
 

 

 

  

Abstract— In this paper we present a work in progress of a 

new remote control system based on networked robots and 

FPGAs technology. The experimental validation has been 

carried out within the UJI (i.e. the acronym for University 

Jaume I) Robotics Manufacturing Cell. The main devices 

included in this Cell are: a SCARA manipulator (AdeptOne), a 

robot arm with six degrees of freedom (Motoman), an 

industrial belt, several sensors and cameras, an FPGA that 

takes care of the computer vision algorithms (i.e. including 

grasping determination), and a distributed architecture that 

allows any user to control remotely via Internet a specific 

manufacturing task. The different components of this system 

are connected by a 100BaseT Ethernet network and follow the 

SNRP architecture (i.e. Simple Network Robot Protocol), 

which grants simple access to generic networked devices using 

enhanced IP (i.e. Internet Protocol) based connections. 

Moreover, every device in the system is connected to the 

Internet through a router that permits the user to control the 

networked devices according to security constraints. The 

experiments presented in this paper are concerned with 

learning visual servoing loops in a direct manner. To this end, 

the industrial Robotics Cell includes a FPGA, which 

significantly improves the performance of the computer vision 

algorithms, and then greatly enhances the efficiency of the 

remote visual servoing control. Results show the system 

performance of remotely programmed visual servoing controls 

using different network architectures. 

I. INTRODUCTION 

eal-time robot vision tasks such as visual servoing and 

object tracking require high computational power and 

data throughput, which often exceed the processing 

capabilities of the processor on computer platforms. In this 

case, application specific hardware (e.g. ASICs, DSPs, or 

FPGAs) are considered as alternatives in dealing with this 
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problem [1-5]. 

Today, FPGAs are competitive to ASICs in terms of 

capacity and performance. The main disadvantage of the 

ASIC approach is that the circuit is usually limited to 

operate for one specific application. This limitation is 

overcome by the programmability of processor cores 

included in the ASIC and the introduction of 

reconfigurability. In [4], reconfigurable multiprocessor 

networks enable the implementation of a variety of image 

processing algorithms for low and intermediate level 

computer vision. Indeed, FPGA can be reprogrammed and 

allows the rapid prototyping of circuits that has to be 

designed and able to operate in real time conditions [5]. 

Thus, FPGA is a promise solution to alleviate the problem 

of processing speed in computationally intensive 

applications like image processing and industrial vision 

systems [6]. 

Recently, several efforts have focused on the design of 

FPGA-based DSP processing systems ([7], and therein). 

But requirements are rapidly changing and increasing in 

complexity. Furthermore, solutions need to be rapidly 

designed and updated, portable to the latest most powerful 

platforms, and integrated into a variety of front-end 

software application environments.  

Current efforts attempt to compile high–level languages 

such as Matlab directly into FPGA implementations [8]. 

Other tools use derived languages based on C such as 

Handel-C, based on C++ class libraries such as System C , 

or Java classes such as JHDL [9]. Recently, a more 

affordable approach for system designers has been to use 

“block-based design”, where a graphical tool (GUI) allows 

the interconnection of parameterisable IP cores from a 

library for creating processing systems. PixelStreams [10] is 

an example of this sort of libraries for digital image and 

video processing. 

On the other hand, our research laboratory is very 

concerned with the necessity of using robotic 

telelaboratories in order to give the undergraduate and 

master students the opportunity to learn using a real robotic 

scenario that can be programmed in-situ or even from home 

via Internet (i.e. open telelaboratory) [11][12]. 

Moreover, there are some control experiments (e.g. high 

performance industrial applications) that need more 
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sophisticated robotic environments and offer the scientists 

and students a higher precision in the robot positioning and 

speed. For that, the UJI robotics manufacturing cell was 

designed, which allows people to remotely program 

complex and high-performance Industrial Applications via 

web (see Figure 1). 

