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BDivision of Ecology, Department of Biology, Hacettepe University, Beytepe 06800, Ankara,

Turkey.
CInsubric Ecosystems Research Group, Swiss Federal Research Institute for forest, snow and

landscape research WSL, Campus Cadenazzo, A Ramel 18, 6593 Cadenazzo, Switzerland.
DInstitute of Silviculture, University of Natural Resources and Life Sciences (BOKU), Peter Jordan

Str. 82, 1190 Vienna, Austria.
ECentro de Investigaciones sobre Desertificación, Consejo Superior de Investigaciones Cientı́ficas

(CIDE-CSIC), 46113 Valencia, Spain.
FCorresponding author. Email: ibekar@ethz.ch

Abstract. In recent decades, changes in fire activity have been observed in Europe. Fires can have large consequences

for the provisioning of ecosystem services and for human well-being. Therefore, understanding the drivers of fire
occurrence and improving the predictive capability of fire occurrence models is of utmost importance. So far, most studies
have focused on individual regions with rather low spatial resolution, and have lacked the ability to apply the models in

different regions. Here, a species distribution modelling approach (Maxent) was used to model fire occurrence in four
regions across the Mediterranean Basin and the Alps using several environmental variables at two spatial resolutions.
Additionally, a cross-regional model was developed and spatial transferability tested. Most models showed good
performance, with fine resolution models always featuring somewhat higher performance than coarse resolution models.

When transferred across regions, the performance of regional models was good only under similar environmental
conditions. The cross-regional model showed a higher performance than the regional models in the transfer tests. The
results suggest that a cross-regional approach is most robust when aiming to use fire occurrence models at the regional

scale but beyond current environmental conditions, for example in scenario analyses of the impacts of climate change.
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Introduction

Wildfires play an important role in many terrestrial ecosystems

and have a variety of ecological, evolutionary and economic
effects (Bond et al. 2005; Pausas and Keeley 2009). In recent
decades, changing trends in fire activity have been observed in

many parts of the world (Schelhaas et al. 2003;Westerling et al.
2006; Pausas and Fernández-Muñoz 2012; Turco et al. 2016),
with further changes likely (Schumacher and Bugmann 2006;

Jolly et al. 2015). The increasing fingerprint of human activity
on landscape properties and anthropogenic climate change are
the main reasons for these trends (Dimitrakopoulos et al. 2011;

Seidl et al. 2011). The disruption of natural fire regimes may
have far-reaching consequences for ecosystem functions and
services, and ultimately for human well-being (Pausas and
Keeley 2019). A better understanding of the spatial and temporal

distribution of wildfire occurrence and a better predictive
capability are therefore of utmost importance.

In Europe, fire regimes differ substantially across regions.
The Mediterranean Basin is most fire-prone, accounting for up
to 90% of the forest area burnt in Europe (Seidl et al. 2011). Fire

occurrence in this area has recently increased significantly
owing to climatic (Dimitrakopoulos et al. 2011; Seidl et al.
2011) and land-use changes (Pausas and Fernández-Muñoz

2012). Ongoing climate change may increase fire risk also in
parts of the continent where it currently has only modest effects,
such as Central or Northern Europe (Schumacher and Bugmann

2006; Müller et al. 2015). Additionally, anthropogenic influ-
ences such as land abandonment, grazing or changes of forest
management have already led to changes in fire activity in
Europe (Pausas and Keeley 2014). An analysis of both climatic
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and anthropogenic factors is therefore crucial to better under-
stand potential changes of fire occurrence.

Several modelling approaches have been used to simulate

the spatial distribution of fire occurrence, for example Gener-
alised Linear Models (Camp and Krawchuk 2017), Maximum
Entropy Models (Maxent; Renard et al. 2012) or Zero-Inflated

Regression Models (Bekar and Tavs-anoğlu 2017). These
models are methodologically and conceptually related to
species distribution models (SDMs; Guisan and Zimmermann

2000; Elith and Leathwick 2009). Although the distributions of
species and wildfires seem to have little in common at first
sight, from a statistical modelling point of view both describe a
certain probability of occurrence of an entity (fire, species) in

space and time, being determined by a range of factors. Among
the many SDM methods, Maxent models have shown compa-
rably high prediction accuracies (Elith et al. 2006), perform

well even with small sample sizes (Guisan et al. 2007b) and
have already been used for modelling fire risk (Parisien and
Moritz 2009; Parisien et al. 2012; Renard et al. 2012; Arpaci

et al. 2014; De Angelis et al. 2015). Apart from assessing
prediction accuracy, these models allow for evaluating the
relative importance of the different factors potentially influ-

encing fire occurrence (Arpaci et al. 2014).
The importance of climatic, ecological and anthropogenic

