

Abstract— In this paper we present a work in progress of a

new remote control system based on networked robots and

FPGAs technology. The experimental validation has been

carried out within the UJI (i.e. the acronym for University

Jaume I) Robotics Manufacturing Cell. The main devices

included in this Cell are: a SCARA manipulator (AdeptOne), a

robot arm with six degrees of freedom (Motoman), an

industrial belt, several sensors and cameras, an FPGA that

takes care of the computer vision algorithms (i.e. including

grasping determination), and a distributed architecture that

allows any user to control remotely via Internet a specific

manufacturing task. The different components of this system

are connected by a 100BaseT Ethernet network and follow the

SNRP architecture (i.e. Simple Network Robot Protocol),

which grants simple access to generic networked devices using

enhanced IP (i.e. Internet Protocol) based connections.

Moreover, every device in the system is connected to the

Internet through a router that permits the user to control the

networked devices according to security constraints. The

experiments presented in this paper are concerned with

learning visual servoing loops in a direct manner. To this end,

the industrial Robotics Cell includes a FPGA, which

significantly improves the performance of the computer vision

algorithms, and then greatly enhances the efficiency of the

remote visual servoing control. Results show the system

performance of remotely programmed visual servoing controls

using different network architectures.

I. INTRODUCTION

eal-time robot vision tasks such as visual servoing and

object tracking require high computational power and

data throughput, which often exceed the processing

capabilities of the processor on computer platforms. In this

case, application specific hardware (e.g. ASICs, DSPs, or

FPGAs) are considered as alternatives in dealing with this

Manuscript received October 16, 2006. This work has been partially

funded by the Spanish Ministry (MEC) under Grants TIC2003-08496,

DPI2004-01920, TSI2004-05165-C02-01, TIN2006-15516-C04-02, by

the Fundació Caixa Castelló under Grants P1-1B2002-07, P1-1B2003-15,

and P1-1A2003-10, and by the Generalitat Valenciana under grant

GV04A-698.

R. Marín, G. León, R. Wirz, J. Sales and P. J. Sanz are with the Computer

Science Department, University Jaume I (UJI), Castellón 12071, Spain

(email: {rmarin, leon, wirz, salesj, sanzp}@uji.es).

J. M. Claver was with University Jaume I (UJI), Castellón 12071, Spain.

He is now with the Computer Science Department, University of

Valencia, Burjassot 46100 Valencia, Spain (e-mail: jclaver@uv.es).

problem [1-5].

Today, FPGAs are competitive to ASICs in terms of

capacity and performance. The main disadvantage of the

ASIC approach is that the circuit is usually limited to

operate for one specific application. This limitation is

overcome by the programmability of processor cores

included in the ASIC and the introduction of

reconfigurability. In [4], reconfigurable multiprocessor

networks enable the implementation of a variety of image

processing algorithms for low and intermediate level

computer vision. Indeed, FPGA can be reprogrammed and

allows the rapid prototyping of circuits that has to be

designed and able to operate in real time conditions [5].

Thus, FPGA is a promise solution to alleviate the problem

of processing speed in computationally intensive

applications like image processing and industrial vision

systems [6].

Recently, several efforts have focused on the design of

FPGA-based DSP processing systems ([7], and therein).

But requirements are rapidly changing and increasing in

complexity. Furthermore, solutions need to be rapidly

designed and updated, portable to the latest most powerful

platforms, and integrated into a variety of front-end

software application environments.

Current efforts attempt to compile high–level languages

such as Matlab directly into FPGA implementations [8].

Other tools use derived languages based on C such as

Handel-C, based on C++ class libraries such as System C ,

or Java classes such as JHDL [9]. Recently, a more

affordable approach for system designers has been to use

“block-based design”, where a graphical tool (GUI) allows

the interconnection of parameterisable IP cores from a

library for creating processing systems. PixelStreams [10] is

an example of this sort of libraries for digital image and

video processing.

On the other hand, our research laboratory is very

concerned with the necessity of using robotic

telelaboratories in order to give the undergraduate and

master students the opportunity to learn using a real robotic

scenario that can be programmed in-situ or even from home

via Internet (i.e. open telelaboratory) [11][12].

