
An empirical study about the use of Generative

Adversarial Networks for text generation

Iván Vallés Pérez

June 13, 2018

Advisors

Dr. D. Anselmo Peñas-Padilla1 Dr. D. Emilio Soria-Olivas2

1Escuela Técnica Superior de Ingenieŕıa Informática
Universidad Nacional de Estudios a Distancia

2Escola Tècnica Superior d’Enginyeria
Universitat de València



2



Summary

GAN (Generative Adversarial Networks) define a new research line in the gen-
erative modelling field. This new paradigm showed impressive results in the
computer vision field when they were applied to generate new images from a
real data set. Some studies reported results whose generations are clearly indis-
tinguishable from real images to the human eye [1].

Despite that, they have not been broadly applied to generate discrete se-
quences (e.g. text). One of the most reported issues when generating text using
generative adversarial networks is the difficulty that they have of dealing with
discrete generations which, indeed, is the nature of text.

The goal of this project is to study how GANs can be applied to generate
free text and which are the advantages and disadvantages over other common
approaches. The best results obtained have been properly reported and quan-
tified.

3



4



Contents

1 Introduction 7
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Hypotheses and research questions . . . . . . . . . . . . . . . . . 7
1.3 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Background 11
2.1 Neural Networks and artificial intelligence . . . . . . . . . . . . . 11
2.2 Deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Generative modeling . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.1 Autoregressive models (Fully Visible Belief Networks) . . 24
2.3.2 Variational autoencoders . . . . . . . . . . . . . . . . . . 25
2.3.3 Generative adversarial networks . . . . . . . . . . . . . . 28
2.3.4 Comparison between generative model techniques . . . . . 30

3 Methods 33
3.1 WGAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2 WGAN-GP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4 Proposal 39
4.1 RNN architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2 CNN architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Experimental setting and results 45
5.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Metrics and KPIs . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Conclusions 57

7 Next steps 59

Appendices 61

A Tested architectures 63

5



6 CONTENTS



Chapter 1

Introduction

1.1 Motivation

The free text generation has had a broad spectrum of applications in the re-
cent years [2, 3, 4, 5, 6]. Rewording assistants, keyword generation and data
augmentation are only a few examples.

The use of state of the art techniques such as Generative Adversarial Net-
works for this task can make it possible to push the development barrier.

Some authors, including Ian Goodfellow 1, claimed that this algorithm is
not well-suited to perform this task [7]. After a conscientious research, we have
found that only a tiny portion of the existing studies report results related
to text generation using Generative Adversarial Networks and that is why we
would like to push the algorithm to its limits in order to study what are the
potential lacks and capabilities of it.

1.2 Hypotheses and research questions

This work aims to study the possibility of generating text with the last state
of the art Generative Adversarial Networks (named below as GAN ). Complex
architectures combining Recurrent Neural Networks and Convolutional Neural
Networks in a GAN setting might be powerful enough to generate pseudo-
discrete generations like text sequences. Below, a set of research questions are
enumerated. They are intended to be empirically tested in this work.

• Is there any neural network architecture that performs well for generating
text with GANs?

• Is it possible to achieve enough level of quality in the generated texts so
that the model can be used in a production environment?

1Research Scientist currently working in Google Brain and inventor of Generative Adver-
sarial Networks

7



8 CHAPTER 1. INTRODUCTION

• If the best model achieved is not performing well enough, which are the
potential causes?

• Why some architectures performing better than other ones?

• Is the quality of the original dataset affecting on the performance of the
algorithm?

1.3 Objectives

The main objective of this work is to exhaust all the possibilities when trying
to generate text using Generative Adversarial Networks, avoiding using non
gradient-based optimization methods typically used in reinforcement learning.
The reasons why non gradient-based optimization methods are non-desirable
are described below.

• Generative Adversarial Networks are a very recent family of algorithms
which showed in several studies a high probability of diverging [8, 9].

• Reinforcement learning training algorithms are much more complex be-
cause they do not have information about the direction of the gradients;
i.e. it is more difficult to estimate the changes to be done to the parameters
of the network in order to decrease the error.

• The fact of not using a gradient-based approach is a good chance to check
how powerful are the neural networks. To succeed, they will have to
approximate a sampling over a the probability distribution of the next
character of a sequence of text given the previous one.