factors influencing fire occurrence can differ substantially
among different regions in Europe (Conedera et al. 2018). For

example, the spatial variability of fire occurrence in the western
part of the Mediterranean Basin was strongly influenced by
anthropogenic factors (Spain; Chergui et al. 2017), whereas

natural factors were the main driver in the eastern part of the
basin (Turkey; Bekar and Tavs-anoğlu 2017). Our knowledge of
the small-scale drivers of fire occurrence has significantly

increased in recent decades (Moreira et al. 2001; Vilar et al.
2010); however, small-scale studies on the importance of factors
for fire occurrence are often not directly comparable and thus do
not provide adequate information to assess the relative impor-

tance of factors at continental scales. Large-scale studies on fire
occurrence would therefore be valuable, but previous studies
have used coarse resolutions that are not sufficient to capture

small-scale drivers (Koutsias et al. 2005, 2010).
The spatial resolution of SDMs was found to have a consider-

able effect onmodel results (Guisan et al. 2007a; Gottschalk et al.

2011). However, results from previous studies are not consistent.
While increasing spatial resolution tends to make small-scale
featuresmore distinguishable, it can also lead to accuracy errors if

the spatial accuracy of the presence data is low (Gottschalk et al.
2011). Specifically, Cardille et al. (2001) found that an increased
resolution in fire occurrencemodels resulted in a decrease in their
performance, while the relative importance of the predictor

variables was unaffected. In contrast, other studies found a
positive effect of increasing spatial resolution on model perfor-
mance for various target organisms (Guisan et al. 2007a, 2007b;

Gottschalk et al. 2011; Ross et al. 2015). Moreover, Guisan et al.
(2007b) suggested that the effect of spatial resolution on environ-
mental variables is likely to be regionally variable. Thus, further

research on the influence of spatial resolution is required,
particularly in the fire modelling context.

Spatial transferability of statistical models is an important
feature, one that may allow us to reduce research cost and save

time by using models in areas where data availability is insuffi-
cient or lacking entirely. However, transferability requires
models that are capable of predicting phenomena beyond the

range of data for which they were developed. Thus, a better
understanding of the transferability of fire occurrence models in
time or across space is required before applying them under

novel conditions. Weibel (2009) tested the generality of fire
occurrence models in Switzerland, showing that model transfer
was possible in time but not in space. Alternatively, Parisien and

Moritz (2009) used a multi-spatial scale approach in the USA
and found that model transfers performed better from a larger
region to an embedded sub-region. However, no attempt has
beenmade so far to test these findings for fire occurrencemodels

in a large-scale study in Europe.
In the present study, the first goal was to investigate the

importance of predictors and the spatial resolution for fire

occurrence (regardless of fire cause) across several regions in
the Alps and the Mediterranean Basin. We developed regional
Maxent models for four regions in different countries

(Switzerland, Austria, Turkey and Spain), as well as one
cross-regional model, and assessed the region-specific relative
importance of the predictors of wildfire occurrence and the

effect of two spatial resolutions (grid cell size: 1 km and 100 m)
on model performance. The second goal was to investigate the
transferability of the models in space. We used multiple indi-
cators of model performance to determine how these models

perform when being transferred across regions and relative to
the cross-regional model.

Methods

Study areas and fire data

We chose four study regions across the Alps (Carinthia in
SouthernAustria, hereafterAustria; SouthernAlps of Switzerland,
hereafter, Switzerland; Fig. 1) and the Mediterranean Basin

(Valencia in Eastern Spain, hereafter Spain; South-western
Turkey hereafter, Turkey; Fig. 1). They cover a broad spectrum
of ecological, climatic and topographic conditions and represent

distinctly different fire regimes. The selection of the regions was
partly driven by data availability and the existence of fire ecology
studies (Pausas 2004; Zumbrunnen 2010; Grima 2011; Bekar

2016). For these countries, fire occurrence data (i.e. data speci-
fying the georeferenced location and time of wildfires) were
available. More details on the four regions and fire data are pro-

vided in Table 1 and Figs S1–4, Supplementary Material.

Environmental variables

We used 19 bioclimatic variables from theWorldClim database
(version 2.0) with a spatial resolution of 30 arc seconds

(,1 km2) for the years 1970–2000 (Fick and Hijmans 2017;
Table 2) as climate input data. Anthropogenic factors were
represented by road line density (m km�2), the fraction of area

occupied by human settlements (%) and categorical land cover
data (Table 2). Road line density was calculated based on road
network data using the Line Density tool in ArcGIS (v10.4.1,

ESRI, Redlands, CA; Haklay and Weber 2008). Tree cover
density and forest type data were used to represent vegetation-
related variables; aspect and slope were used to represent
topography (Table 2).
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For the coarse-resolution analyses, all variables except

climate were resampled to 1-km resolution using the Resample
tool in ArcGIS. For the fine-resolution analysis, climate and
topographical variables were resampled to 100m. We used a

bilinear resampling rule for continuous data, which calculates
the new value of the cell based on aweighted distance average of
the four nearest cell centres, whereas for categorical variables
(land cover, forest type), the majority rule was used, which

determines the new cell value based on themost common values

across the neighbouring cells.