 

 
Figure 1. The UJI robotics manufacturing cell: (Top-left) camera-in-hand 

configuration and (Bottom-left) FPGA used to accelerate the image 

processing.  

 

One essential part of an Industrial Telelaboratory is the 

distributed architecture, which enables the interaction 

between the robotic devices and the user commands. In fact, 

in this paper we consider that every device (i.e. industrial 

robot, conveyor belt, FPGA, etc.) is connected to the same 

Ethernet network, and they act as single Network Robot that 

communicate with each other through the SNRP web-based 

protocol (see next section for details). This architecture 

offers many advantages like scalability and maintainability, 

and it introduces interesting issues like device 

synchronization, bandwidth and time-delays. 

As it will be explained in detail in the following sections, 

enabling remote programming of robotic systems permits us 

to develop external programs that take control over the 

whole set of robotic functions. Thus, for example, we could 

design an experiment in Java for performing a closed loop 

manipulation (i.e. remote visual servoing), or we could even 

use this interface for designing a voice-operated robot.  

A very good example of remote robot programming in 

order to validate these architectures is in fact the remote 

visual servoing control. It uses sequences of camera inputs 

in order to bring the robots to the desired position, in an 

iterative way. In fact, in this paper we enabled the students 

and researchers in our university to experiment with their 

remote visual servoing algorithms through a remote real 

environment instead of using simulation tools. 

Finally, the paper describes the implementation of a 

SNRP Network camera implemented using a FPGA (see 

Figure 1). A camera-in-hand gives the input images to the 

FPGA, which performs the image processing and object 

segmentation procedures at almost 15 frames per second 

(fps). This device provides excellent improvements in the 

remote programming of visual servoing control loops, as 

explained in detail in the results. 

II. DESIGN AND IMPLEMENTATION ISSUES 

As explained in [13], Networked Robotics is an emerging 

research area for creating intelligent robotic architectures 

that integrate embedded systems, sensor and actuator 

networks. 

The challenge is defining software and network 

architectures within the network robotics context, providing 

the following features: (1) Simple, (2) Open, (3) Flexible 

(4) Dynamic, (5) Robust, (6) Scalable, (7) Efficient, (8) 

Secure, (9) Platform independent. 

Simplicity is maybe the most important challenge of 

network robotics architecture, due to the fact that it must be 

possible for a very broad range of devices to be part of it. In 

fact, as we will describe later, thanks to this simplicity we 

were able to implement a prototype of SNRP Network 

Camera using a FPGA. Where SNRP (Simple Network 

Robot Protocol) is an open based protocol developed by 

researches at the RobInLab (Robotics Intelligence 

Laboratory, http://www.robot.uji.es). 

In the scientific literature several works can be found that 

propose different ways and architectures to organize task-

oriented applications of multiple network robots [14-17]. 

Some of these architectures are focused on Internet software 

frameworks (e.g. Web Services) and have been extended 

from previous works in single remote controlled robots 

[18]. 

Other works focus on the Internet network protocols 

themselves and study internet transport protocols that 

enable real-time control and teleoperation of network robots 

over IP. In fact, as explained in [19, 20], solutions can be 

found to cope with the problems associated to the Internet 

in order to control networked robots: (1) time-varying 

transmission delay, and (2) not-guaranteed bandwidth. 

The software architecture of the SNRP framework 

provides the following modules: 

1. SNRPRobot: Every robot/device in the SNRP 

framework would provide a SNRP_Robot network 

interface, which allows any client (e.g. user experiment) to 

use a service provided by itself (e.g. 

“motoman.service.moveToPosition(x, y, z)”. Examples of 

these interfaces are “SNRPConveyorBelt”, 



 

 

 

“SNRPMotoman”, and “SNRPFPGAVision”. 

2. SNRPRobotsGroup: A SNRP robot can be the union 

of several SNRP robots (e.g. a Mobile manipulator is the 

union of a mobile robot, an arm). Moreover, the SNRP 

module for the arm can be the union of two modules, the 

one for the gripper and the one for the arm itself. Thus, 

SNRPRobotsGroup permits defining new services for the 

several networks robots that work together as if they were a 

unique robot. 