Below, a set of specific objectives that are intended to be reached during the
work are summarized.

• Learning the nuts and bolts of the Generative Adversarial Networks algo-
rithms is the most important goal of this work, so that it is possible to be
comfortable with these new techniques.

• A fully-differentiable architecture is intended to be designed in order to
be able to apply gradient-based optimization methods.

• The generated pieces of text are intended to be generated at character
level instead of at word level, because that way there is no possibility of
obtaining good results by chance. In addition, a character level approach
would lead to a much more powerful model because the cardinality of the
set of possible symbols is much smaller. In this case, the network can be
able to generate new words (meaning that they have not been shown to
the algorithm in the training phase).



1.4. STRUCTURE 9

• Sentences showing morphologic (correctly generated words), syntactic (cor-
rect combinations of words) and semantic (sentences with meaning) sense
are intended to be achieved (in increasing order of importance) in order
to consider them as successful generations.

• A static (non-diverging) Generative Adversarial Network is planned to be
implemented. As stated before, these algorithms showed difficulties when
dealing with discrete distributions.

• Some general-use deep learning tricks of the trade are intended to be dis-
covered in the iterative process of the neural network architecture research.

The general take away of this effort will be an empirical evidence proving
the functioning or non-functioning of these algorithms for the described task.

1.4 Structure

This work is structured as follows: the background chapter will give an overview
of the deep learning field so that the reader can understand better the current
situation. In the methods chapter, fully working modifications of the GAN al-
gorithm are explained in detail: WGAN and WGAN-GP ; they will be used for
generating text. The proposal chapter explains in detail the nuts and bolts of
the algorithms and architectures that have performed better. The experimental
setting and results chapter reviews the methodology that has been followed, the
metrics that have been used to measure the performance, the generations and
the performance level achieved by the proposed algorithms. Finally a conclu-
sions and next steps chapters have been added in order to give a big picture of
the whole work, provide answers to the research questions and give the reader
an easy way of continuing this research.



10 CHAPTER 1. INTRODUCTION



Chapter 2

Background

2.1 Neural Networks and artificial intelligence

Ancient references

Human beings, since ancient times, have dreamed about building intelligent
machines able to help or imitate us with plenty of different purposes.

The first existing records of our desire to emulate life date from the ancient
history, circa 384-322 BCE, when the Greek philosopher Aristotle dreamed of
automation as a way of making machines work in order to let the humans enjoy
leisure [10]. Circa 10-70 AD Hero of Alexandria wrangled about automatons
which would imitate the movements and behaviours of some animals. In the 9-
th century, the Book of Ingenious Devices was published by Banu Musa, which
described and presented schemas about different mechanical devices including
automatons. Going forward to the Middle Ages, in the 13-th century the scien-
tific, theologist and philosopher Albertus Magnus designed several automatons,
among which are the talking head and an iron butler able to do some housework.
In the Renaissance, the work of Leonardo da Vinci stands out. He designed a
couple of automatons, one of them was humanoid [10]. The early-modern and
modern history represented the golden ages for the automatons. Pierre Jaquet-
Droz, in the 18-th century, represented an icon of the history of automation. He
built several automatons, the musician, the draughtsman and the writer are the
most famous among them. These automatons were built with up to six thou-
sand pieces and they are incredibly complex. They are currently considered
the predecessors of the modern computing. Despite the complexity of all the
listed machinery, there was no intelligence involved in them as we understand
it right now; they were very complex mechanical machines designed to surprise
the audience in the shows.

There are also a high number of fiction stories that can be found in our his-
torical bibliography. For instance, one of the first fictions references something
that resembles to artificial intelligence appears in The City of Brass, a tale of
The One Thousand and One Nights book of 1706 (in its English version). Some

11



12 CHAPTER 2. BACKGROUND

beings described like humanoid robots appear in the middle of the story. In
the 19-th century, E. T. A Hoffman published a book of short stories called
The Night Pieces, which contained a story called The Sandman. It deals about
a student with a complicated childhood who falls in love with an automaton
being convinced that it was real. When he realizes it was a machine he runs
mad. The 20-th century represented the most prolific era when it comes to
science fiction. Karel Capek and Isaac Asimov, icons of the fictional literature
and almost known by everybody, are nowadays considered the parents of the
robotics. Karel Capek was the first person introducing the word robot (which
seems to come from some Czech word meaning work) in his book Rossum’s Uni-
versal Robots in 1920. He played with the ideas of artificial intelligent beings
able to think by themselves. They were created to replace humans in the hard
work. Finally, the story concludes with these creatures fighting against the hu-
manity. Isaac Asimov, on the other hand, wrote the Foundation Series, which
represented a keystone on the philosophy about robotics. He defined the Three
Laws of Robotics (depicted below), which were a set of principles intended as a
fundamental framework to support the robots behavior; they formed the basis
of the actual robot design thinking.