Spatial fire distribution model

We modelled fire occurrence using Maxent, a machine-learning
method based on maximum entropy that was initially developed
mainly for modelling species distributions from presence-only
records (Phillips et al. 2006). By default, Maxent provides a few

Table 1. Total area, number of fires, number of cells with at least one fire and fire causes in the study areas

A lower number of cells with fire than the total number of fires indicates more than one fire occurrence in a cell. a, Anthropogenic; n, natural; u, unknown

Period Area (km2) Number of fires Fire causes (%) Number of cells

with fire (fine

resolution)

Number of cells

with fire (coarse

resolution)

a n u

Switzerland 2000–16 9536 831 57 21 10 806 709

Austria 2000–17 15 141 491 80 20 0 485 456

Spain 2001–14 23 255 2688 76 21 3 2514 1844

Turkey 2013–17 32 831 2512 28 20 52 2398 2061

Table 2. Characteristics of the variables used as predictors in theMaxentmodel (for a full list of variables, see Table S1 in SupplementaryMaterial)

Variable Category Description Resolution Year

Bioclimatic variablesA Temperature, Precipitation 19 variables 1 km2 1970–2000

Road networkB Anthropogenic Road line density (m km�2) Vector 2018

Human settlementC Anthropogenic Percentage of built-up area (%) 100m2 2012

Land coverC Anthropogenic Categorical land cover data 100m2 2012

Tree cover densityC Forest Tree cover density (%) 100m2 2012

Forest typeC Forest Categorical forest type data (broadleaved or coniferous) 100m2 2012

AspectC Topography Direction that a slope faces (0–3608) 25m2

SlopeC Topography (8) 25m2

AWorldClim (http://www.worldclim.org/current, verified March 2020)
BOpenStreetMap (https://www.openstreetmap.org/, verified March 2020)
CCopernicus (https://land.copernicus.eu/, verified March 2020)

0N 250 500 km

Carinthia

Study areas

Valencia

Southern Switzerland

Southwestern Turkey

Fig. 1. Location of the study regions in Spain, Switzerland, Austria and Turkey.
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evaluation metrics, one of them being the Area Under the Curve
(AUC) of the Receiver-Operating Characteristic (ROC). An
AUCgraph shows sensitivity (true positives) against 1-specificity

(true negatives). It is worth noting that for Maxent the maximum
achievable AUC is,1 because it compares presence points with
background points instead of absence points (Parisien et al.

2012). For all simulations, we used 10 replicates with a 50 : 50
split of training v. test data. A subsampling method was used to
create randomly selected test and training data. We used the

Maxent algorithm as implemented in the dismo package of the
statistical software R (Hijmans et al. 2017; R Core Team 2018).

Preliminary model diagnostics

Caution is warranted when comparing AUC values among
models from different regions and/or with different resolutions,
because it can be influenced by the ratio between presence and

background points (Yackulic et al. 2013). By default, Maxent
uses 10 000 background points, but because the total number of
cells differs strongly among regions and within regions when

different spatial resolutions are used, a fixed number of back-
ground points may not be adequate. We therefore calculated
additional diagnostics to ensure that the models are showing

their best performance and that results are comparable.
First, to determine the optimal number of background points

for both spatial resolutions, we tested model performance under
varying ratios of background cells to total cells, instead of using

fixed cell numbers. For the coarse resolution, ratios between 10
and 50% were tested, and for the fine resolution, ratios between
0.5 and 5.0%. This test showed that AUC values increased with

increasing number of background points but reached a satura-
tion point at,40% for the coarse resolution and at,2% for the
fine-resolution analysis (Fig. S5). We used these fractions of

background points for all simulations.
Second, we tested the effects of different time periods of the

predictor variables and the sample size of fire events on model
performance, because neither the number of fires nor the number

of years for which fire data were available were consistent
among regions. We achieved this with two analyses. (1) We
subsampled shorter periods (i.e. temporal extents, e.g. the years

2000–04 or 2005–09) in each dataset and evaluated model
performance. This analysis showed that the performance of
the models for Turkey and for Switzerland was stable, irrespec-

tive of the sampled period. The models for Austria and Spain
showed slight performance differences among different groups
of years, but all groups were sufficiently close to the perfor-

mance of the full model (Fig. S6). (2) We randomly subsampled
30, 50 and 70% of the datasets and tested how the models
performedwith these rarefied datasets. The effect of sample size
was even lower than that of different time periods. The largest

differences were observed in Austria, where AUC values
increased with increasing sample size (Fig. S7). In general,
however, neither the temporal extent nor the sample size had a

large effect on model performance, indicating that AUC values
from the different regions are comparable.

