
Transport Protocols for Remote Programming of Network Robots within the
context of Telelaboratories for Education: A Comparative Analysis

Raul Wirz*, Raul Marín*, José M. Claver **, Josep Fernández ***, and Enric Cervera*

* Computer Engineering and Science, University Jaume I (UJI), 12071 Castellón, Spain.

** Computer Science Department, University of Valencia, 46071 Valencia, Spain
*** Engineering, Automatics, and Industrial Computers Department, University Politecnique of Catalonia, Barcelona, Spain.

Abstract – Within the context of Tele-Laboratories for
Education the use of the Internet as communication media
permits any researcher/student to perform remote experiments
in a simple and reliable manner. Moreover, this situation
introduces many interesting issues like network protocols for
Internet robots, the effects of variable bandwidth and time-
delays on telerobotics, etc. In this paper we present a
comparative analysis of using several Internet transport
protocols when performing a remote experiment within the
UJI Industrial Telelaboratory. TCP, UDP, Trinomial and
TEAR protocols are analyzed using the NS2 simulator.
Conclusions show a set of characteristics the authors of this
paper consider very important when designing an End-to-End
Congestion Control transport protocol for Internet
Telerobotics. These ideas are the basis for the definition of the
SNRTP (Simple Network Robot Transport Protocol).

Keywords: Networked Robots, Internet Congestion Control
Protocol, Telerobotics, E-Learning, Industrial Robotics
Telelaboratory.

1 Introduction

One of the multiple applications of Networked Robotics is
enabling Internet access to expensive devices (e.g.
industrial robots, FPGA systems, conveyor belts, etc.)
organized as telelaboratory for education. Thus, students
and researchers can program their own robotic
experiments via Internet and then obtain the results
through, for example, a simple webpage [1-3].

One essential part of a Telelaboratory is the
interconnection of sensors, cameras, and robots via a
networked system [4-6]. In the scientific literature several
works can be found that propose different ways and
architectures to organize task-oriented applications of
multiple network robots [7, 8]. Some of these
architectures are focused on Internet software frameworks
(e.g. Web Services at the application OSI layer) and have
been extended from previous works in single-robot
telerobotics.

Other works focus not only on the application protocols,
but also at other levels of the OSI layers like transport and
network, which enable real-time control and teleoperation
of network robots over IP. In fact, as explained in [9, 10],
solutions can be found to cope with the problems
associated to the Internet in order to control networked

robots: (1) time-varying transmission delay, and (2) not-
guaranteed bandwidth.

Figure 1. The UJI Industrial Telelab networking
configuration

In the following paper we will present first the network
architecture of the UJI Industrial Telelaboratory, including
the application layer SNRP protocol for simple HTTP
robots interconnection.

After that, we will focus on the transport protocols that
enable the end-to-end congestion control in a TCP-
Friendly manner [11] for teleoperation and tele-
programming of robot arms. Simulations using TCP,
UDP, trinomial [10], and TEAR [12] (TCP Emulation at
Recievers) protocols are presented within the UJI

1095-2055/07/$25.00 ©2007 IEEE

Industrial Telelaboratory in order to obtain some
conclusions. Then, from this results, a set of ideas are
presented in order to define the working in progress
SNRTP (Simple Network Robot Transport Protocol).

2 The UJI Industrial Telelaboratory Network
Architecture

In Figure 1 we can see the Network connectivity of the
UJI Industrial Telelaboratory. In fact, in this system we
consider that every device (i.e. industrial robot, conveyor
belt, FPGA, etc.) is connected to the same Ethernet
network, and they act as single Network Robots that
communicate with each other through the SNRP web-
based protocol. This architecture offers many advantages
like scalability and maintainability, and it introduces
interesting issues like device synchronization, bandwidth
and time-delays, and end-to-end congestion control.

In order to make the SNRP simple to use and implement,
it uses the HTTP protocol as basis, which give him more
interoperability and flexibility. However, for this kind of
situation the HTTP does not provide the following
features: (1) Event Notification, and (2) Support for
structured information. These two characteristics are very
important to design the SNRP framework in the industrial
robotics area. To accomplish this, we have incorporated
into the SNRP protocol the REST model [13], which
permits the implementation of state-oriented applications
and a simple scenario to design event notification and
structured information features.

Figure 2. SNRP network architecture

Simplicity is maybe the most important challenge of a
network robotics architecture, due to the fact that it must
be possible for a very broad range of devices to be part of
it. In fact, as explained in [14], thanks to this simplicity
we were able to implement a prototype of SNRP Network
Camera using a FPGA.