1. A robot may not injure a human being or, through inaction, allow a human
being to come to harm.

2. A robot must obey the orders given it by human beings except where such
orders would conflict with the First Law.

3. A robot must protect its own existence as long as such protection does not
conflict with the First or Second Laws.

Modern artificial intelligence

The McCullouch-Pitts neuron [11] (see figure 2.1) is considered one of the pi-
oneer models in the AI field. It consisted of a simple mathematical equation
that tried to mimic the way biological neurons work. This model consisted of
a set of parameters that weighted the input values and applied a threshold in
order to output a binary value as shown in the equation 2.1. The weights of
the neuron wj were adjusted manually by an operator in order to produce the
predicted output ŷ given the inputs xj . This kind of model allowed to compute
logical functions and founded the basis of artificial neural networks.

ŷ = sign

 m∑
j=0

wjxj

 (2.1)

Alan Turing —the father of modern computer science— through his deep
study in mathematics and formal logic, suggested that a machine could be
programmed to do complex mathematical deductions through binary encoding
[12]. This was the begining of the era in which the artificial intelligence would



2.1. NEURAL NETWORKS AND ARTIFICIAL INTELLIGENCE 13

Σ

₁

₂

₃

₄

w₁

w₂

w₃

w₄

y

Figure 2.1: McCullouch-Pitts neuron (m = 4 inputs)

be materialized. After the Turing’s success defeating the German Enigma cryp-
tographic system [13], in 1950, he wrote a seminal paper in which he discussed
a philosophical question: “Can machines think?” [14]. He introduced a test
to identify if a machine is intelligent enough to generate human-like responses
in text format. It is currently known as the Turing test and consists of set of
a human-computer conversations in which the human has to determine if the
answers he is getting from the computer have been generated by another human
or by the machine. Turing suggested that if the human is beaten the 70% of
the times after 5 minutes conversations, the machine would be considered in-
telligent. This study has been strongly considered and served as inspiration for
most of the current scientific community around artificial intelligence.

In 1956 the artificial intelligence term was coined by John McCarthy, Natha-
niel Rochester and Claude Shannon in the Dartmouth Summer Research Project
on Artificial Intelligence: a 2 month workshop that was organized by the men-
tioned authors in order to found the artificial intelligence as an academic disci-
pline. There were 11 invited scientists among which stand out: Marvin Minsky,
John Nash and Ray Solomonoff.

Figure 2.2: Marvin Minsky, John McCarthy, Claude Shannon, Ray Solomonoff
and other scientists attending the Dartmouth Summer Research Project on Ar-
tificial Intelligence



14 CHAPTER 2. BACKGROUND

The years after the Dartmouth workshop there was a general optimism feel-
ing surrounding the artificial intelligence field which was accompanied with a
general feeling of hype. In 1974, Sir James Lighthill published a paper currently
known as the Lighthill report [15] in which he criticized in a very pessimistic
way the ideas about the research in some of the functional areas in artificial
intelligence. This publication, along with the general oversized expectation of
the scientific community regarding the future of the field formed the basis for
the British and the US government to stop dedicating funds to the artificial
intelligence exploratory research [16], leading to what it is currently known as
the first AI winter.

After several years, in the early 1980s, some industries started using arti-
ficial intelligence systems again, but they changed its name to expert systems.
The AI market started growing newly and it motivated the research commu-
nity to continue exploring and designing new algorithms. The most remarkable
invention was the successfully application of the backpropagation algorithm to
the neural networks by David Rumelhart, Geoffrey Hinton, et al. [17]. It was
an algorithm that consisted of back-propagating the derivatives of a given error
function in order to adjust the synaptic weights accordingly, allowing training
deeper neural networks in an easier way.