Importance of predictors and spatial resolution for fire
occurrence

To evaluate the importance of spatial resolution for predictions
of fire occurrence, we fitted regional, cross-regional and

sub-regional models at both coarse and fine spatial resolution.
Regional models were fitted for Switzerland, Austria, Spain,
and Turkey. For the cross-regional model, we combined the

data from these regions and created a joint model based on the
entire dataset. Finally, sub-regional models were calculated for
the cantons of Ticino, Graubünden and Valais in Switzerland,

where the most detailed data of the present study were
available.

To assess the importance of the environmental variables, we

used the relative contribution of each variable as provided by
Maxent. We focused on categories of variables instead of
individual variables (Table 2). Because using highly correlated
variables can lead to misinterpretations of the results, we

performed a correlation analysis and removed highly correlated
variables in a first step. To achieve this, the BIOCLIM variables
were evaluated using a cross-correlation matrix. If two or more

variables had a correlation (Pearson’s r) higher than 0.7, their
independent jack-knife test gain was checked and the variable
with the lower test gain was removed. This process was repeated

until no highly correlated variables remained. If the test gain of
two correlated variables did not differ significantly, we favoured
annual over seasonal variables (e.g. we kept annual mean

temperature instead of the mean temperature of the warmest
quarter; cf. discussion by Parisien andMoritz 2009). In a second
step, we compared the model’s AUC with and without each
variable and omitted those variables that did not improve the

model’s AUC. To analyse model performances, we used AUC
(see below for more information). We classified models as
successful if their AUC $ 0.7.

Model transferability

We systematically applied the models that were developed for
one region to all other regions (for details, see below). On the

one hand, the four regional models were transferred to each
other, and on the other hand, the cross-regional model was
applied to the four regions. All model transfers were performed

at both coarse and fine spatial resolution.
For model evaluation, we used a range of diagnostics. First,

we used AUC values and lowered the threshold for ‘success’ to
0.6, because transferring models is a greater challenge than

model calibration (Parisien and Moritz 2009). However, AUC
is a single metric and may not necessarily capture spatial
differences in performance. Therefore, as a second metric,

we performed a correlation analysis between the prediction
maps of the transferred models and the prediction maps of the
original models to quantify the overlap. Because this is a

standard correlation analysis and different threshold values
for R2 have been used (Parisien andMoritz 2009; Parisien et al.
2012), we assumed that a model produces a successful predic-
tionmap if R2 is larger than 0.75 (i.e. themodel explains at least

75% of the variation in the data). Third, we calculated the
predicted ‘suitable’ (i.e. fire-prone) area because a high corre-
lation does not imply that the level (intercept) of the datasets is

comparable. We used a threshold of 0.5 to determine the fire-
prone area (i.e. any cell with an ignition probability .0.5)
qualified as being fire-prone. We assumed that a model

produces a successful prediction map if change in fire-prone
area is #0.25.
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Results

Importance of predictors and spatial resolution for fire
occurrence

The comparison of the importance of the predictor variables

showed that the cross-regionalmodel had a higher contribution of
climatic variables (mean¼ 68%, averaged over coarse and fine
resolution models) than the regional models (mean¼ 49%;
Fig. 2). Although seasonal climatic variables such as mean tem-

perature of thewettest and driest quarterswere themost important

climatic variables in the cross-regional model, annual climatic
variables (e.g. annualmean temperature)were themost important

in the regional models (Table S2). In general, temperature vari-
ables were the main climatic contributors in all models except in
the coarse resolution Turkey model, where the relative contri-
bution of precipitation (42%) was higher compared with tem-

perature variables (18%) (Fig. 2). The largest anthropogenic
contribution was observed in Spain (mean¼ 43%).

According to the AUC values, most models had a successful

performance (AUC. 0.7; Fig. 3). There were 6/8 successful
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Fig. 2. Relative contribution of predictor variable categories in Maxent models at different resolutions for different

regions (CR, cross-regional model; AT, Austria; ES, Spain; TR, Turkey; CH, Switzerland). For the relative

contribution of individual predictor variables see Table S2 in Supplementary Material.
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Fig. 3. Performance of cross-regional, regional and sub-regional Maxent models at coarse and

fine resolution (CR, cross-regional; ES, Spain; TR, Turkey; AT, Austria; CH, Switzerland; CHV,

Valais; CHG, Graubünden; CHT, Ticino).
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regional models at coarse resolution and 8/8 at fine resolution.
Of all models, Switzerland had the best AUC performance at

both resolutions and Spain had the lowest (Fig. 3). At both
resolutions, the cross-regional models showed a relatively good
performance (i.e. in between the best-performing Switzerland

and the other regional models; Fig. 3). The three sub-regional
models in Switzerland showed good performances that were,
however, lower than that of the full Switzerland model. Note

that the sub-regional Switzerland models are, of course, not
independent from the Switzerland model, so their similar
performance is not surprising. Therefore, we do not emphasise
these models in the remainder of the results.