First of all, as we want enable the devices to be accessed
through the internet, they should be able to manage the IP
protocol. On top of it, the SNRP framework enables the

device to accept TCP, and UDP connections. As explained
in the next section, UDP and TCP are not the best
solutions to perform remote control through the Internet,
so the SNRP framework provides the possibility to
transport the internet datagrams through other transport
protocols like “trinomial”, TEAR, or SNRTP.

3 Transport Protocols for Remote Control of

Network Robots

The basic transport protocol available in the Internet for
implementing remote control applications are the
following:

(1) UDP (User Datagram Protocol) [15] that is based in
the idea of sending a datagram from a device to another
as fast as possible (i.e. best effort). This protocol does
not guarantee that the information will reach the
destination, and besides this, it does not manage any
network congestion situation.

(2) TCP (Transmission Control Protocol) [16]. This
guarantees the application level that the information
will reach de destination performing the necessary
retransmissions. Moreover, TCP takes care of the
network congestion and adjust the transmission
accordingly.

UDP is a protocol that does not maintain a connection
with the Server side, it does not make retransmission of
lost packets, it does not control the network congestion,
and neither manages any confirmation of the packets that
have reached the destination. The advantage of UDP, for
remote control of devices via Internet is that having good
network conditions the communication is accomplished
without significant delays and without important
fluctuations (i.e. delay jitter). Moreover, UDP does not
assure that the packets have reached the destination in the
proper order as they were sent, if fact, UDP does not
inform if packets have even been received or not. Besides
this, UDP does not perform any congestion control
mechanism, which means the sending rate is not adapted
according to the real bandwidth available. This situation
implies that we need another protocol for controlling
remotely devices via Internet.

On the other hand, TCP is a very sophisticated protocol
that establishes a virtual connection between the sender
and the receiver. Moreover, as TCP manages the
confirmation of packets received properly, we can assure
that the communication will be reliable. However, when
TCP was designed they had in mind the reliable
communication for application like e-mails and files (ftp),
and not controlling devices like robots. The congestion
control mechanism and the connection establishment
implies having big delay jitter (fluctuation), a situation
that is not appropriate for applications such as internet
teleoperation of a robot manipulator using a haptic device.
In the following figure we can see the results obtained
when controlling a robot using both, TCP and UDP.

Figure 3. Delay response when controlling an industrial

Motoman robot via Internet using UDP and TCP (i.e. On
campus)

The majority of current telerobotic applications using the
Internet (e.g. telelaboratories) use TCP or UDP. For this,
the variable time-delay and bandwidth effects are resolved
in the application level by using intelligent sensors,
predictive displays, and high level commands . On the
other hand, if we really need to perform a teleoperation,
we need to find applications that are closer to real time
[17]. In this situation we need more specific protocols
[18].

As this is a very emergent research field, in the scientific
literature we cannot find many articles describing specific
protocols to teleoperate networked devices (i.e. like
robots) via Internet. On the other hand, we can find many
protocols to design networked applications that require the
transmissions of Multimedia content via Internet: (1)
TFRC (TCP-Friendly Rate Control Protocol) [19], RAP
(Rate Based Adaptation Protocol) [20], LDA (Loss-Delay
Adjustment Protocol) [21], SIMD (Square-
Increase/Multiplicative-Decrease Protocol) [22], and RTP
(Real Time Protocol) [23]. These protocols are not very
convenient for telerobotics due to the fact that they use an
intermediate buffer to compensate the delay jitter when
receiving video and audio. In telerobotics using buffers
implies obtaining an overall higher delay that affects
enormously to the immediate control of robots.

Some of the few works that specifically design protocols
for teleoperation are the following:

(1) Trinomial method [10]: It is a rated-based protocol,
which means it manages the network congestion by
adjusting the inter-packet gap (IPG) instead of the window
size schema that uses TCP. Thus, the protocol controls the
number of datagrams per second depending on the
available bandwidth. The trinomial method uses UDP as
basis. It means that the trinomial is able to adapt to the
network congestion and available bandwidth without
affecting very much the way the user teleoperates the
robot. As observed in [10], the trinomial protocol provides
a sending curve that is quite smooth and better uses the
available bandwidth, obtaining then a very good
efficiency compared to the UDP and TCP protocols. In the

following section we will study some parts of the
trinomial that we consider can be improved in order to be
applied in the telelaboratories field.

