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Abstract. The performance of haptic application is highly sensitive to
communication delays and losses of data. It implies several constraints in
developing networked haptic applications. This paper describes a new in-
ternet protocol called Efficient Transport Protocol (ETP), which aims at
developing distributed interactive applications. TCP and UDP are trans-
port protocols commonly used in any kind of networked communication,
but they are not focused on real time application. This new protocol is
focused on reducing roundtrip time (RTT) and interpacket gap (IPG).
ETP is, therefore, optimized for interactive applications which are based
on processes that are continuously exchanging data. ETP protocol is
based on a state machine that decides the best strategies for optimizing
RTT and IPG. Experiments have been carried out in order to compare
this new protocol and UDP.
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1 Introduction

Haptic devices are characterized for interchanging bidirectional flows with the
exterior. On the one hand, they are used to generate movement references and,
on the other hand, they serve as force reflection and pairs, generated upon in-
teracting with virtual objects. Good work conditions could be defined through
a communication channel that transmits data without time delay in a speed of
approximately 200-600 kbits. This work frequency allows the efficient sending of
information from a haptic interface to other processes. A haptic interface does
not necessarily require wide bandwidth compared to other types of applications
such as video transmission. However, a constant frequency without significant
delays or loss of data needs to be maintained. As data transmission conditions
worsen, a significant loss of environment perception through a haptic interface
is given [1]. Communication worsening can be induced due to such factors like
speed reduction in the transmission, loss of data and delays in data transmission.
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Regarding the communication architecture in haptic applications, it can be
centralized or distributed. In many cases, it is centralized which means that one,
two or three haptic devices at maximum are connected to the same computer
through a port with an improved data transmission (USB, FireBox) or to the own
computer internal bus. In this way, an increased and stable data transmission
is assured between the application processing the virtual environment and the
haptic interfaces.

Nowadays, it draws a lot of attention the development of distributed appli-
cations where haptic interfaces are connected to different network places. In the
case of a private network with a preconfigured number of computers and applica-
tions, it is possible to guarantee the right working of communications within the
network. On the contrary, in the case of an open network where interfaces are
placed relatively far to the network some new problems regarding data transmis-
sion appear. Such problems are caused by network jams, since they bring about
packet losses, transmission delays of data stored in buffers and speed reduction
in data transmission.

Protocols traditionally used to develop distributed applications are TCP [2]
and UDP [3]. In applications where the maximum bandwidth is to be fully
exploited, the UDP protocol is used. This protocol is commonly applied in tele-
operation, robotic or control applications. To the date, little attention has been
drawn to the design of transport protocols which optimize data transmission for
this kind of interactive applications. The unique known developments till now
are Real-Time Network Protocol (RTNP) [4] and Interactive Real-Time Proto-
col (IRTP) [5] but with limited results. The first model includes a priority mark
in the packets, leaving the network jam problem unresolved. And the latter one,
only its implementation in Linux is available, being its use quite limited [6].

The work introduced by this paper evaluates a new transport protocol known
as Efficient Transport Protocol (ETP) which aims at optimizing the available
bandwidth within a network so that the highest number of packets is sent without
affecting each packet RoundTrip Time (RTT). Furthermore, the device controller
is reported by ETP about the actual RTT at any time, a relevant feature of this
protocol. It means a significant step forward since haptic device controller can
make decisions to counteract the communication delay effect.

Next sections in this article are organised as follows. Section 2 describes in
detail the ETP protocol working, which is governed by a state machine acting
according to the RTT and IPG of each packet. Section 3 introduces the ETP pro-
tocol advantages for haptic applications, the controller stability and the accuracy
in data reflection are to be highlighted. In section 4 the experiments carried out
with the ETP protocol are described. Finally, conclusions of the present work
are drawn in last section.
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2 Efficient Transport Protocol (ETP) for Interactive
Applications

As we have seen, the protocols available for interactive Internet applications are
not good enough so that a new protocol has been designed, which provides better
performance and it is well integrated with the control algorithm that manages the
task. The main objective of this protocol is providing the minimum RTT (Round
Trip Time) and the maximum frequency (i.e. minimizing the Interpacket Gap -
IPG) in a point to point connection.

2.1 Preliminary Considerations

Two important aspects must be controlled when an interactive application is
running: The IPG (Interpacket Gap) that it is the time between two packets
and the RTT (Round Trip Time) that is the time elapsed for a packet to go to
the receiver and back again. These two aspects are the most important when a
new protocol is designed to use in interactive applications.

RTT Behavior In interactive applications we can find at least two different
flows: The fist one (i.e. flow 1) goes from the device A to the device B, and it
contains the orders or commands. Second, the other flow (i.e. flow 2) goes from
the device B to the device A providing feedback. The time that takes for a packet
to reach the device B (i.e. flow 1) and come back to the device A (i.e. flow 2) is
called RTT, and for bilateral interactive applications it is important to obtain
the minimum possible value.