All these consecutive successes propitiated the hype to grow again and in
1985 several specialized companies surrounding the artificial intelligence field
were founded. Some of them, specially Lisp Machines Inc., started building
hardware specifically designed for the research needs. All this generated an
economic bubble which became in a market collapse leading to the second AI
Winter.

1990s started with a renewed mind in the artificial intelligence field by being
more focused on applications. Machine learning proved to be effective for many
problems [18]. It was motivated by the increasingly computation power (as
predicted by Gordon Moore in 1965 [19]). There appeared a high number of
interesting applications in several industries like finance and logistics [20, 21, 22,
23], psychology [24, 25, 26, 27] and medical diagnosis [28, 29, 30, 31], and others
[32, 33, 34, 35]. Maybe the most remarkable success in the field was achieved
in 1997, when the IBM’s Deep Blue supercomputer defeated the world chess
champion Garry Kasparov [36].

The 21-th century has represented an explosion of the field. Expert systems
have suffered another rebranding and now they are known as deep learning (it
will be described in the next section). Reinforcement Learning has evolved until
astonishing limits; the success in the game of Go starring AlphaGo Zero [37]
has represented an incredible progress for the surrounding scientific community.
AlphaGo Zero, designed by David Silver and his team for Google Deepmind,
achieved superhuman levels in the game of Go and it was the first algorithm
able to learn from scratch without being provided with data; instead, it played
against itself. The same algorithm has also recently proved to be scalable to
other board games like Chess or Shogi [38].



2.2. DEEP LEARNING 15

Artificial intelligence at present

The current artificial intelligence research community is enjoying of one of the
most prolific eras. Deep learning is possibly one of the most fruitful sub-fields
of artificial intelligence in terms of development and application. The industry
is seriously adopting these techniques in their daily developments and each and
every imaginable industry has its own niche for artificial intelligence enhance-
ments. The applications are growing at an incredible pace, possibly motivated
by the ease of communication provided by the Internet and the new technolo-
gies. The community development also takes an important role in this success
since the specific average conferences attendance is growing exponentially (e.g.
NIPS 1).

However, there is still a part of the community which are resilient to the new
wave of algorithms. They think that the artificial intelligence is still on very
early stages of development and very far from the application phase. The current
state-of-the-art has recently been compared with “alchemy” by people following
this current of thought [39], due to a misconceived lack of mathematical support.
This topic has been hardly criticized by eminences in the field like Yann Lecun
and Yoshua Bengio 2. These discussions must be delicately treated so that they
will not cause a confusion that lead the community to the third AI winter.

2.2 Deep learning

Deep learning is considered by most of the authors [40] as a subfield of artificial
intelligence, as it is shown in the Venn diagram of the figure 2.3. Figure 2.4
shows a summary of the most important achievements in the deep learning
community.

Deep

Learning

e.g. LSTM

Representation Learning

e.g. Deep Belief Nets

Machine Learning

e.g. Support Vector Machines

Artificial Intelligence

e.g. Knowledge Bases

Figure 2.3: Venn diagram locating deep learning as a subfield of other disci-
plines, being artificial intelligence the most general one.

1Neural Information Processing Systems
2https://www.facebook.com/yann.lecun/posts/10154938130592143

https://www.facebook.com/yann.lecun/posts/10154938130592143


16 CHAPTER 2. BACKGROUND

History of deep learning

LSTM: Long short-term memory 

from Hochreiter and Schmidthuber

Currently used algorithm for 
modeling sequences

Cybernetics

Connectionism

Neural 

networks / 

Expert 

Systems

Deep 

learning

Rosenblatt perceptron

Linear model for binary classify-

cation. First model which learns

from data

1943

1958

1960

1980

1982

1986

1997

1998

2006

2012

2014

2015

2017

McCullouch & Pitts neuron

Linear model for binary classification, 
which is manual tuned

AlexNet from G. Hinton

First usage of GPUs for large scale 
image processing

Deep Belief Net from G. Hinton

First deep neural network

CNN: Convolutional neural network 

from Y. Lecun and Y. Bengio

Currently used model to process 
images

Backpropagation by G. Hinton

Currently used method to train

multilayer perceptron

Residual Network (very deep nets)

Architectures that enables training very 

deep neural networks

Widrow-Hoff Adaline

First algorithm able to predict a real 

number (regression)

Fukushima’s Neocognitron

First algorithm to model images

Hopfield Network

First algorithm to process 

sequences

GAN: Generative Adversarial 

networks from I. Goodfellow

Generative family of algorithms, 
which use two competing neural 

networks

Capsules theory from G. Hinton

Revolutionary architecture that solves 
the main problems of convolutional 

neural networks

Figure 2.4: Timeline showing the different breakthroughs and milestones in the
history of deep learning. The field has been re-branded several times, as it is
shown in the left diagram.