(2) Real-Time Network Protocol (RTNP) [24] is a very
simple protocol that uses an identification in the
UPD/TCP headers to inform the real-time operating
system that the received packet has the category of “real
time”, in order to give it the maximum priority when
passing the packet to the application level. The RTNP
shows that the overall time-delay between the client and
the server depends not only on the network but also on the
software provided by the operating system.

(3) Interactive Real-Time Protocol (IRTP) [25] is a
protocol that takes the advantages of both, TCP and UDP,
to improve the response in teleoperation systems. It is a
connection-oriented protocol that implements congestion
control and error control. To enhance the efficiency, the
IRTP protocol simplifies the packet header as much as
possible, getting then a major relationship between the
data that is sent by the application level and the control
information.

Moreover, in the telelaboratories context there are
situations where the student/researcher is performing an
experiment from home using an ordinary ADSL
connection. This kind of asymmetric communication
gives normally a poor upload link and a good download
bandwidth. The TEAR protocol (TCP Emulation at
Receivers) [12] is specifically designed to the
transmission of multimedia streams on asymmetric
connections. In the next section we will provide some
simulations to compare the performance of the trinomial,
TCP, and TEAR protocols within the telelaboratories
context.

4 RTT behaviour

In this section we are going to observe the RTT behaviour
of trinomial, TCP and TEAR protocols on a simple
scenario where 3 computers (e.g. students) access
information from a remote host (e.g. robot) via a router.

Figure 4. Nodes configuration of the RTT experiment
As seen in Figure 4, we are having the node 0 that
represents the industrial robot of the telelaboratory. Node
1, represents the router that gives access to every device in
the telelaboratory. Nodes 2 and 3 represent 2 students that
are connected to the telalaboratory, and they are

monitoring the experiment performed by node 4. The
Node 4 represents a student that is performing a
teleoperation (or visual servoing) experiment on the
industrial robot (i.e. node 0). For the simulation the traffic
from nodes 2 and 3 is TCP based, and the traffic from
Node 4 (i.e. the experiment) will vary from trinomial, TCP
and TEAR.

Trinomial

0

20

40

60

80

100

120

0,000 0,200 0,400 0,600 0,800 1,000 1,200

Mbits/s

M
ill

is
ec

on
ds

Figure 5. Results of the RTT behaviour NS-2 simulation

when Node 4 uses the Trinomial protocol

TCP

0
10
20
30
40
50
60
70
80
90

0 0,2 0,4 0,6 0,8 1

Mbits/s

M
ill

is
ec

on
s

Figure 6. Results of the RTT behaviour NS-2 simulation

when Node 4 uses the TCP protocol

TEAR

0
10
20
30
40
50
60
70
80
90

0 0,1 0,2 0,3 0,4 0,5 0,6

Mbits/s

M
ill

is
ec

on
ds

Figure 7. Results of the RTT behaviour NS-2 simulation

when Node 4 uses the TEAR protocol

As we can observe from figures 5, 6, and 7, the trinomial
almost consumes the available bandwidth through the
router, obtaining an average RTT of 74,25 milliseconds.
Moreover, there are packets that reaches the 110
milliseconds of RTT. The trinomial protocol sets the
router buffers to the maximum load, which implies
increasing the RTT average between the student and the

robot. On the other hand, the trinomial protocol is the one
that sends more packets per second, increasing the
information that comes from the student to the robot and
vice versa.

The TCP protocol consumes the 80% of the available
bandwidth, at an average RTT of 74,63 milliseconds. We
can observe that TCP is more TCP-friendly than trinomial.
On the other hand, as TCP performs retransmissions the
number of received packets at Node 0 is not so significant
than using the trinomial protocol.

For the TEAR protocol, it sets the router buffers at the
50% of the available bandwidth, at an average RTT of 67
milliseconds. In some situations the RTT of the trinomial
protocol goes twice the TEAR one.

 Generated

packets
Dropped packets
at router

Lost
packets

Trinomial 11140 906 230
TCP 9638 3 63
TEAR 8584 4 56

In summary, the TEAR has an RTT more stable and
shorter, using less bandwidth and sending less packets
between the student and the robot. The trinomial uses
more bandwidth (in our simulation it reaches the 100%
available bandwidth). It has the biggest RTT and loses
more packets than any other. The TCP loses less packets
than any other, but it has the highest RTT and uses 80% of
the available bandwidth.

