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The onset of phenological plant
response to climate warming

Introduction

The industrial era, which began in the 18th century, led to an
increase in greenhouse gases in the atmosphere which have driven
anthropogenic climate warming. Paleoclimate records suggest that
this warming began just before the mid-19th century (around the
1830s; Abram et al., 2016) and has continued unabated to
the present day. The key question that arises is, when did this
warming become significant enough to start impacting organisms?
Neglecting this question risks falling into the shifting baseline
syndrome (Soga&Gaston, 2018), that is, the erroneous perception
that recent anthropogenically warmed climates represent ‘natural’
baseline conditions.

There is ample evidence of the effects of climate change on plants
and animals (Parmesan, 2006; Dijkstra et al., 2011). However, it is
not easy to pinpoint the starting point for these impacts, nor
distinguish them from natural dynamics, nor from the impacts of
other anthropogenic changes (such as land use, pollution, and
invasive species). Sustained phenological shifts are among the
clearest evidence of climatic change effects on organisms (Cleland
et al., 2007). Plant phenology (e.g. time of flowering, leaf
unfolding, and leaf coloring) is usually strongly tied to temperature
cues (Sparks & Carey, 1995; Allen et al., 2014; Piao et al., 2019)
and so changes in phenology can reflect the timing of significant
climate impacts. In addition, phenological changes in plants are
likely to have cascading effects on interacting species (e.g. insects
and birds), and so have an impact beyond the phenological change
of the plants themselves (Renner & Zohner, 2018).

Most studies on plant phenological changes consistent with
climate warming suggest changes during the second half of the 20th

century (Menzel et al., 2001; Walther et al., 2002; Fu et al., 2014;
Renner & Zohner, 2018; Zeng et al., 2025), despite global
warming starting much earlier (Abram et al., 2016). This is due to
the lack of longer-term data, which is obscuring our understanding
of the real overall effect of global warming. Old herbarium
specimens for some specific species may provide long-term
information on flowering (Calinger et al., 2013; Speed
et al., 2022); however, old records are scarce and often represent
disparate populations and habitats, complicating the establishment
of robust long-term time series needed to accurately identify the
onset of phenological shifts.

Here, we use long-term phenological data for the Japanese
mountain cherry tree (Prunus jamasakura; Rosaceae) in Kyoto to
identify the starting point of a consistent and sustained

phenological change. The full-flowering date of this cherry tree
has been recorded since the 9th century (Aono&Kazui, 2008;Aono
&Saito, 2010), whichmakes it possible to distinguish phenological
changes caused by anthropogenic climate change from natural
variability in climate and phenology. Furthermore, the phenology
of this species is known to be temperature-sensitive (Aono &
Kazui, 2008); both warm and cool temperatures are believed to be
important for flowering (Allen et al., 2014). In addition, the peak
flowering time in this species is relatively brief, lasting only 2–4 d
(Primack et al., 2009), making this species appropriate for
depicting flowering changes.

Materials and Methods

Data

The day of the year (DOY)with peak cherry tree blossom inKyoto,
Japan, from 812 to 2024 (Aono & Kazui, 2008; Aono & Saito,
2010) was extracted from https://ourworldindata.org (Supporting
Information Dataset S1). Monthly temperatures were obtained for
the Kyoto Meteorological Station (ID 47759, World Meteorolo-
gical Station) from the JapanMeteorological Agency (https://www.
data.jma.go.jp). To validate the results, we also used three
additional stations from smaller Japanese cities that have
temperature data since the late 1800s (Table S1; Dataset S2).

Change-point analysis

We first tested the null hypothesis that the flowering day remained
constant using the sequential F-test. Given that we rejected this
hypothesis, we dated the breakpoint in the time series of the
flowering day. We considered one-change-point analysis (single
breakepoint) to depict the most important change, which is likely
to be related to anthropogenic warming.We used three methods to
date the breakpoint (Notes S1): (1) dating the structural change in
the regression model, that is, computing the optimal breakpoint
using the ‘strucchange’ library (Zeileis et al., 2002, 2003); (2) fitting
a piecewise linear model and computing the confidence interval by
bootstrap using the ‘SiZer’ library (Sonderegger et al., 2009); and
(3) fitting regressionmodelswith segmented relationships using the
‘segmented’ library (Muggeo, 2003). Methods 2 and 3 are
conceptually similar (based on regression analysis) but use different
approaches for estimating the confidence interval; method 1 is
based on testing deviation from stability. We then related the peak
flowering time (DOY) with the monthly temperature previous to
flowering for each year (for years after the breakpoint) using linear
regression analysis. Given that some phenological processes are
related not only to spring (our expectation) but also to autumn
temperatures (Beil et al., 2021), the effect of temperatures during
each month on the flowering dates was tested separately to define
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themost influential period;we considered themonths fromApril of
the flowering year to April of the previous year.

The climate-flowering analysis was first performed for the
Kyoto Meteorological Station and then repeated for additional
smaller cities where the urban heat effect was likely much
smaller (Table S1). All analyses were performed using the R
software (R Core Team, 2024).

