rows rowS and rowG
to the end of the buffer. The algorithm works using a pipeline structure (see figure
7). Special conditions for the first and last steps of the problem are not considered
in this figure.

Algorithm alwf1.
Memory: Buffer(S(n/p,n),G(n/p,n)), L(n/p,n)
Procedures: send_head(Buffer), add_tail(Buffer,rowS,rowG)
forj=0:n-1
if 7 € mycol
fori=j:n—-1
it (5 = j)
recewve(S(j,4), G(J,J))
send_head(Buffer)
wf1(j,j)
else
receive(S(i,j:1), G (1,j:1))
wft i.j)
add_tail(Buffer,S(i,j +1:4),G(i,j + 1 :4))
send_head (Buffer)
end if
end for
end if
end for
end alwf1.

Figure 7. Algorithm alwf1.
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3.1. Increasing the computation grain.

In order to increase the ratio of the time spent in computation vs data communi-
cation, we can increase the computation grain. This procedure optimizes the data
locality. This increase can be either oriented to vectors (medium grain) or blocks
(coarse grain). The inherent consequence of this aproach will be, in some cases,
the reduction of parallelism in the problem, especially on the last steps. The in-
crease of the computational time depends not only on the number of processors
and the order of the problem, but also on the computing speed of each node and
the communications bandwidth and latency of a particular machine.

In order to solve the problem using a medium grain approach, the columns of L
are partitioned in vectors of length ¢. To simplify, the dimension of the matrix L is
assumed to be a multiple of ¢. Thus, the j-th column of L is partitioned in f =n/t
vectors (voj,...,vp—1)7, where v;; = (Li,j, ooy Lix1ye—1,5) (elements Lyj, k < j,
are zero). The procedure wft which computes the vector v;; of size t is shown in
figure 8.

The data distribution and the underlying topology of this case are the same as for
the fine grain approach. In the medium grain algorithm, the vector v;; is computed
by processor Pp,oq(j,p), Which updates rows G (it : (i + 1)t — 1,5 +1: (i + 1)t — 1)
and sends them along with rows S(it : (i + 1)t — 1,5+ 1: (i + 1)t — 1) to processor
Prod(mod(jp)+1,p)- Figure 9 shows the solving sequence of L for n = 9, p = 3 and
t=2.

The medium grain algorithm (alwft) is very similar to the alwfl algorithm (see
figure 10). The procedures add_tail and send_buffer act simultaneously in this case
on t rows of S and G.

It is easy to extend the previous ideas from the medium grain algorithm to a
coarse grain algorithm (alwfb) is oriented to blocks. In section 5 results obtained
using this extension are shown. In this case, a block of size n, x m; is solved on
each step.

Furthermore, other options may be considered in order to improve the perfor-
mance of these algorithms, as the adaptive value of the computational grain. This
approach has been carried out on shared memory multiprocessors by Hodel and
Polla [12] and Claver et al. [5, 6], but it has not been considered in this paper.

4. Computational Cost.

In this section, the computational costs of Hammarling’s serial algorithm and the
new parallel wavefront algorithms are analyzed. All the eigenvalues of the coefficient
matrix A are assumed to be real. Thus, the real Schur form, S, is lower triangular.

In the analysis of the algorithms we consider the following linear expression to
model the communication cost between two processors

t=0c+ Mr,

where o is the start up time, which is independent of the message length, 7 is the
cost of transmiting a word and M is the length of the message in words (in our case
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Procedure wft(i,j): Compute the vector v;;.
il =it
1. Compute the diagonal element.
if (i' < j)
a(j) :== /1= 5(j,4)
L(j,3) = G(j,4)/a(i)
=41
end if
i'end := min(i' +t — 1,n)
2. Compute the subdiagonal elements of [.
forl =i’ :i'end

L(l,j) := (=a(j) - G(L,5) = B() - S(1,5) = S(, ) - > S(,k) - L(k, j))

end for
3. Compute the vector y.
for Il =14 :i'end l
y() == a(j) - (L(4,4) - S, J) + . Z+1 S, k) L (k,5)) — S(,5) - G(L,j)
end for ’
4. Compute the partial Cholesky factor of G.
4.1. Apply the previous rotations.
for I =i :i'end
fork=j+1:i' -1
cosBy; sinfy;
Gk 0] = [Ga.b) v ]| o
end for
end for
4.2. Compute and apply the new rotations.
for I =i :i'end
4.2.1. Compute the Givens rotation (sin 6;;,cos;;) such that:
cosf; sinf |
(6D y() ] —sinf;; cosé)lj} =[* 0]
4.2.1. Apply the Givens rotation.
for k=1:1i'end ; "
cosf; sinf;
[GlD) ¥ ] = (G0 ¥ ]| ottt Sl
end for
end for
end wft.

Figure 8. Procedure wft(,j).
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Figure 9. Solving sequence of L for algorithm alwft (n =9, p =3, t = 2).

Algorithm alwft.