Spatial resolution played an important role for model perfor-
mance. The fine resolution models performed consistently
better than their coarse resolution equivalents (Fig. 3). Improve-

ments in AUC ranged from 0.020 (Switzerland) to 0.082
(Austria). When comparing the relative contribution of the
different categories of predictor variables between spatial reso-

lutions within a region, they remained similar for the cross-
regional, Switzerland and Spainmodels (Fig. 2). However, some
differences were notable in Austria and Turkey. In Austria,

forest variables were more important at the fine (42.5%) than at
the coarse resolution (2.3%), and anthropogenic variables were
less important. This was mostly because of tree cover density,
whose contribution was much larger at the fine resolution

(Table S2). In addition, in the coarse resolution Austria model,
,90% of the contribution came from merely two variables (i.e.
annual mean temperature and road network), whereas at the fine

resolution, the same percentage was achieved using four vari-
ables (annual mean temperature, road network, tree cover

density and aspect; Table S2). In Turkey, the difference was
mostly a result of changes in the importance of climatic vari-
ables. Precipitation variables contributed to the model more at

the coarse (42.8%) than at the fine resolution (12.2%). Similar to
Austria, forest variables also had a higher contribution at the fine
(30%) than at the coarse resolution (21%) in Turkey. Individual

variables that were important at one resolution typically
appeared in the other resolution as well (Table S2), but in a
few cases different but highly correlated variables appeared in
both resolutions.

Model transferability

Most model transfers were successful when assessed by AUC

(Fig. 4). At the coarse resolution, 12 of the 16 transfers (four
regional models transferred to the three other regions, plus the
cross-regional model transferred to the four regions) were suc-

cessful, whereas at the fine resolution, 13 of the 16 transfers
were successful (AUC$ 0.6). In all regions, the cross-regional
model was successful at both resolutions when assessed for each

region individually. The AUC values of model transfers were
strongly influenced by the region to which the model was
transferred. For instance, all models that were transferred to
Switzerland showed very high AUC values, similar to the

Switzerland model itself, whereas the models transferred to
Turkey exhibited much lower performance and considerably
more inter-model divergence (Fig. 4).
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Fig. 4. Transferability results. The dots on the black line have the same performance in the original models and the transferred

area (original models are also included in the graphs). Background colours indicate model performance thresholds: red, poor

performance; green, good performance. CR, cross-regional model; AT, Austria; ES, Spain; TR, Turkey; CH, Switzerland.
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In addition to assessing model performance based on AUC,
the spatial patterns of the prediction maps were compared

between the transferred models and the original models using
a correlation analysis in terms of the predicted fire-prone area
(for the predicted fire occurrence maps, see Figs. S8–15). The

predictionmaps of the successful models (judged byAUC)most
often showed a spatial pattern similar to those of the original
models, with some exceptions. For instance, the coarse resolu-

tion Turkey model featured prediction maps that were highly
different from the original model outcomes when it was applied
to the other regions, despite having ‘successful’ AUC values
(Fig. S14). Overall, however, of the 12 successful models at

coarse resolution (judged by AUC), seven maps were highly
correlated (r$ 0.7) with the original prediction map, and at fine
resolution, nine out of 13 successful models produced highly

correlated maps (Tables 3, 4).
Finally, the comparison of the predicted fire-prone area

across models showed that, at the coarse resolution, five out of

the seven successful models featured a similar area (Dfire-prone
area #0.25). For the fine resolution, six out of nine successful
models showed similar values of the predicted fire-prone area
(cf. Table 4). Overall, five and six models at the coarse and fine

resolution, respectively, yielded (1) a high AUC, (2) highly
correlated prediction maps and (3) similar predicted fire-prone
areas. Notably, the cross-regional model was among this set in

three cases (Switzerland, Turkey and Austria) for both resolu-
tions (Tables 3, 4). Only in Spain did the cross-regional model
predict a much larger fire-prone area than the original model

outcome at both resolutions; the other metrics still indicated a
high model performance.