Results andDiscussion: 134 years of climatewarming
response

The peak of flowering in the cherry tree was not constant during the
period 814–2024 (sequential F-test; sup.F = 78.56, P < 0.001).
The threemethods used to detect the year with a significant change-
point in the time series yielded similar results (year and confidence
interval): 1893 (CI = 1885–1905 based on structural changes);
1887 (CI = 1855–1925 based on piecewise linear model); and
1887 (CI = 1863–1911 based on segmented regression). That is,
the onset of the climate warming effect on the Japanese cherry tree
occurred around 1890, in Japan’s Meiji Era (1868–1912). During
the 1078 yr before 1890, peak flowering occurred, on average, on
16 April (mean DOY = 105.2, SD = 6.37, median = 105). After
1890, a sustained and significant advance in floweringwas observed
over the next 134 yr (Fig. 1a), with the earliest recorded flowering
on 26 March (DOY = 84) in 2023. This represents an average
advance of 0.9 d per decade (slope: �0.0927; Fig. 1a). This may
seem a slow phenologic change compared with estimates for other
plants (up to 5 d per decade; Renner & Zohner, 2018, Zeng
et al., 2025); however, the value depends on the length of the time
series as the climate is constantly changing. If we only consider
changes from 2000 (or from 2005), the estimated advance is 3 (or
4.8) d per decade. That is, we do not find evidence of a temporal
attenuation in the phenological response to warming, as has been

reported in experimental studies (Lu et al., 2025). The slight (but
significant) positive trend (i.e. delayed flowering) during the period
812–1887 aligns with the pre-industrial cooling trend in terrestrial
records over the past millennium (McGregor et al., 2015; Sigl
et al., 2015). After 1890, flowering time was strongly correlated
with the mean temperature for March (�2.9 d per 1°C; Fig. 1b;
Table S2; Aono & Kazui, 2008), confirming that the advance is
primarily driven by increasing spring temperatures (Figs S1, S2),
that is, when flowers develop.

Theobservedphenological shifts are indeed likely explainedby the
rising spring temperatures inKyoto (Fig. S1) and globally.However,
other factors could potentially contribute. One is the industrializa-
tion and the urban heat effect; however, their impact on the late 19th

century, when the breakpoint occurred, was likelyminimal; its effect
is confined to recentdecades (Aono&Kazui, 2008).The fact that the
relation between the flowering time and March temperature is
maintained when using meteorological stations from smaller cities
suggests that the urban effect is unlikely to bias our results. Changes
in tree management practices (e.g. pruning and irrigation) may also
modify flowering, although they may introduce noise rather than a
systematic trend. Tree mortality and new plantations could also
influence phenology, specially if there is an artificial selection for
early-blooming individuals. In fact, we donot knowwhether all trees
are simultaneously advancing their flowering time, or alternatively,
there are early- and late-blooming genotypes with different
sensitivity to warming (Goeckeritz et al., 2024). To what extent
warming has other phenological implications different from the time
of peak flowering (e.g. flowering duration, pollination, fruiting) also
deserves further research (Hegland et al., 2009). In any case, the
abrupt change in flowering around 1890 (Fig. 1) is unlikely to be
strongly influenced by those factors; given the high sensitivity of the
flowering time to temperature, anthropogenic global warming is the
most plausible explanation.
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Fig. 1 Phenology changes for the Japanese cherry tree (Prunus jamasakura) in Kyoto. (a) Day of the year of the flowering peak for the period between 812
and 2024. The black line is the 20-yr moving average; the red line is the piecewise linear model (slopes: 0.00293 and�0.09268; P = 0.0002 and < 0.0001;
R2 = 0.015 and 0.417, respectively) with the confidence interval of the breakpoint indicated by vertical dotted lines. [Correction added on 20 June 2025, after
first online publication: details of the moving average in the preceding sentence have been updated.] Horizontal segments between the dotted lines indicate
the confidence interval of the three methods used to detect the breakpoint (black (top), structural change; red (middle), piecewise model; blue
(bottom), segmented model). (b) Relation between March mean air temperature (°C) in Kyoto and the day of the year of the Japanese cherry tree peak
flowering for the period between 1890 and 2024 (i.e. after the breakpoint). The red line is the linear fit (y = 121.84–2.93x; P < 0.00001; R2 = 0.75); the color
of the symbols relates to the century (19th, 20th, 21st, in black, gray, and red, respectively); some of the years are indicated as reference.
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Climate warming is not uniform across the globe (Abram
et al., 2016; IPCC, 2023) and different species may exhibit varying
responses and sensitivities to climate (Renner & Zohner, 2018;
Horbach et al., 2023). Woody species and spring flowering species
tend to advance their flowering time in response to warming faster
than herbs or summer flowering species (Calinger et al., 2013;Zeng
et al., 2025), suggesting that the Japanese cherry tree may be a good
indicator of the onset of the global warming response for many
other species. Species’ sensitivity to photoperiod also contributes to
shaping the phenology of woody plants; for example, species that
are less sensitive to photoperiod changesmay bemore responsive to
spring warming (Fu et al., 2019). In short, the Japanese cherry tree
is unlikely to be the species most sensitive to global warming. That
is, we provide evidence that climate change has been impacting our
biota since at least the late 19th century – c. 50 yr after human
activities began altering the climate (Abram et al., 2016). During
this 50-yr time lag, the magnitude of warming may have been
insufficient to trigger a noticeable phenological shift in this species.
If the Japanese cherry has been affected by climate warming for c.
137 yr, many other species of plants and animals may have been
similarly affected.

The lack of long-term data limits our ability to establish
references for the functioning of ecosystems before the industrial
era. This poses significant challenges to fully understanding the real
effects of climate change. In other words, climate change may be
impacting our biosphere more than wemay realize. Our analysis of
long-term data using breakpoint models strengthens our ability to
establish baseline conditions before the industrial era. It is
important to search for more unambiguous evidence of climate
change effects to reduce the shifting baseline syndrome in
climate change research (Pausas, 2024).
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