3. SNRPNamingService: A SNRP network robot can 

register to a naming service in order to select a name (e.g. 

UJI/telelabs/industrial/motoman) and inform other peers of 

which IP and port he is attending to. 

4. SNRPServiceHolder: The services provided by a 

SNRP robot can be programmed in a static manner within 

the SNRP Module itself, or on the other hand, they can be 

added dynamically in runtime. For that, an SNRP service 

that follows a given interface most be uploaded into the 

SNRPServiceHolder. At the moment of writing the 

industrial telelaboratory has only a SNRPServiceHolder for 

the whole system. Anyway, the architecture would permit 

having a holder in every SNRP robot. 

5. SNRPExperiment: A SNRP Experiment is a robot 

service that can be allocated into a service holder. In fact, 

the experiments that we are performing in this moment 

provide a unique service holder for the telelaboratory that is 

located in the Experiment’s server computer. Further 

experiments could be defined as the union of several SNRP 

services (i.e. agents) that are run concurrently on different 

service holders and that all together provide a certain 

robotic task. 

Once we have seen the software architecture for the 

SNRP framework, we are going to focus on the SNRP 

protocol itself that permits the communication between 

SNRP experiments, holders, naming services and robots 

(see a summary displayed in Figure 2). 

First of all, as we want the devices to be accessed 

through the internet; they should manage the IP protocol. 

On top of it, the SNRP framework enables the device to 

accept TCP, and UDP connections. As explained before, 

UDP and TCP are not the best solutions to perform remote 

control through the Internet, so the SNRP framework 

provides the possibility to transport the internet datagram’s 

through other protocols like “trinomial” [20], RTP (real-

time transport protocol), the RTP (Rate-based adaptation 

protocol) [21], etc. 

On the other hand, concerning the FPGA design, an 

important improvement to obtain a high-performance SNRP 

vision system has been demonstrated. A Celoxica RC203E 

platform based on an FPGA Virtex II XC2V3000 chip was 

selected. This platform provides a 100BaseT Ethernet 

connection, video input/output, high-resolution color 

camera and a TFT display. The video input/output interface 

provides an easy way to test and verify the FPGA design.  

 

 
Figure 2. SNRP network architecture 

 

Moreover, the RC203E platform provides a development 

environment (i.e. DK) based on the Handel-C hardware 

programming language, which has a similar syntax to the 

ANSI C language, and it includes the PixelStreams library 

to design video systems. 

 
Figure 3. FPGA processing data flow architecture. 

 

The PixelStreams library is very appropriate for these 

sorts of applications since the circuit supplied is already 

segmented, it has specific video input/output modules, and 

it comes with IPs for creating video filters and transforms. 

The image processing task performed by means of that 

FPGA is divided in two principal data flows, as shows the 

Figure 3. In the first data flow, the image taken by the “on-

hand” camera is binarized. Then, object descriptors are 

obtained by using a specific module designed ad-hoc for 

this purpose. This module is not present in the PixelStreams 

library and has been implemented from scratch using a high 

level design tool [23]. Finally, object moments are sent to 

the network through the FPGA network interface using the 

SNRP protocol. 

In the second data flow, the image is transformed in a 

grayscale image and combined with visual information from 

the “Object Descriptors” module. Hence, an augmented 

reality image, in which a cursor appears indicating the 

object centroid position, is shown on the TFT display of the 

FPGA board. The two data flows are synchronized by mean 

of the “VGA Synch” module in order to avoid conversion 

and visualization problems. 



 

 

 

The FPGA provides a service for informing the client 

about the object properties in the robotic environment. 

Since the client/server synchronization is on-demand, the 

FPGA waits for a UDP datagram containing an SNRP 

command (i.e. GET /service/object/centroid). Once the 

input command is checked, the FPGA generates a new UDP 

datagram contained on an Ethernet frame, which uses the 

sender MAC and IP address. This process is performed in a 

few FPGA clock cycles due to the fact that the FPGA does 

not need to implement the whole TCP/IP stack. 