Discussion

Importance of predictors and spatial resolution for fire
occurrence modelling

Our results suggest that the importance of predictor variables

differs between the regional and the cross-regional models. The
most striking difference is the decisively higher contribution of
climatic predictors in the cross-regional model in comparison

with regional models. This indicates that at the regional level,
anthropogenic factors and land cover and/or land use are
important for differentiating the occurrence of wildfires at this

spatial scale, but at the cross-regional (continental) scale the
climatic factors gain in importance. Our results are consistent
with findings from previous studies showing that the impact of
climate is dominant at the macro scale (Pearson et al. 2002), and

that the influence of climate-related factors can be overridden by
other factors at smaller scales (Wiens 1989).

Our analyses further showed that the importance of factors

varies among regions, but sometimes also between different

resolutions within a region. Between Spain and Switzerland,

where the results were only slightly influenced by the resolution,

the significance of anthropogenic factors differed distinctly. The

strong influence of anthropogenic factors that we found for

Spain is consistent with the findings of Padilla and Vega-Garcı́a

(2011), in which road density was the most important explana-

tory variable for a large part of the Valencia region. The low

importance of anthropogenic factors in Switzerland, however,

does not agree with the results of Zumbrunnen et al. (2012)

showing a pronounced influence of humans on wildfires. That

study, however, considered additional anthropogenic factors

Table 3. Coarse-resolution model transferability results

All regional models and the cross-regional model were transferred to all areas. For all metrics we used in model evaluation (Area Under the Curve (AUC),

correlation and Dfire-prone area), the values above (AUC, correlation) or below (Dfire-prone area) the threshold we defined as the minimum requirement for

success are marked in bold. Asterisks indicate models that were successful in all evaluation metrics.DFire-prone area is the difference between fire prone area

of the original model and fire prone area of the model in transferred region. Values inside the parenthesis represent relative change in Dfire-prone area

Model Transfer area AUC Correlation Fire-prone area (%) DFire-prone area

Austria 0.689 0.44

Switzerland* Austria 0.637 0.82 0.55 0.11 (25%)

Spain Austria 0.569 0.50 0.00 �0.44 (�100%)

Turkey Austria 0.659 0.57 0.00 �0.44 (�100%)

Cross-regional* Austria 0.670 0.85 0.22 20.22 (�50%)

Switzerland 0.865 0.15

Austria* Switzerland 0.815 0.79 0.28 0.13 (87%)

Spain Switzerland 0.770 0.33 0.00 20.15 (�100%)

Turkey Switzerland 0.831 0.62 0.00 20.15 (�100%)

Cross-regional* Switzerland 0.868 0.90 0.15 0.00 (0%)

Spain 0.673 0.45

Austria Spain 0.677 0.50 0.25 20.21 (�44%)

Switzerland Spain 0.488 0.28 0.55 0.10 (22%)

Turkey Spain 0.683 0.76 0.00 �0.45 (�100%)

Cross-regional Spain 0.715 0.88 0.86 0.41 (91%)

Turkey 0.707 0.50

Austria Turkey 0.620 0.33 0.89 0.39 (78%)

Switzerland Turkey 0.578 0.24 0.00 �0.50 (�100%)

Spain Turkey 0.462 0.08 0.06 �0.44 (�88%)

Cross-regional* Turkey 0.714 0.95 0.35 20.15 (�30%)

Cross-regional modelling of fire occurrence Int. J. Wildland Fire G



such as population density, which we did not include owing to
the lack of high-resolution population data across all regions.
Thus, the choice of factors used in a modelling study can

considerably influence the results and their interpretation,
rendering comparisons between studies difficult. An assessment
of the relative importance of factors should therefore always be
considered with caution. In steep mountain conditions, for

instance, the road network depends on the geomorphologic
constraints, making it a totally different proxy for anthropogenic
influence with respect to hilly or flat regions (Conedera et al.

2015). Similarly, in mountain regions, settlements are clustered
on valley floors or slope terraces. Under such conditions, the
increasing distance from settlements or roads when following

the altitudinal gradient may be highly correlated with the
temperature, which in turn tends to decrease with altitude,
making the analysis of potential fire drivers based on such

proxies quite speculative. However, strong regional differences
in the wildland–urban interface in Switzerland could also be
responsible for not finding a common pattern (Conedera et al.

2015). Finally, it is worth mentioning that Pezzatti et al. (2013)

found clear fire regime shifts in the Ticino and Valais regions
from 1904 to 2008 that were traceable to land use or legal
changes, indicating increasing anthropogenic influences in

those regions.
In contrast to Spain and Switzerland, the importance of

variables differed between spatial resolutions in Austria and

Turkey. In Austria, the increasing importance of forest variables
at fine resolution may be connected with the prevailing small-
scale mosaic of irregularly shaped forest plots. Because forest
fires are important in that area (Arndt et al. 2013), the

distribution of forest area may be captured sufficiently at the
fine resolution only, explaining the high importance of this
variable. The insufficient representation of forest area at low