Memory: Buffer(S(n/p,n),G(n/p,n)), L(n/p,n)

Functions: send_head(Buffer,t), add_tail(Buffer, row_blockS, row_blockG)

forj=0:n-1
if (j € mycol)
fori=0:n/t—1
if ((6+ 1)t —1>j)
if (vector € diagonal)

receiwe((S,G)(j: i+ 1)t —1,5: (i + 1)t —1))

send_head(Buffer,t)

wft(i.j)

11

add_tail(Buffer,((S,G)(j +1: i+t —1,7+1: (i + 1)t —1))

else

receive((S,G)(it : (i + 1)t — 1,5 : (i + 1)t — 1))

wft (i.j)

add_tail(Buffer,((S,G)(it : (i + 1)t — 1,7 +1: (i + 1)t — 1))
send_head (Buffer,t)

end if
end if
end for
end if
end for
end alwft.

Figure 10. Algorithm alwft.

a word is the unit needed to store a float point number). For simplicity, the values
o and T are normalized with respect to the computational cost, that is, they will be
expressed in flops. A flop is defined as the time spent in performing a floating point
operation. A simplified asynchronous model in which only reception time cost has

been considered.
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4.1. Hammarling’s serial algorithm.

The Hammarling’s serial algorithm, as shown in figure 1, is divided into four stages.
The cost of each one of these stages is

3 2
= n 5n 17n
Cs1 = 5n, Cyo 4o Un

Cy3 = %3"'%_1%” and Cyy = n3 + 3n% — 4n.
Thus, the total cost is Cres_ser = % + 8% 4+ O(n). The influence of cache
memories has not been analyzed.

4.2.  Wavefront algorithms.

We will define C'4(i,j) as the arithmetic cost to compute element L(i,5), Cc (i, §)
as the communication cost related to L(¢, j) and Cy (i, 7) as the time spent waiting
for data needed to compute L(i, j). Thus, the total cost of alwf1 for L(i,j) is

Calwfl(iaj) = CA(Zaj) + CC(%]) + CW(%])?

where C4(i,7) = 10i — 105 + 24, Cc(i,7) is the communication cost spent trans-
mitting rows S(i,j : 4) and G(j,7 : i),

Coli,j)=o+2(—j+ 1,

and Cw(i,7) is the waiting time cost between the computations of L(i,j) and
L(i+ 1,7 — 1), defined by

Cw (i, j) = max{0, Cali, j) — Cali +1,j — 1)},

in which C(i,7) — C(i + 1,j — 1) is theoretically always negative. Hence, costs due
to waiting states are not considered.

Since processor 0 has the highest global cost, an upper limit for the total cost of
the algorithm alwf1 can be defined as

n/p n
Calwfl = Z Z Calwfl(iaj) = %(1 + %) + %2(% + % +T(1 + %) + 5) + O(n)a
i=1i=j

where j = (I —-1)p+ 1.
Analyzing the expression of the global cost, and considering cuadratic and lower
terms negligible, the upper limit of the efficiency for the alwf1 algorithm will be

which only depends on the communications parameter 7.
The total cost in algorithm alwft, Copwse(Z, ), in which L is partitioned in vectors
v;; of size t, is
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i1
Cawpt(iii+t—1,5)= Y Calk,j)+Cc(i:i+k—-1,j)+Cw(i:i+k—1,7)
k=i

where C(k, j) = 10k—105+24. The cost Cc: (i : i+t—1, j) is the communication time
needed to send the submatrices S(i : i+t—1,7 : i+t—1) and G4 : i+t—1,7 : i+t—1),
which is defined by

it—1

Co(iti+t—1,j)=0+2 > (k—j+ 1),

k=1
and Cw (i : i+t —1,j) is the time cost due to waits between the computation of
vectors L(i:i+t—1,7) and L(i +¢:i+ 2t — 1,5 — 1),

i+t—1
Cw(i:i+t—1,7) =max{0, > (Ca(k,j)—Ca(k+t,j—1)}.
k=i

As in algorithm alwf1, the cost due to waiting states is not considered.
The upper limit for the global cost of this algorithm is defined by
et ;o 5n® T n’(19 | o 1
Catwyt = 121 q_Zj:/t Carwst(i,J) = 551+ 5) + 5 (5 + 57 +7(1+ 5) +10) + O(n),
where j = (I—1)p+1andi=(¢—1)t+ 1.

When the resolution grain is incremented, the cubic order term for the time cost
in the algorithm alwft is the same as in algorithm alwfl. Only the square order cost,
;;Lt’ which depends on t is reduced. The lower communication cost and the bigger
computation grain produce the highest locality and data reuse. This effect depends
on the vector size and can be easily generalized for block algorithms (coarse grain
algorithms). However, as the grain size is increased, the inherent parallelism of the
problem is reduced. Hence, the grain size is a compromise which depends strongly
on computer characteristics.

5. Experimental Results

These parallel algorithms have been implemented on two different machines, an
SGI Power Challenge (PCh) and a Cray T3D. These computers reflect two current
tendencies in the construction of high performance computers. The PCh is a shared
memory multiprocessor (the main memory has 1 GB) with 12 superscalar R10000
processors at 200 MHz, which have 64kB and 2MB of primary and secondary cache
memory, respectively.