Moreover, there are some control experiments (e.g. high

performance industrial applications) that need more

Remote Control within the UJI Robotics

Manufacturing Cell using FPGA-based vision

Raul Marín, Germán León, Raul Wirz, Jorge Sales, José M. Claver and Pedro J. Sanz

R

sophisticated robotic environments and offer the scientists

and students a higher precision in the robot positioning and

speed. For that, the UJI robotics manufacturing cell was

designed, which allows people to remotely program

complex and high-performance Industrial Applications via

web (see Figure 1).

Figure 1. The UJI robotics manufacturing cell: (Top-left) camera-in-hand

configuration and (Bottom-left) FPGA used to accelerate the image

processing.

One essential part of an Industrial Telelaboratory is the

distributed architecture, which enables the interaction

between the robotic devices and the user commands. In fact,

in this paper we consider that every device (i.e. industrial

robot, conveyor belt, FPGA, etc.) is connected to the same

Ethernet network, and they act as single Network Robot that

communicate with each other through the SNRP web-based

protocol (see next section for details). This architecture

offers many advantages like scalability and maintainability,

and it introduces interesting issues like device

synchronization, bandwidth and time-delays.

As it will be explained in detail in the following sections,

enabling remote programming of robotic systems permits us

to develop external programs that take control over the

whole set of robotic functions. Thus, for example, we could

design an experiment in Java for performing a closed loop

manipulation (i.e. remote visual servoing), or we could even

use this interface for designing a voice-operated robot.

A very good example of remote robot programming in

order to validate these architectures is in fact the remote

visual servoing control. It uses sequences of camera inputs

in order to bring the robots to the desired position, in an

iterative way. In fact, in this paper we enabled the students

and researchers in our university to experiment with their

remote visual servoing algorithms through a remote real

environment instead of using simulation tools.

Finally, the paper describes the implementation of a

SNRP Network camera implemented using a FPGA (see

Figure 1). A camera-in-hand gives the input images to the

FPGA, which performs the image processing and object

segmentation procedures at almost 15 frames per second

(fps). This device provides excellent improvements in the

remote programming of visual servoing control loops, as

explained in detail in the results.

II. DESIGN AND IMPLEMENTATION ISSUES

As explained in [13], Networked Robotics is an emerging

research area for creating intelligent robotic architectures

that integrate embedded systems, sensor and actuator

networks.

The challenge is defining software and network

architectures within the network robotics context, providing

the following features: (1) Simple, (2) Open, (3) Flexible

(4) Dynamic, (5) Robust, (6) Scalable, (7) Efficient, (8)

Secure, (9) Platform independent.

Simplicity is maybe the most important challenge of

network robotics architecture, due to the fact that it must be

possible for a very broad range of devices to be part of it. In

fact, as we will describe later, thanks to this simplicity we

were able to implement a prototype of SNRP Network

Camera using a FPGA. Where SNRP (Simple Network

Robot Protocol) is an open based protocol developed by

researches at the RobInLab (Robotics Intelligence

Laboratory, http://www.robot.uji.es).

In the scientific literature several works can be found that

propose different ways and architectures to organize task-

oriented applications of multiple network robots [14-17].

Some of these architectures are focused on Internet software

frameworks (e.g. Web Services) and have been extended

from previous works in single remote controlled robots

[18].

Other works focus on the Internet network protocols

themselves and study internet transport protocols that

enable real-time control and teleoperation of network robots

over IP. In fact, as explained in [19, 20], solutions can be

found to cope with the problems associated to the Internet

in order to control networked robots: (1) time-varying

transmission delay, and (2) not-guaranteed bandwidth.

The software architecture of the SNRP framework

provides the following modules:

1. SNRPRobot: Every robot/device in the SNRP

framework would provide a SNRP_Robot network

interface, which allows any client (e.g. user experiment) to

use a service provided by itself (e.g.

“motoman.service.moveToPosition(x, y, z)”. Examples of

these interfaces are “SNRPConveyorBelt”,

“SNRPMotoman”, and “SNRPFPGAVision”.

2. SNRPRobotsGroup: A SNRP robot can be the union

of several SNRP robots (e.g. a Mobile manipulator is the

union of a mobile robot, an arm). Moreover, the SNRP

module for the arm can be the union of two modules, the

one for the gripper and the one for the arm itself. Thus,

SNRPRobotsGroup permits defining new services for the

several networks robots that work together as if they were a

unique robot.