resolution may also be a reason why the performance of that
model was much lower compared with the fine scale model. In
Turkey, our results showed the dominance of non-
anthropogenic factors in the region, which is in accordance with

the findings of Bekar (2016; see also Bekar and Tavs-anoğlu
2017). In that study, temperature and precipitationwere found to
be the most important factors for the distribution of fire occur-

rence. Bekar (2016) further found that elevation strongly influ-
ences the importance of temperature and precipitation (i.e.
temperature was important for mid-elevations), whereas precip-

itation was important at very low and high elevations. Our
results showed that although temperature and forest variables
were the dominant variables at the fine resolution, precipitation

was more important at the coarse resolution in Turkey. These
results highlight that spatial resolution is important for overall
model performance and sometimes also for the relative contri-
bution of factors.

Fire occurrence is influenced by a variety of factors.
Although important climatic and topographic factors can be
represented relatively well in spatial models, accounting for

anthropogenic influences is more challenging because it
requires the identification, quantification and mapping of beha-
vioural factors (Vilar et al. 2016b), which may differ further

between regions. In the present study, the two best performing
models (cross-regional and Switzerland) had a low contribution
from anthropogenic variables, and the worst performing models
(Spain and coarse resolution Austria) had a high contribution.

Table 4. Fine-resolution model transferability results

All regional models and the cross-regional model were transferred to all areas. For all metrics we used in model evaluation (Area Under the Curve (AUC),

correlation and Dfire-prone area), the values above (AUC, Correlation) or below (DFire-prone area) the threshold we defined as the minimum requirement for

success are marked in bold. Asterisks indicate models that were successful in all evaluation metrics.DFire-prone area is the difference between fire prone area

of the original model and fire prone area of the model in transferred region. Values inside the parenthesis represent relative change in Dfire-prone area

Model Transfer area AUC Correlation Fire-prone area (%) DFire-prone area

Austria 0.771 0.25

Switzerland* Austria 0.707 0.88 0.38 0.14 (52%)

Spain Austria 0.674 0.67 0.00 20.25 (�100%)

Turkey Austria 0.703 0.83 0.67 0.42 (168%)

Cross-regional* Austria 0.736 0.85 0.16 20.08 (�36%)

Switzerland 0.885 0.12

Austria* Switzerland 0.854 0.84 0.12 0.00 (0%)

Spain Switzerland 0.693 0.21 0.02 20.10 (�83%)

Turkey* Switzerland 0.832 0.78 0.22 0.11 (83%)

Cross-regional* Switzerland 0.869 0.90 0.12 0.00 (0%)

Spain 0.718 0.31

Austria Spain 0.580 0.40 0.38 0.07 (23%)

Switzerland Spain 0.644 0.49 0.00 �0.31 (�100%)

Turkey Spain 0.673 0.71 0.00 �0.31 (�100%)

Cross-regional Spain 0.736 0.86 0.71 0.39 (129%)

Turkey 0.735 0.40

Austria Turkey 0.661 0.58 0.32 20.08 (�20%)

Switzerland Turkey 0.581 0.19 0.00 �0.40 (�100%)

Spain Turkey 0.503 0.24 0.00 �0.40 (�100%)

Cross-regional* Turkey 0.734 0.94 0.19 20.21 (�53%)
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A possible reason for the lower performance of the latter models
may lie with the high importance of some other anthropogenic
variables that are missing in our dataset (cf. Parisien and Moritz

2009). For instance, several studies showed the importance of
the extent and nature of the wildland–urban interface for fire
occurrence in Spain (Vilar et al. 2010;Martı́nez-Fernández et al.

2013; Vilar et al. 2016a). Thus, to better represent human
influences on fire occurrence, variables such as the population
density in the wildland–urban interface may need to be included

in further studies (Martı́nez-Fernández et al. 2013).
Our results clearly demonstrate that spatial resolution is an

important factor affecting model performance. To our knowl-
edge, only Cardille et al. (2001) investigated the effect of spatial

resolution on the performance of fire occurrence models, sur-
prisingly finding decreasing model performance with increas-
ing resolution (from 10 km to 5 km), which is in contrast to our

results. However, studies that analysed the effect of resolution
for other entities in SDMs repeatedly showed increased perfor-
mance with increasing resolution (Guisan et al. 2007a; Guisan

et al. 2007b; Gottschalk et al. 2011; Ross et al. 2015). Clearly,
further modelling studies evaluating the effect of different
spatial resolutions on fire occurrence predictions are needed,

and we advocate using a range of different resolutions to get a
clearer picture.

There is no consensus regarding the effect of spatial resolution
on the importance of predictors. Some studies show that spatial

resolution clearly influences the relative importance of the vari-
ables (Hanberry 2013; Suárez-Seoane et al. 2014), but others
show no significant effects (Cardille et al. 2001; Pradervand et al.