The Cray T3D is a distributed, but globally shared, memory multiprocessor with
256 superscalar Alpha DEC-21064 processors at 150 MHz. Each processor has a
cache memory of 32 KB and a main memory of 64 MB, composing a global memory
of 16 GB. The network topology between nodes is a tridimensional torus.

The parallel algorithms have been implemented using language C and the mes-
sage passing enviroment PVM. On the PCh, communications are implemented us-
ing shared memory segments. All the algorithms were compiled with the maxi-
mum sequential optimization flags and all computations were carried out in double
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Figure 11. Speedup of the algotihm alwfb on the PCh using 4 processors, for different problem
orders and blocks sizes gp X q.
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Figure 12. Speedup of the algorithm alwfb on the PCh using 8 processors, for different problem
orders and blocks sizes gp X q.

precision. The parallel algorithms were compared with the Hammarling’s serial
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Figure 13. Efficiency of the algorithm alwfb on the PCh for n = 1280, using 4 and 8 processors,
and for different values of gq.

algorithm by blocks, in particular blocks of size 16 x 32 on the PCh and 16 x 16
on the T3D. This block serial algorithm offers better performance that the non-
blocked serial version. For example, on large problems (n > 1000), improvements
of 100% on the PCh and 30% on the T3D, have been achieved. The results are
specially important on the PCh, due to the great size of secondary cache memory
of processors.

The algorithm alwf1 obtained low-performance results due to its small computa-
tion grain, and they are not presented in this paper. In the coarse grain algorithm
alwfb, the block sizes selected are gp x ¢, where p is the number of processors and
q=1,2,3,.... We chose these block sizes because the solution matrix L is cyclically
distributed among all the processors, optimizing the time spent on communications.
When ¢ = 1, the behavior the algorithm alfwb is equal to algorithm alwft with t = p.

Figures 11 and 12 show the speedup results for different values of ¢ and n using
the PCh for 4 and 8 processors, respectively. Notice that good performances are
obtained only for problems with large orders. Large cache memories and the high
cost of the communications set up give rise to this behavior. Furthermore, the bus
topology on the PCh creates a communications bottleneck, since only one message
can be sent at each time. This behavior will become more serious as the number of
processors is increased.

The best performance is obtained for a value of ¢ which depends on the number
of processors and the order of the problem. For n = 1280, the best performance
is obtained for ¢ = 16 using 4 processors, and for ¢ = 6 using 8 processors on the
PCh (see figure 13).
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Figure 14. Speedup of the algorithm alwfb on the T3D using 4 processors, for different problem
orders and blocks ¢p X q.
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Figure 15. Speedup of the algorithm alwfb on the T3D using 8 processors, for different problem
orders and blocks ¢p X q.

Figures 14 and 15 show the speedup results for different values of ¢ and n on
the T3D using 4 and 8 processors, respectively. In this case, the results are better
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than the ones obtained on the PCh. That is because the cache memory size is
lower than the one used on the PCh, hence the performance of the sequential
algorithm decreases more quickly when the order of the problem is increased. Also,
the topology of the T3D allows the communication of several messages to overlap
at the same time.

As in the PCh, the value of ¢ that obtains the best performance also depends
on the number of processors and the order of the problem. For n = 1024, the
best performance is obtained for ¢ = 8 using 4 processors and for ¢ = 4 using 8
processors (see figure 16). It is important to see that (see figures 13 and 16) for
both the PCh and the T3D, the value of ¢ affects the performance more as the
number of processors increases. This effect is reflected in figure 17.
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02 . ‘ . ‘ . ‘
0 5 10 15 20 25 30 35

Figure 16. Efficiency of the algorithm alwfb on the T3D for n = 1024, using 4 and 8 processors
and for different values of q.

Efficiencies greater than one have been obtained for both the PCh and T3D,
since our algorithm has practically no waits and a better management of the cache
memory is performed in the parallel version for large problems. However, as the
number of processors is increased, the efficiency of the performance is reduced. This
effect is the consequence of the presence of idle processors during the processing of
the first and last columns of the problem (see figure 17).

6. Conclusions

New parallel algorithms for the solution of large and dense discrete-time Lyapunov
equations using Hammarling’s method on message passing multiprocessors have
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Figure 17. Efficiency of the algorithm alwfb on the PCh for n = 1200, using different number of
processors and values of g.

been presented. These algorithms can be easily adapted to the continuous-time
version of the Lyapunov equations.

The key to these algorithms is the use of a wavefront of antidiagonals. This
technique was previously used in a similar way to solve triangular linear systems
[11]. This method has been generalized for blocks of size ¢p x ¢, obtaining good
performances for large problems (n > 1000) in two of the most currently popular
high performance computers, the Cray T3D and the SGI Power Challenge. Due to
the properties of cache memory management of these computers, efficiency results
great than one have been obtained in some cases.

The performances of the algorithm alwfb improve as the order of problems tested
n. However, scalability problems for these algorithms are not solved as the number
of processors is increased. Nowadays, we are working on the implementation of
adaptive algorithms in order to obtain better scalability behavior of parallel algo-
rithms so that the election of the best block to solve the problem does not depend
on its order.
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