3. SNRPNamingService: A SNRP network robot can

register to a naming service in order to select a name (e.g.

UJI/telelabs/industrial/motoman) and inform other peers of

which IP and port he is attending to.

4. SNRPServiceHolder: The services provided by a

SNRP robot can be programmed in a static manner within

the SNRP Module itself, or on the other hand, they can be

added dynamically in runtime. For that, an SNRP service

that follows a given interface most be uploaded into the

SNRPServiceHolder. At the moment of writing the

industrial telelaboratory has only a SNRPServiceHolder for

the whole system. Anyway, the architecture would permit

having a holder in every SNRP robot.

5. SNRPExperiment: A SNRP Experiment is a robot

service that can be allocated into a service holder. In fact,

the experiments that we are performing in this moment

provide a unique service holder for the telelaboratory that is

located in the Experiment’s server computer. Further

experiments could be defined as the union of several SNRP

services (i.e. agents) that are run concurrently on different

service holders and that all together provide a certain

robotic task.

Once we have seen the software architecture for the

SNRP framework, we are going to focus on the SNRP

protocol itself that permits the communication between

SNRP experiments, holders, naming services and robots

(see a summary displayed in Figure 2).

First of all, as we want the devices to be accessed

through the internet; they should manage the IP protocol.

On top of it, the SNRP framework enables the device to

accept TCP, and UDP connections. As explained before,

UDP and TCP are not the best solutions to perform remote

control through the Internet, so the SNRP framework

provides the possibility to transport the internet datagram’s

through other protocols like “trinomial” [20], RTP (real-

time transport protocol), the RTP (Rate-based adaptation

protocol) [21], etc.

On the other hand, concerning the FPGA design, an

important improvement to obtain a high-performance SNRP

vision system has been demonstrated. A Celoxica RC203E

platform based on an FPGA Virtex II XC2V3000 chip was

selected. This platform provides a 100BaseT Ethernet

connection, video input/output, high-resolution color

camera and a TFT display. The video input/output interface

provides an easy way to test and verify the FPGA design.

Figure 2. SNRP network architecture

Moreover, the RC203E platform provides a development

environment (i.e. DK) based on the Handel-C hardware

programming language, which has a similar syntax to the

ANSI C language, and it includes the PixelStreams library

to design video systems.

Figure 3. FPGA processing data flow architecture.

The PixelStreams library is very appropriate for these

sorts of applications since the circuit supplied is already

segmented, it has specific video input/output modules, and

it comes with IPs for creating video filters and transforms.

The image processing task performed by means of that

FPGA is divided in two principal data flows, as shows the

Figure 3. In the first data flow, the image taken by the “on-

hand” camera is binarized. Then, object descriptors are

obtained by using a specific module designed ad-hoc for

this purpose. This module is not present in the PixelStreams

library and has been implemented from scratch using a high

level design tool [23]. Finally, object moments are sent to

the network through the FPGA network interface using the

SNRP protocol.

In the second data flow, the image is transformed in a

grayscale image and combined with visual information from

the “Object Descriptors” module. Hence, an augmented

reality image, in which a cursor appears indicating the

object centroid position, is shown on the TFT display of the

FPGA board. The two data flows are synchronized by mean

of the “VGA Synch” module in order to avoid conversion

and visualization problems.

The FPGA provides a service for informing the client

about the object properties in the robotic environment.

Since the client/server synchronization is on-demand, the

FPGA waits for a UDP datagram containing an SNRP

command (i.e. GET /service/object/centroid). Once the

input command is checked, the FPGA generates a new UDP

datagram contained on an Ethernet frame, which uses the

sender MAC and IP address. This process is performed in a

few FPGA clock cycles due to the fact that the FPGA does

not need to implement the whole TCP/IP stack.

The implementation results are the following:

1. FPGA area usage: 3834 slices (4449 LUTs and 55248

bits of BRAM). It is approximately a 25% of the FPGA

area.

2. The maximum FPGA clock cycle is 52.23 ns.

3. The computing cost of object moments is 1,292,835

FPGA clock cycles, that is, approximately 14.8 frames

per second (i.e. segmented scenes per second).