The implementation results are the following: 

1. FPGA area usage: 3834 slices (4449 LUTs and 55248 

bits of BRAM). It is approximately a 25% of the FPGA 

area. 

2. The maximum FPGA clock cycle is 52.23 ns. 

3. The computing cost of object moments is 1,292,835 

FPGA clock cycles, that is, approximately 14.8 frames 

per second (i.e. segmented scenes per second). 

III. EXPERIMENTAL RESULTS  

A. The UJI robotics manufacturing cell 

The layout of this cell can be appreciated in Figure 4. It is 

noticeable that for the present work only the Motoman 

robot arm is used, discarding the other one (i.e. AdeptOne 

robot arm). 

 
Figure 4. Layout of the UJI Robotics Manufacturing Cell 

 

In order to let a user to implement their industrial 

application experiments, the UJI robotics manufacturing 

cell is composed of the main following devices: 

1. Motoman manipulator: This 6 degree of freedom robot 

arm enables users to manipulate the objects coming along 

the conveyor belt and classifying them in the auxiliary table. 

2. FPGA and on-hand camera: The Motoman 

manipulator is equipped with an on-hand high resolution 

camera (1024x768) that allows the implementation of visual 

servoing controls, as well as object tracking algorithms. 

3. Conveyor Belt: It enables user to move the objects in 

any direction, as well as with different speeds. Once an 

object reaches the end of the belt, two sensors indicate its 

situation and allow the operator to act accordingly. 

4. Fixed Network Camera: On top of the Conveyor Belt a 

network camera is located that provides real-time video 

streaming of the objects present onto the conveyor belt. 

This camera is calibrated with the conveyor belt, which 

permits the implementation of robot control algorithms 

using on-top visual servoing techniques. 

5. Robot’s Server: A pentium III PC is connected to the 

Motoman manipulator and the conveyor belt, enabling its 

remote control and programming through the corresponding 

SNRP servers. This computer holds the software SNRP 

framework for user authentication, SNRP naming service, 

the Telelaboratory educational webpage (i.e. moodle based 

[22]), and the Experiment’s Holder Server, which enables 

uploading a Java experiment to the server and launching it 

when appropriate. 

 

Figure 5 shows the software architecture, including 

Network connectivity of the UJI robotics manufacturing 

cell. As a way to enhance the security measures, the whole 

telelaboratory is accessible through a unique router/firewall, 

which permits defining the devices and services (i.e. ports) 

accessible by the user remotely in a very detailed way. 

In order to establish a comparative evaluation with the 

proposed system based on FPGA and SNRP protocol (i.e. 

“FPGA/SNRP” experiment), an eye-in-hand control 

experiment has been designed. A standard PC and a 

CORBA protocol are used with the same test to perform 

this comparativeness (i.e. “PC/CORBA” experiment).  

 

 
Figure 5. SNRP Software architecture. 

B. Remote Experimental Results 

 

Note that the whole scene must be binarized and 

segmented every time the robot moves, in order to acquire 

the required mathematical features for every object. 

The gripper fingers of the robot will appear in the scene 

as two independent objects, so that the user has an 



 

 

 

additional difficulty in order to calculate the next robot 

movement, bringing the centroid of the object to the 

centroid of the gripper by iterative movements of the robot. 

Figures 6 and 7 show the time employed for both, the 

client and the server side for the “PC/CORBA” experiment. 

Most of the time is spent sending images through the 

Internet connection and waiting the robot accomplishes the 

required movement. 

The whole computer vision process takes about 2.5 

seconds of the whole manipulation operation, which means 

the overall system performance can be improved by 

optimizing the binarization, segmentation, and features 

extraction procedures. 
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Figure 6. Time employed by the client for “PC/CORBA” experiment. 
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Figure 7. Time employed by the server for “PC/CORBA” experiment. 