As discussed in section 2.1, McCullouch-Pitts [11] designed the first neural-
based system in 1943 but it lacked of training algorithm. Instead, it was tuned
manually by an operator. Several years later, in 1958 Frank Rosenblatt proposed
the Perceptron, which share the same idea that McCulloch-Pitts proposed (see
figure 2.1) but accompanied with a learning algorithm that allowed the system
to learn automatically (i.e. adjust its parameters) from data [41]. It consisted
of a simple and effective formula that is shown in the equation 2.2, for all
the variables 0 ≤ j ≤M and all the training instances 0 ≤ i ≤ N , where x(i,j)

represents the input value of the variable j of the instance i, ŷ is the actual pre-
diction, y is the desired prediction and t represents the current iterative state.
The Rosenblatt’s Perceptron is considered the first neural network and was in-
tended to solve binary classification algorithms (by applying a sign function on
the output of the system).

w(j)(t+ 1) = w(j)(t) + (y(j) − ŷ(j)(t))x(j) (2.2)

Two years afterwards, in 1960, Bernard Widrow and his doctoral student
Ted Hoff presented the ADALINE algorithm at Stanford University [42], which
stands for Adaptive Linear Neuron. Its structure is quite similar to the Rosen-
blatt’s Perceptron but the learning algorithm is different. The only differences
in the inference phase of the algorithm are that it includes a bias θ and that



2.2. DEEP LEARNING 17

the sign function is no longer applied (see equation 2.3). The learning phase is
done by gradient descent: considering the Mean Squared Error measured in the
output of the algorithm (E = 1

2

∑N
i=1(y(i)− ŷ(i))2 where the 1/2 term has been

included there to simplify the subsequent derivative. The derivative of the error
with respect to the weights is calculated as it is shown in equation 2.4. Then,
the weights can be updated according to the equation 2.5, where λ represents
the learning rate, a hyperparameter that controls how fast the updates of the
parameters are made. For the sake of formulation simplicity, the bias (θ) can be
considered as another weight simply by renaming it as w(j=0) with x(j=0) = 1.

ŷ(i) =

M∑
j=0

w(j)x(i,j) + θ (2.3)

dE

dw(j)
=

1

N

N∑
i=1

(
x(i,j) · (ŷ(i) − y(i))

)
(2.4)

w(j)(t+ 1) = w(j)(t)− λ · dE

dw(j)
(2.5)

That was the first time that gradient descent was used in this context, as it
will be explained below, it formed the base for more complex algorithms.

Some years later, the first AI winter moment arrived. The neural networks
field suffered because of the artificial intelligence general dampening and because
some important limitations of the current algorithms were published by Marvin
Minsky [43] (the existing algorithms were unable to solve non linearly separable
problems like the XOR function).

In 1980, once the confidence in the field started being restored, Kunihiko
Fukushima published his work on a new algorithm able to model images: the
Neocognitron [44]. It was based on complex operations that occur in the pri-
mary cortex of the human brain. Fukushima proved that the algorithm was
successful at recognizing handwriten digits. Its operation is similar to a regu-
lar convolutional neural network and it implements similar properties: weights
sharing and translation equivariance. This algorithm served as inspiration of
modern convolutional neural networks.

John Hopfield, in 1982 published a new algorithm currently known as Hop-
field Network that was the first model which incorporated a memory cell that
allowed to model time-sequences [45]. It was composed of binary units in which
the values were determined by the application of a threshold. The Hopfield
network added connections between neurons in the same layer but with some
constraints: (i) a unit cannot be connected to itself, (ii) the connections in a
given layer must be symmetric to assure convergence.

In 1986, David Rumelhart and Geoffrey Hinton published maybe the most
important paper in the field [17]. In it, they explained the most currently used
method for training all kinds of multilayer neural networks: the Backpropagation
Algorithm. It consists of two phases.