5 Visual Servoing at home NS-2 simulation within

the Industrial Telelaboratory

In this section we are going to study the behaviour of the
TCP and TEAR protocols for the transmission of the
monitoring camera on the telelaboratory.

As we can see in Figure 8, there is a student that performs
a visual servoing experiment from home over the
industrial telelaboratory (i.e. Node 10). At the same time,
several students “on campus” are accessing to the
information from the telelaboratory cameras for
monitoring purposes.

In the simulation, the student’s experiment sends a UDP
packet to the FPGA, which returns the grasping line of the
object at the robot scenario. It applies a control law
following the on-hand visual servoing control until the
grasping line is centered at the middle of the gripper. As
shown in figures 9 and 10, the TEAR protocol is smoother
than the TCP, which is very much appropriate for the
monitoring camera link.

However, as we can see in the figures the TEAR and the
TCP protocols does not use the 100% of the available
bandwidth, fact that is accomplished by the trinomial
protocol. However, the trinomial protocol is specifically

designed for the robot interaction and not for multimedia
transmission. As well, as we have seen in the previous
section, it sets the communication link to the maximum
bandwidth (which is very convenient), but to the
maximum time-delay too. In fact, for performing visual
servoing experiments the time-delay must be minimized.

Figure 8. Nodes configuration of the visual servoing

experiment NS-2 simulations

TCP

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0,4

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 6 6,5 7 7,5 8 8,5 9 9,5

Simulation Time

M
bi

ts
/s

Camara
FPGA
User
Robot
Total

Figure 9. Telelaboratory experiment using TCP for the

monitoring Camera.

TEAR

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5 5,5 6 6,5 7 7,5 8 8,5 9 9,5

Simulation Time

M
bi

ts
/s

Camara
FPGA
User
Robot
Total

Figure 10. Telelaboratory experiment using TEAR for the

monitoring Camera.

6 Conclusions

Within the telelaboratories context for education the UDP
and TCP protocols can be improved in order to acquire
better performance and smoothness. The trinomial
protocol is a nice solution which uses as much bandwidth
as possible, providing smoothness for a bilateral
teleoperation via Internet. However, it introduces extra
time-delay due to the fact that it sets the router buffers to
the maximum load. As well, as seen in the RTT section,
depending on the parameters configuration it can be not so
TCP-Friendly like other protocols. The RTT behaviour is
very important for some experiments like visual servoing
and teleoperation. Please note these conclusions about the
trinomial are extracted from the simulations done by the
authors of this article, as they are not available via other
alternatives.

The TEAR protocol is more conservative than the
trinomial and the TCP (i.e. it uses less bandwidth and
RTT), in a very smooth way. However, for the
telelaboratory context this is not sufficient, due to the fact
that we need to set priorities for every data flow in
advance. For example, for the visual servoing experiment,
the FPGA and robot flows must have the minimum RTT
and priority, and the Camera flow does not need to have
such configuration.

For that, the requirements we have for the SNRTP (Simple
Network Robot Transport Protocol) are the following:

1. Smooth Congestion Avoidance: SNRPT will
study the smooth equilibrium between bandwidth
and time delay for master/slave teleoperations.
This equilibrium depends on the robot
configuration and the specific application.

2. Differentiated Services: Including priorities in the
SNRTP flows will allow the bandwidth allocation
of cameras, robot control, and sensor information
in a differentiated manner.

Acknowledgements

 This work has been partially funded by the Spanish
Ministry (MEC) under Grants DPI2005-08203-C02-01,
DPI2004-01920, TSI2004-05165-C02-01, TIN2006-
15516-C04-02, by the European Commission FEDER
funds “Consolider Ingenio-2010” CSD2006-00046', by the
Fundació Caixa Castelló under Grants P1-1B2003-15, and
P1-1A2003-10, and by the EU-VI Framework Programme
under grant IST-045269 - "GUARDIANS" of the EC
Cognitive Systems initiative

7 References

[1] R. Marin, P. J. Sanz, P. Nebot, and R. Wirz, "A multimodal
interface to control a robot arm via the web: A case study on
remote programming," Ieee Transactions on Industrial
Electronics, vol. 52, pp. 1506-1520, Dec 2005.

[2] R. Wirz, R. Marin, and P. J. Sanz, "Remote Programming
over Multiple Heterogeneous Robots: A Case Study on
Distributed Multirobot Architecture." vol. 33 Industrial Robot,
2006.

[3] R. Marin, P. J. Sanz, and A. P. Del Pobil, "The UJI Online
Robot: An education and training experience," Autonomous
Robots, vol. 15, pp. 283-297, Nov 2003.