Bandwidth and RTT are very much related terms so that when the con-
sumed bandwidth increases the network can get some congestion and the RTT
could increase due to the packet loss or because the buffers of the intermediate
routers get more packets to deliver. If there is no congestion the RTT would get
its minimum, which is excellent for interactive applications. Moreover, for an
interactive application it is normal to set the same consumed bandwidth for the
flow 1 and the flow 2 (i.e. using UDP or TCP). However, there are situations
where the available bandwidth for a flow should be different than the available
bandwidth of the other flow. For example, using asymmetric connections, where
the uploading bandwidth is different than the downloading one. Even, the con-
gestion could be detected only in one of the flows. To solve this situation and
obtain a possible minimum RTT we propose that flow 1 will be independent
to the flow 2, in others words, the bandwidth of flow 1 must be independent to
bandwidth of flow 2. Bandwidth in flow 1 and bandwidth in flow 2 are controlled
changing the IPG in both sides.

IPG Control It is important to have a minimum IPG to have a correct
interactive application. We could expres as well the sending frequency as the
bandwidth of a particular flow.
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Flow 1 and flow 2 are two independent flows where each flow has their own
bandwidth, which must be controlled. A way to perform this bandwidth control
would be using a sending window. This is actually what TCP does. However,
this kind of congestion control does not guarantee a constant sending rate, due
to the fact that the packets are sent as fast as possible for the current sending
window and then the protocol waits for the ACKs to return. For interactive
application it is more interesting using a rate based control mechanism, which is
performed through the IPG Control [7]. To control the IPG we propose having
an asymmetric technique, which consists of the device A controlling the IPG of
the device B, and the device B controlling the IPG of the device A. This allows
the system to better adapt to asymmetric scenarios like ADSL based Internet
access.

2.2 Protocol Description

The only requirement that the protocol needs is setting conditions for the min-
imum and maximum IPG limit. The protocol will try to obtain the minimum
IPG limit (i.e. maximum frequency) by controlling the network congestion using
the transmission rate. For that, the protocol will take into account the IPG and
the transmission time.

Fig. 1. Protocol phasers.
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Transition between different states can be observed in figure 1, where changes
are defined in each cycle ( A cycle is set by the transmission time if the trans-
mission time is more than the IPG required or it is set to a fixed value if the
transmission time is lower than the IPG required). The IPG is controlled by the
protocol to control the packet injection in the net.

IPGProposed =
TimeEstimated

Counter
(1)

The protocol has six different states and they are described as follows:

– FAST DECREASE IPG: Fast Start State. This is the initial state where
the protocol has a fast increase of the sending ratio (i.e. fast decrease of
the IPG). In this state the transmission rate increases until congestion is
detected or the IPG limit sets by the user is reached.

Countert+1 = Countert + 1 (2)

– LOOK: Wait State. The counter value is saved and if congestion is detected
in the following cycle, MAX value will be updated with the counter value
that was previously saved.

– INCREASE IPG: Penalize State. In this state the IPG is increased to obtain
less transmission rate because congestion or a loss packet are detected. The
new IPG value is set by the following formula where Gamma depends on
the congestion quantity: 1% if it is low, 20% if it is high and 50% if it a loss
packet.

Countert+1 = Countert − γ ∗ Countert (3)

– SLOW DECREASE IPG: Positive State. In this state any congestion is
detected and the transmission rate is increased slowly using the following
formula:

Countert+1 = Countert +
1

Countert

(4)

– STABILITY IPG: IPG Stability State. This state represents a situation
where the IPG limit set by the user is reached and any congestion is de-
tected. The objective of this state is keeping the actual IPG as closed as
possible to the IPG limit.

– STABILITY MAX: MAX Stability State. This state represents a situation
where congestion will be detected in the near cycle. MAX is a last counter
value where congestion was detected and where a new congestion has a high
possibility to be detected so, when the MAX value is reached the transmis-
sion time is observed. If the transmission time is equal or less in the MAX
level, it is that the congestion that was in that level was disappeared and
the IPG value can be increased to obtain the IPG limit.
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3 Efficient Transport Protocol (ETP) for Haptics
Applications

Significant improvements can be obtained from haptics applications by using
ETP protocol. Main advantages of this protocol are RTT awareness and IPG
optimization. They allow relevant benefits for haptic networked applications,
such better algorithms for device controllers and increased virtual environment
perception. These two points will be discussed in following sections.

3.1 Control considerations using the ETP protocol

Force and movement are processed by haptic controllers in order to implement
impedance or admittance behaviour. These controllers can be modelled accord-
ing to the next figure. IPG time represents the frequency of package transmission.
Communication channel between haptic controller and remote process applies a
delay of N1 and N2 packet interchange in each direction. These delays are due
to network buffers, moreover they can be different for packets that are sent or
received. Therefore, network transmission can be defined as N1 packets that go
from the haptic controller to the remote process and N2 packets to the opposite
direction.