18 CHAPTER 2. BACKGROUND

• Forward pass: this is the inference phase in which the input values flow
through the network, from the very first layer (input) to the last layer
(output), in order to calculate the output value(s).

• Backward pass: in this phase, the value(s) computed in the forward pass
are compared with the desired value(s) (i.e. the correct value that should
have been outputted by the network) through an error metric. Then the
error signal (i.e. the gradient of the error) is back-propagated using the
chain-rule, from the last layer to the first layer in order to adjust the
weights of the network, typically through gradient descent.

This study represented a truly breakthrough because until that moment the
only possible way of training multilayer perceptrons was by manually fixing all
but one hidden layer input weights (that specific kind of networks were called
“feature analyzers” [17]). Hinton, et al. explained that since that moment, the
perceptron-based algorithms were not learning representations 3. The authors
claimed that the algorithms trained with backpropagation would “construct ap-
propiate internal representations” to decrease the error when predicting the
desired output.

The authors proposed using the sigmoid function (defined in equation 2.6) as
activation function to the network instead of the sign function (which wouldn’t
be derivable). Finally, 2 methods for training the perceptrons were proposed:
the online method, in which the weights of the networks are iteratively updated
after each input-output case, and the batch method, in which the gradients of
the error with respect to the weights of the network are accumulated and the
update is performed at the end of the epoch (i.e. when all the input-output
cases have been evaluated).

σ(x(i)) =
1

1 + ex(i)
(2.6)

The algorithm was presented with some constraints: (i) connections from
higher level layers to lower level ones are forbidden while connections which skip
layers are totally permitted, (ii) the whole function must have bounded deriva-
tives in order to be able to back-propagate the error, (iii) the layers must be
randomly initialized to different weights in order to break symmetrical weights
between layers (i.e. the weights being updated to the same values in different
layers in each backward pass). The authors warn that the algorithm does not
theoretically guarantee to raise the global optimum, though in the practice, it
was only observed when the network was configured with just the number of
necessary weights to solve a given problem and it was easily solved by adding
more units to the network.

The same year, Paul Smolensky [46] invented the Harmoniunm (later called
Restricted Boltzmann Machine by Geoffrey Hinton and collaborators). It con-
sists of a powerful neural network that given a set of input variables, learns

3that was the begining of the representation learning subfield



2.2. DEEP LEARNING 19

unsupervised representations which can be useful for disentangling abstract in-
formation. The architecture consists of a symmetrical bipartite bidirectional
graph with shared weights, as shown in the figure 2.5. The network is trained
to learn a representation from which it is possible to recover the input probability
distribution P (x|a) ≈ P (x) by minimizing the Kullback-Leibler divergence [47]

between the input x and its reconstruction x̂: DKL(x‖x̂) = −
∑
j x

(j) log x̂(j)

x(j) ,

x1

x2

x3

x4

x5

a1

a2

a3

Visible

layer 

(v)

Hidden

layer 

(h)

Figure 2.5: Restricted Boltzmann Machine with 5 inputs (x) and 3 outputs (a)

In 1997, Sepp Hochreiter and Jürgen Schmidhuber proposed an evolution
of the Hopfield network which claimed to handle the long term dependencies
much better than previous algorithms and to be much more stable than the
existing recurrent neural networks: the Long-Short Term Memory (LSTM in
advance) [48]. It belongs to the family of the so-called recurrent neural networks
(RNNs). Instead of adding a recurrent connection to each neuron (connection
from the output of the neuron pointing to its input), its entrails are much more
complicated. Further details on the LSTM cell are provided in the figure 2.6.
The LSTM is the most broadly used recurrent cell nowadays [49, 50].

The next year, in 1998, Yann Lecun, Yoshua Bengio and collaborators pub-
lished the LeNet-5 architecture: a 7-layer convolutional neural network (apart
from the input) which proved to be successful recognizing handwritten digits
[51]. This network was applied in some industries in order to help automating
specific tasks by recognizing handwritten digits. The architecture of the network
is summarized in the figure 2.7.