III. EXPERIMENTAL RESULTS

A. The UJI robotics manufacturing cell

The layout of this cell can be appreciated in Figure 4. It is

noticeable that for the present work only the Motoman

robot arm is used, discarding the other one (i.e. AdeptOne

robot arm).

Figure 4. Layout of the UJI Robotics Manufacturing Cell

In order to let a user to implement their industrial

application experiments, the UJI robotics manufacturing

cell is composed of the main following devices:

1. Motoman manipulator: This 6 degree of freedom robot

arm enables users to manipulate the objects coming along

the conveyor belt and classifying them in the auxiliary table.

2. FPGA and on-hand camera: The Motoman

manipulator is equipped with an on-hand high resolution

camera (1024x768) that allows the implementation of visual

servoing controls, as well as object tracking algorithms.

3. Conveyor Belt: It enables user to move the objects in

any direction, as well as with different speeds. Once an

object reaches the end of the belt, two sensors indicate its

situation and allow the operator to act accordingly.

4. Fixed Network Camera: On top of the Conveyor Belt a

network camera is located that provides real-time video

streaming of the objects present onto the conveyor belt.

This camera is calibrated with the conveyor belt, which

permits the implementation of robot control algorithms

using on-top visual servoing techniques.

5. Robot’s Server: A pentium III PC is connected to the

Motoman manipulator and the conveyor belt, enabling its

remote control and programming through the corresponding

SNRP servers. This computer holds the software SNRP

framework for user authentication, SNRP naming service,

the Telelaboratory educational webpage (i.e. moodle based

[22]), and the Experiment’s Holder Server, which enables

uploading a Java experiment to the server and launching it

when appropriate.

Figure 5 shows the software architecture, including

Network connectivity of the UJI robotics manufacturing

cell. As a way to enhance the security measures, the whole

telelaboratory is accessible through a unique router/firewall,

which permits defining the devices and services (i.e. ports)

accessible by the user remotely in a very detailed way.

In order to establish a comparative evaluation with the

proposed system based on FPGA and SNRP protocol (i.e.

“FPGA/SNRP” experiment), an eye-in-hand control

experiment has been designed. A standard PC and a

CORBA protocol are used with the same test to perform

this comparativeness (i.e. “PC/CORBA” experiment).

Figure 5. SNRP Software architecture.

B. Remote Experimental Results

Note that the whole scene must be binarized and

segmented every time the robot moves, in order to acquire

the required mathematical features for every object.

The gripper fingers of the robot will appear in the scene

as two independent objects, so that the user has an

additional difficulty in order to calculate the next robot

movement, bringing the centroid of the object to the

centroid of the gripper by iterative movements of the robot.

Figures 6 and 7 show the time employed for both, the

client and the server side for the “PC/CORBA” experiment.

Most of the time is spent sending images through the

Internet connection and waiting the robot accomplishes the

required movement.

The whole computer vision process takes about 2.5

seconds of the whole manipulation operation, which means

the overall system performance can be improved by

optimizing the binarization, segmentation, and features

extraction procedures.

Client Times

0

5000

10000

15000

20000

25000

GETIMAGE IMAGE PROCESS. MOVEROBOT OTHER

Process

M
il

li
s
e
c
o

n
d

s

Figure 6. Time employed by the client for “PC/CORBA” experiment.

Server Times

0

2000

4000

6000

8000

10000

12000

MOVE ROBOT GETIMAGE WAITING

Process

M
il

li
s
e
c
o

n
d

s

Figure 7. Time employed by the server for “PC/CORBA” experiment.

Thus, in the “FPGA/SNRP” experiment, the image

acquisition, its processing, and pose determination are

performed by an FPGA, which provides the user

information of feature and pose determination through the

network using the SNRP architecture. In this situation, as

the FPGA capabilities are much bigger, we are using a

higher image resolution (i.e. 1024x768) instead of the small

images used in the previous case (i.e. 352x288). Moreover,

as we want to move the robot in a smoother way, the

increments used in the control law (i.e. the visual servoing

gaining factor) are decreased. In fact, for this situation the

whole visual servoing task is executed in an average of

twenty-five loops per experiment instead of the ten loops

we used for other cases. The average loop time is 221

milliseconds, taking into account that the robots take 200

milliseconds to perform any movement. Comparing the

results with previous experiments, we can observe a great

improvement in the average loop time.