 

Thus, in the “FPGA/SNRP” experiment, the image 

acquisition, its processing, and pose determination are 

performed by an FPGA, which provides the user 

information of feature and pose determination through the 

network using the SNRP architecture. In this situation, as 

the FPGA capabilities are much bigger, we are using a 

higher image resolution (i.e. 1024x768) instead of the small 

images used in the previous case (i.e. 352x288). Moreover, 

as we want to move the robot in a smoother way, the 

increments used in the control law (i.e. the visual servoing 

gaining factor) are decreased. In fact, for this situation the 

whole visual servoing task is executed in an average of 

twenty-five loops per experiment instead of the ten loops 

we used for other cases. The average loop time is 221 

milliseconds, taking into account that the robots take 200 

milliseconds to perform any movement. Comparing the 

results with previous experiments, we can observe a great 

improvement in the average loop time. 

In the FPGA side (See figure 8) we can observe how the 

FPGA has wasteful resources. In fact, the FPGA spends 

more time waiting than processing the image. Moreover, if 

we compare the time that the FPGA uses to perform the 

image processing and pose determination (i.e. Image 

column in Figure 8) with the same time in the other 

experiment, we can observe that using a FPGA is about ten 

times faster than using a personal computer. So, thanks to 

this improvement, the client can compute the object 

centroid faster. 
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Figure 8. Global FPGA time for the “FPGA/SNRP” experiment. 

 

Moreover, the implementation of the SNRP protocol 

provides also a very big improvement. In fact, the average 

time invested to obtain the object features from the network 

is about 166 ms in the “PC/CORBA” experiment. But, for 

the “FPGA/SNRP” experiment, the object features are 

obtained from the SNRP FPGA vision system in an average 

of 10 ms, varying the responses from 3 ms to 15 ms. 

IV. DISCUSSION 

In this paper we have presented recent progress in the 

UJI robotics manufacturing cell, which permits to perform 

remote programming experiments over a real robotic 

platform. This kind of industrial tele-laboratory uses a 

distributed network architecture called SNRP (Simple 

Network Robot Protocol) that simplifies a lot the interaction 

between the different components of the system (i.e. robots, 

cameras, experiments, etc.). Results show that the SNRP 

protocol enhances very much the performance of the whole 

system (over 10 times faster). 

Moreover, a FPGA has been used to implement a real-

time vision system that provides SNRP services to the 

network. The FPGA takes as input the images from a 

webcam (camera-in-hand). By having such an improvement 

in the computer vision module we get the opportunity to 

program fast and reliable visual servoing controls over this 

industrial tele-laboratory. 

The paper has presented a real remote programming 

experiment which demonstrates that this technique is very 

appropriate for education, research and even industrial 

applications. In fact, the remote visual servoing experiment 

has been selected to demonstrate that remote experiments 



 

 

 

could be used even in those situations where time response 

is crucial for performance. 

The next research goal will focus on the enhancement of 

the low-level implementation of the SNRP protocol, which 

allows a given experiment to get access to every device 

belonging to a tele-laboratory. In fact, a new version of this 

protocol (SNRP v2) is already in progress that includes a 

SNRP device browser in order to dynamically present a 3D 

virtual environment for real SNRP devices. Thus, this 

interface opens the door to the design of semantic web 

services, knowledge storing, learning, etc. 

Moreover, future work will pursue the development of 

more sophisticated visual servoing loops using external 

cameras, pan/tilt and also stereo cameras. FPGA systems 

will be considered to implement such a vision devices. 

Finally, the experiments on visual servoing which we 

have carried out at the moment are based on position. In the 

near future, we will be able to allow users to control the 

speed of robot movement, given that the Motoman robot 

that we provide in the industrial tele-laboratory permits this 

kind of control. With this new configuration it will be 

possible to make experiments with more sophisticated 

remote visual servoing techniques. 
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