

Fire shapes plant traits

Introduction &
Evidence from the Mediterranean Basin

Juli G. Pausas CIDE-CSIC, Valencia, Spain www.uv.es/jgpausas

MEDECOS XII, Los Angeles, 9/2011

Fire shapes plant traits

CONTENTS

- How our perception of fire has changes
- Misconceptions: Adaptation vs Exaptation
- Contributions from macro- and micro evolutionary approaches
- Mediterranean Basin examples

Fires as disasters

- They burn ecosystems!
- Static, short view
- Outdated view

Fire as an ecosystem process

- Ecosystems regenerate after fire
- Fire changes community structure and ecosystem functioning
- Now widely accepted
- Example: Grass fire cycle (feedbacks)

Fires as an old phenomena

- Charcoal: from Silurian (>415 My) ...
- Periods of higher [O₂]: high flammability

• Started to be recognised

Fire as an old ecosystem process

- Expansion of C₁ grasses, Miocene (Keeley & Rundel 2005)
- Expansion of Angiosperms, Cretaceous (Bond & Scott 2011)

Fire as an evolutionary process

- Growing evidence that fire acted as a selective force in the evolution of plants (adaptations to fire)
- Hard to believe for many ...
- "Fire traits are not adaptations but exaptations"

Is fire shaping traits?

- · Macro-evolutionary approaches:
 - Molecular data: time-calibrated phylogenies
 - Correlated evolution
 - Ancestral reconstructions

Macro-evolution: recent evidence (2011)

• The blooming of molecular data: dated phylogenies

Taxa	Trait	Age (Mya)	Ref.
Disa Orchidaceae ZA	Fire-dependent flowering	19.5	Bytebier et al. 2011 Proc R.S.L
Eucalyptus Myrtaceae AU	Epicormic resprouting	60-62	Crisp et al. 2011 Nature Coms.
Banksia Proteaceae AU	Serotiny Dead leave	62 26-16	He et al. 2011 New Phytol.

> 60 My of fire as an evolutionary process shaping plants

Is fire shaping traits?

- Macro-evolutionary approaches:
 - Molecular data: time-calibrated phylogenies
 - Correlated evolution
 - Ancestral reconstructions
- Micro-evolutionary approaches
 - Trait divergences between populations under different fire regimes
 - Differential fitness among phenotypes
 - $-\,2$ examples from the Mediterranean Basin

Conclusions

- Phylogenetic studies unambiguously show that fire has been a selective force shaping traits for very long, at least since Palaeocene (60 My), but probably longer (studies are coming)
- There is field evidence suggesting that currently, different fire regimes selects different traits (natural selection in action)
 - More studies, including genetic studies (heritability, etc.) are still needed