In the FPGA side (See figure 8) we can observe how the

FPGA has wasteful resources. In fact, the FPGA spends

more time waiting than processing the image. Moreover, if

we compare the time that the FPGA uses to perform the

image processing and pose determination (i.e. Image

column in Figure 8) with the same time in the other

experiment, we can observe that using a FPGA is about ten

times faster than using a personal computer. So, thanks to

this improvement, the client can compute the object

centroid faster.

FPGA Times

0

1000

2000

3000

4000

5000

6000

Image Waiting

Process

T
im

e
 (

M
il

li
s
e
c
o

n
d

s
)

Figure 8. Global FPGA time for the “FPGA/SNRP” experiment.

Moreover, the implementation of the SNRP protocol

provides also a very big improvement. In fact, the average

time invested to obtain the object features from the network

is about 166 ms in the “PC/CORBA” experiment. But, for

the “FPGA/SNRP” experiment, the object features are

obtained from the SNRP FPGA vision system in an average

of 10 ms, varying the responses from 3 ms to 15 ms.

IV. DISCUSSION

In this paper we have presented recent progress in the

UJI robotics manufacturing cell, which permits to perform

remote programming experiments over a real robotic

platform. This kind of industrial tele-laboratory uses a

distributed network architecture called SNRP (Simple

Network Robot Protocol) that simplifies a lot the interaction

between the different components of the system (i.e. robots,

cameras, experiments, etc.). Results show that the SNRP

protocol enhances very much the performance of the whole

system (over 10 times faster).

Moreover, a FPGA has been used to implement a real-

time vision system that provides SNRP services to the

network. The FPGA takes as input the images from a

webcam (camera-in-hand). By having such an improvement

in the computer vision module we get the opportunity to

program fast and reliable visual servoing controls over this

industrial tele-laboratory.

The paper has presented a real remote programming

experiment which demonstrates that this technique is very

appropriate for education, research and even industrial

applications. In fact, the remote visual servoing experiment

has been selected to demonstrate that remote experiments

could be used even in those situations where time response

is crucial for performance.

The next research goal will focus on the enhancement of

the low-level implementation of the SNRP protocol, which

allows a given experiment to get access to every device

belonging to a tele-laboratory. In fact, a new version of this

protocol (SNRP v2) is already in progress that includes a

SNRP device browser in order to dynamically present a 3D

virtual environment for real SNRP devices. Thus, this

interface opens the door to the design of semantic web

services, knowledge storing, learning, etc.

Moreover, future work will pursue the development of

more sophisticated visual servoing loops using external

cameras, pan/tilt and also stereo cameras. FPGA systems

will be considered to implement such a vision devices.

Finally, the experiments on visual servoing which we

have carried out at the moment are based on position. In the

near future, we will be able to allow users to control the

speed of robot movement, given that the Motoman robot

that we provide in the industrial tele-laboratory permits this

kind of control. With this new configuration it will be

possible to make experiments with more sophisticated

remote visual servoing techniques.

REFERENCES

[1] A. J. Lacey, N. A. Thacker, S. “Crossley, and R. B. Yates, “A Multi-

Stage Approach to the Dense Estimation of Disparity from Stereo

SEM Images”, Image and Vision Computing, vol. 16, pp. 373-383,

1998.

[2] S. Fathnam and G. Slavenburg, “Processing the New World of

Interactive Media: The Trimedia VLIW CPU Architecture,” IEEE

Signal Processing Magazine, vol. 15, pp. 108-117, 1998.

[3] S. Purcell, “The Impact of Mpact 2: The Mpact 2 VLIW Media

Processor Improves Multimedia Performance in PCs”, IEEE Signal

Processing Magazine, vol. 15, pp. 102-107, 1998.

[4] S. M. Bhandarkar and H. R. Arabnia, “Parallel Computer Vision on

a Reconfigurable Multiprocessor Network,” IEEE Transactions on

Parallel and Distributed Systems, vol. 8, pp. 292-309, 1997.

[5] R.C. Cofer, B. Harding. Rapid System Prototyping with FPGAs:

Accelerating the Design Process, Newnes, 2006.