2014). These ambiguous results may be a result of variations in
the absolute or relative differences of the resolutions compared in
the respective studies. For instance, an increase in resolution from

10 km to 5 km does not necessarily have to better capture the
relevant factors, but could be possible with an increase from 1 km
to 100 m. In the present study the differences in resolution were
consistent across regions, but we still observed regional differ-

ences. While the relative importance was similar in Switzerland
and Spain, distinct differences were observed in Austria and
Turkey, where forest variableswere considerablymore important

at fine resolution. In accordance with the study by Guisan et al.

(2007a), this result indicates that the effect of spatial resolution on
contributing factors can vary regionally. In homogenous land-

scapes, a coarse resolution may be sufficient, but in complex,
environmentally and topographically heterogeneous landscapes,
a fine resolution may be required to capture the essential mecha-

nism. Although further research that systematically tests the
effect of grain size on model performance is needed, it is worth
mentioning that the aim should not be to identify the ‘gold
standard’ for spatial resolution in fire occurrence models, but to

identify the most appropriate resolution for the relevant para-
meters considered in the study object.

Model transferability

We used three metrics to evaluate model transfers because using
only AUC could lead to misleading results. For instance, the

AUCof themodelswas partly determined by the region towhich
the model was transferred. Particularly in Switzerland, all
models had a successful AUC performance, most likely because
non-fire-prone areas (absences) were much more common

owing to the complex topography of the region, consisting of
many high-elevation, high-precipitation areas. Most of the
models were able to predict these absences accurately, resulting

in high AUC even though presences may not be predicted well.
The Austria model was the only one that also accurately pre-
dicted presences for Switzerland, as indicated by the other

metrics. This shows that despite high AUC values, models may
produce different prediction maps when they are transferred,
thus it is important to apply multi-criteria assessments.

Spatial transferability is a desirable feature of models,
because it underpins their general applicability (Randin et al.

2006). In the present study, all of the spatial transfers of the
regional models were not successful (when assessed bymultiple

criteria), with some exceptions. For instance, a successful
regional model transfer was possible between Switzerland and
Austria. These two Alpine regions had overlapping explanatory

variables in their final models and therefore the transfer was
successful. Successful transfer was not possible between the
Mediterranean regions, because although they are climatically

similar, they differ considerably in the non-climatic factors.
These results show that model transfer between regions is only
possible if there is a certain overlap among the environmental

conditions between the origin and target area of the model.
In contrast to regional model transfers, the cross-regional

model performed successfully in nearly all regions. This is not
surprising considering that the data from all regionswere used to

fit it. However, this alone does not necessarily guarantee
successful performance at the level of the individual regions.
If the drivers of fire occurrence were considerably different

between regions, a cross-regional model would unlikely be able
to predict these differences. In our case, the drivers of fire
occurrence in Spain differed notably from those in the other

regions, with a much higher contribution of anthropogenic
factors. This may be the reason why Spain was the only region
in which the cross-regional model failed in one assessment
criterion. When attempting to simulate future effects of climate

change on fire occurrence, the cross-regional model may make
more reasonable predictions in the former three regions than in
the regional models, because it was calibrated to a wider

climatic range and has a higher contribution of climatic predic-
tor variables. However, owing to the large importance of
anthropogenic factors in Spain, future predictions by the

cross-regional model are uncertain – more research on the
ability to predict future fire occurrences by regional and cross-
regional models is needed.

Conclusion

We found that the predictions of the cross-regional model when
transferred to the different regions are more robust than those of

the transferred regional models. The performance of transferred
regional models can be poor even between climatically similar
regions because anthropogenic factors often differ substantially.

Cross-regional models may be better suited to predict the future
effects of climate change on fire occurrence, owing to their
better representation of climatic differences. However, further

research is required.
We demonstrated that spatial resolution influences perfor-

mance and sometimes also the relative importance of the
predictor variables of fire occurrence models. The spatial

Cross-regional modelling of fire occurrence Int. J. Wildland Fire I



distribution of factors influencing wildfires can differ consider-
ably between regions, and some landscape patterns may only be
sufficiently well represented at a specific resolution. This

indicates that when modelling fire occurrence, attention should
be given to finding an appropriate spatial resolution, and that we
generally need a better understanding of the effects of scale and

resolution in fire occurrence models.
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s-ekillenmesinde doğal ve antropojen faktörlerin rolü. Translated title:

The role of anthropogenic and natural factors in shaping recent fire

regimes in Mediterranean ecosystems. M.Sc. Thesis, Hacettepe Univer-

sity, Ankara, Turkey. [In Turkish] Available at http://www.openaccess.

hacettepe.edu.tr:8080/xmlui/handle/11655/4914 [Verified March 2020]
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