Fig. 2. Flow of packets in the network

RTT represents the frequency that closes the control loop of the haptic con-
troller. This frequency has a significant impact in the stability of the haptic
controller. Delays are well known to provoke unstable systems. However, know-
ing the RTT, different strategies can be implemented in order to maintain the
system stable. A first strategy can be done by limiting control gains according
to RTT variations. It is important to take into account that in presence of big
delays, haptic perception is significantly deteriorated in spite of having a stable
system.

RTT is related to the number of packages and IPG according to next equa-
tion. This relation is equal when IPG is the same for all transmitted packages at
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that very moment; if packages are generated by different IPGs, then the relation
is an approximation.

RTT = IPG · (N1 + N2) = IPG · N (5)

The TPI protocol optimizes IPG in order to minimize RTT. If too many
packages are generated, then IPG decreases, but the product of IPG·N increases.
On the other hand; if IPG is longer, it can achieve the same value of RTT. In
such case, only one packet is transmitted by the network. Therefore, the goal of
the ETP is to reduce IPG in order to increase the number of packets that are
transmitted by the network, and also avoid the increase of RTT. From the haptic
controller’s point of view, the time required to close the control loop (RTT) has
to be the least possible time, but with the most number of samples (packets) to
be transmitted.

3.2 Strategies to improve the haptic perception

Communication time delays provoke a significant degradation of haptic percep-
tion. Operator haptic perception has been evaluated in terms of transparency or
reflected impedance [8],[9] for telerobotics applications. Some works have evalu-
ated how perception is deteriorated according to the communication time delay
including factors such as variable time delay and lost packets [10],[11],[12],[1]. As
conclusion of these works inertias and frictions are superimpose to the desired
haptic perception when communication delays appears. Stiffness is also modified
by delays, stiffness is commonly perceived softer when time delay increases.

RTT of packets is provided by ETP protocol. This information can be used
in order to correct the effect of the communication time delays. Strategies in
this direction can be investigated but stability conditions must be taken into
account. It is well known that stability and transparency have opposite effects.
Therefore, any correction in the haptic perception has to guarantee the haptic
device stability.

Haptic devices can be adjusted to optimize the perception under some con-
ditions; for example, adjusting the controller parameters for a given time delay
[13]. In this case, RTT awareness can be used in order to obtain the best con-
troller for any communication time delay. It allows a less degradation of haptic
perception due to delays.

4 Experiment

The experiment is based on a real system called MasterFinger [14] that uses
the UDP and ETP protocols. To prove our protocol, the experiment was imple-
mented with the NS2 Simulator. Main components are shown in figure 3.

The masterfinger sends the position to a PC (flow 1) and the PC returns
the force values to the masterfinger (flow 2) meanwhile the PC sends to the
graphical interface the information to paint the scenario (UDP flow). UDP and
ETP protocol in flow 1 and flow 2 will be evaluated in the experiment.
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Fig. 3. Experiment Elements

4.1 Experiment Results

UDP and ETP protocols have different behaviors. Bandwidth behavior can be
observed in figure 4. The IPG time and transmission time can be analyzed in
table 1.

Fig. 4. UDP Bandwidth and ETP bandwidth in the NS2 Simulator.

Flow 2 has simple variations because the ACK packets of the TCP proto-
col are not enough to do congestion so flow 2 has similar values (bandwidth,
IPG, Transmission time) in both protocols. However, the flow 1 has significant
variations because packet information of TCP protocol are doing congestion.

UDP ETP
Flow 1 Flow 2 Flow 1 Flow 2

IPG Time 0,99 0,99 1,205 0,99

Transmission Time 12,55 10,36 10,89 10,36

RTT 23 21

Table 1. Averance times in experiments (milliseconds).

Main problem of UDP protocol is related to doesn’t have any congestion
control; therefore transmission rate is always the same. It implies that IPG
and required bandwidth are close to the value programmed by the user (IPG
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close to 1 ms). Mantain the same transmission rate can produce congestion
since transmission time can increase due to the rest of network flows of data
(Transmission time increase to 12,55) Nevertheless, ETP protocol implements
a congestion control so the transmission rate changes according to the protocol
algorithm. As it can see, transmission rate will decrease when congestion is
detected so the bandwidth decreases and the IPG increase (1,205) by using the
EPT.

5 Conclusions

A new internet transport protocol called ETP has been introduced and checked
for haptic applications. Main goal of ETP is to reduce the roundtime trip (RTT)
by adapting the interpacket gap (IPG) to the congestion network conditions. IPG
can vary into a range defined by the user, bandwidth fluctuations are detected
by the RTT changes and IPG is modified accordingly. This protocol represents
a step forward for haptic networked applications since haptic device parameters
can be adjusted to the communication conditions, and transparency strategies
can be designed according to communication time delays. Simulations of ETP
behaviour have demonstrated the RTT reduction versus UDP protocol when
appear congestions due to flows of data.
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