[6] W. Mangione-Smith and B. Hutchings. “Configurable computing:

The road ahead”. In R. Hartenstein and V. Prasanna, editors,

Reconfigurable Architectures: High Performance by Configware, pp.

81-96, IT Press, 1997.

[7] G. Spivey, S.S. Bhattacharyya and K. Nakajima. “A component

architecture for FPGA-based, DSP System Design”, IEEE Int. Conf.

on Application-Specific Systems, Architectures, and Processors

(ASAP’02), 2002.

[8] P. Barneerje et al. “MATCH: A MATLAB compiler for configurable

computing systems”, Technical Report, Center for Parallel and

Distributed Computing, Nosthwestern University, CPDC-TR-9908-

013, 1999.

[9] P. Bellows an B. Hutchings. “JHDL – an HDL for Reconfigurable

Systems”, IEEE Symposium on FPGA’s for Custom Computing

Machines, pp. 175-184, 1998.

[10] Celoxica. PixelStreams. http://www.celoxica.com/techlib/files/CEL-

W0602151ECF-318.pdf

[11] R. Marin, P. J. Sanz, P. Nebot, and R. Wirz. “A Multimodal

Interface to Control a Robot Arm via Web: A Case Study on Remote

Programming”. IEEE Transactions on Industrial Electronics (Special

Section on Human-Robot Interface), vol. 52, no. 6, pp. 1506–1520,

2005.

[12] R. Marín, P.J. Sanz., A.P. del Pobil, “The UJI Online Robot: An

Education and Training Experience“. Autonomous Robots, vol 15,

Number 3, 2003.

[13] G T McKee, D I Baker, P S Schenker : "Network robotics: Dynamic

reconfigurable architectures", Proceedings SPIE Intelligent Robots

and Computer Vision XXII: Algorithms, Techniques and Active

Vision (2004)

[14] G T McKee, D I Baker, P S Schenker : "Robot Scpaces, Module

Networks and Distributed Robot Architectures", Proceedings of the

IROS 2004 Workshop on Networked Robotics:issues, architectures

and applications, Sendai, Japan (2004).

[15] B. K. Kim et al., “Web Services Based Robot Control Platform for

Ubiquitous Functions” In Proc. of the IEEE Int. Conf. On Robotics

and Automation (ICRA). Barcelona, Spain, April 2005.

[16] D. Lee and M. W. Spong, “Bilateral Teleoperation of Multiple

Cooperative Robots over Delayed Communication Networks:

Theory” In Proc. of the IEEE Int. Conf. On Robotics and

Automation (ICRA). Barcelona, Spain, April 2005.

[17] R. Wirz, R. Marín, E. S. Quintana-Orti. “Distributed System for

Remote Programming of Multiple Network Robots: System

Performance & Parallization Issues”, CEDI 2005 Ist Spanish

Conference on Computer Science CEDI 2005, Workshop on

Parallelization (JP 2005), Granada, September, 2005.

[18] R. Marín and P. Sanz. “Grasping Determination Experiments within

the UJI Robotics Telelab”, Journal of Robotic Systems, Internet and

Online Robots for Telemanipulation Special Issue (Part 2), vol 22,

Number 4, 2005.

[19] P. X. Liu, M. Q. H. Meng, S. X. Yang, “Data Communications for

Internet Robots”, Autonomous Robots, vol 15, 2003.

[20] P. X. Liu, M. Q. H. Meng, P. R. Liu, S. X. Yang. “An End-to-End

Transmission Architecture for the Remote Control of Robots Over IP

Networks”, IEEE Transactions on Mechatronics, vol 10, Number 5,

2005.

[21] R. Rejaie, M. Handley, and D. Estrin, “RAP: An end-to-end rate-

based congestion control mechanism for real time streams in the

Internet”, in Proc. IEEE Infocom, Mar. 1999, pp. 1337-1345.

[22] R. T. Fielding and R. N. Taylor, “Principled Design of the Modern

Web Architecture”, in Proc. ICSE 2000, pp 407-415, 2000.

[23] G. León, J.M. Claver, G. Fabregat. “Optimizing area on the

generation of specific circuits on FPGAs for SIMD applications”,

Int. Workshop on Applied Reconfigurable Computing, pp. 160-167,

2005.