[4] R. Zurawski, "Industrial Information Technology Is Coming
of Age," IEEE Transactions on Industrial Informatics, vol. 3,
2007.

[5] A. P. Kalogeras, J. V. Gialelis, C. E. Alexakos, M. J.
Georgoudakis, and S. A. Koubias, "Vertical Integration of
Enterprise Industrial Systems Utilizing Web Services," IEEE
Transactions on Industrial Electronics, vol. 2, p. 9, 2006.

[6] G. T. McKee, D. I. Baker, and P. S. Schenker, "Network
robotics: Dynamic reconfigurable architectures," in SPIE
Intelligent Robots and Computer Vision XXII, 2004.

[7] G. T. McKee, D. I. Baker, and P. S. Schenker, "Robot
Spaces, Module Networks and Distributed Robot Architectures,"
in IROS 2004 Workshop on Networked Robotics, Sendai, Japan,
2004.

[8] B. K. Kim, "Web Services Based Robot Control Platform
for Ubiquitous Functions," in IEEE International Conference On
Robotics and Automation (ICRA), 2005.

[9] P. X. Liu, M. Q. H. Meng, and S. X. Yang, "Data
Communications for Internet Robots," Autonomous Robots, vol.
15, 2003.

[10] P. X. Liu, Meng, M. Q. H., P. R. Liu, and S. X. Yang, "An
End-to-End Transmission Architecture for the Remote Control
of Robots Over IP Networks," IEEE Transactions on
Mechatronics, vol. 10, 2005.

[11] S. Floyd and K. Fall, "Promoting the use of end-to-end
congestion control in the Internet," IEEE/ACM Transactions on
Networking, vol. 7, p. 14, 1999.

[12] I. Rhee, V. Ozdemir, and Y. Yi, "TEAR: TCP Emulation At
Receivers: flow control for multimedia streaming," Department
of Computer Science, NCSU 2000.

[13] R. T. Fielding and R. N. Taylor, "Principled Design of the
Modern Web Architecture," in ICSE 2000, 2000, pp. 407-415.

[14] R. Marin, G. Leon, R. Wirz, J. Sales, J. M. Claver, and P. J.
Sanz, "Remote Control within the UJI Robotics Manufacturing
Cell using FPGA-based vision," in ECC'2007 European Control
Conference, 2007.

[15] J. Postel, "RFC 768: User Datagram Protocol," 1980.

[16] J. Postel, "RFC 793: Transmisión Control Protocol,
DARPA Internet Program Protocol Specification," 1981.

[17] J. Park and O. Khatib, "Robust Haptic Teleoperation of a
Mobile Manipulation Platform," in Experimental Robotics IX,
Star, Springer Tracts in Advanced Robotics, 2005.

[18] S. E. Butner and M. Ghodoussi, "A real-time system for
tele-surgery," in 21st International Conference on Distributed
Computing Systems, 2001.

[19] J. Padhye, J. Kurose, D. Towsley, and R. Koodli, "A model
based TCPfriendly rate control protocol," in NOOSDAV'1999,
1999, pp. 137-151.

[20] R. Rejaie, M. Handley, and D. Estrin, "RAP: An end-to-end
rate-based congestion control mechanism for realtime streams in
the Internet," in IEEE Infocom, 1999, p. 1337–1345.

[21] D. Sisalem and H. Schulzrinne, "The loss-delay adjustment
algorithm: A TCP-friendly adaptation scheme," in Int. Workshop
Network and Operating System Support for Digital Audio and
Video (NOSSDAV), 1998, p. 215–226.

[22] S. Jin, L. Guo, I. Matta, and A. Bestavros, "TCP-friendly
SIMD congestion control and its convergence behaviour," in 9th
IEEE Int. Conf. Network Protocols, Riverside, CA, 2001, p.
156–164.

[23] H. Schulzrinne, S. Casner, R. Fredrick, and V. Jacobson,
"RFC 1889: RTP: A transport protocol for real-time
applications," 1996.

[24] Y. Uchimura and T. Yakoh, "Bilateral robot system on the
real-time network structure," IEEE Transactions on Industrial
Electronics, vol. 51, 2004.

[25] L. Ping, L. Wenjuan, and S. Zengqi, "Transport layer
protocol reconfiguration for network-based robot control
system," in IEEE Networking, Sensing and Control 2005, 2005.

	Select a link below
	Return to Main Menu