In 2006, Geoffrey Hinton starred in a new breakthrough which would change
the name of the field to Deep Learning. He stacked several restricted Boltz-
mann machines allowing training deeper representations with dimensionality
reduction purposes; they called this approach Deep Belief Networks (DBNs).
They empirically proved that given a data set, it was much easier to train a deep
autoencoder (a network with a bottleneck that tries to reproduce its input in
the output producing a compressed representation) using the greedy layer-wise
pretraining through a DBN. The approach consisted of learning feature repre-
sentations from the input using the RBM approach, and then stacking another
RBM on the output of the previous one (already trained) in order to use its



20 CHAPTER 2. BACKGROUND

Neural
network 
layer

Concat
enate

Element
wise 

operation

Copy

Short-term 
state

t-1

ht

ft it

ht-1

zt ot

c t

Long-term 
state

Output
Input

��� �

+

xt at+1

B C DA

Long-term 
state

Short-term 
state

+

+
+

c

Figure 2.6: LSTM cell structure. ct and ht represent the long-term and short-
term states that the network uses as memory, respectively. Its operation is
based on 3 gates and an output unit. A is a layer that acts as forget gate, which
is responsible for erasing memory which will no longer be used. The layer B is
the input gate and controls how much input goes through the long-term line.
The layer C controls the new contribution to the cell state that, in conjunction
with the layer B form the memory addition system. The layer D is the output
gate, which controls which values are outputted. In the diagram, σ stands for
the logistic function and τ for the hyperbolic tangent.

Figure 2.7: Lenet-5 architecture, as appeared in the original publication. They
used two blocks containing a 5x5 convolutions layer (in same mode) followed by
a pooling layer and 3 fully connected layers at the end.

output as the input of the current one (see figure 2.8). As a very last step,
the authors recommend to stack all the pretrained layers unrolling them in an
encoder-decoder setting and perform a fine-tuning using the backpropagation
algorithm.

The next year Yoshua Bengio and collaborators showed in the NIPS con-
ference that the Deep Belief Network could be used for pretraining deep neural
networks in order to use the final weights as an initialization for a determined
supervised task [52]. They empirically proved in the article that applying the
greedy layer-wise unsupervised pretraining using DBNs alleviated the complex
optimization problem of deep networks: the difficulty of convergence to a good
local optimum [53]. This success enabled the researchers to train deeper neural



2.2. DEEP LEARNING 21

networks and the field started being known as deep learning.

Step 1 Step 2 Step 3

Figure 2.8: Deep Belief Network example of architecture in which three lay-
ers of feature detectors have been pretrained by stacking RBMs. The dashed
connections represent the undirected connections between the neurons in the
RBM which is being trained in every step, while the solid arrows represent the
already trained layers that are used to calculate the input of the next RBM to
be trained.

Modern deep learning

In the 21-th century the deep learning has become a hot topic for all the scientific
community. There are a lot of research branches studying the field and inventing
new algorithms everyday all around the world.

In 2012, Alex Krizhevsky, student of Geofrey Hinton, and his team presented
AlexNet [54] a very exhaustive convolutional neural network that won the Im-
ageNet competition (consisting on classifying over 15 milion of labeled images
belonging to nearly 22000 categories). They employed Rectifier Linear Units
(ReLU ) as activation functions (y = max(0, 1)) in the network architecture,
which showed much faster convergence than the sigmoid and hyperbolic tan-
gent. This new activation function also showed to be effective favoring sparse
connectivities. Since this moment, ReLU is considered the de facto activation.
They also specify a bunch of tricks that were used in the network design and
the training methodology that improved the overall model. The most remark-
able one is the use of Dropout, a regularization technique consisting of adding
a probability to each neuron to be deactivated in each iteration. This method
was recently published also by Geoffrey Hinton’s team [55, 56].

Another remarkable success was achieved by the Google researchers Tomas
Mikolov et al. in 2013. They invented Word2Vec: a new method that used
embedding matrices to allow vectorizing the words of a given language so they
learn part of the semantics in an unsupervised manner [57]. It consisted of
building a model that was able to determine if a word belonged to a context or
not using a latent vector associated with each of the words. Once the model
converges, the vectors associated with each word encode very rich information



22 CHAPTER 2. BACKGROUND

about the meaning of them. As a curiosity, it is possible to make simple algebraic
operations with the learned representations (e.g. ~wking− ~wman+ ~wwoman would
produce a vector which is very similar to ~wqueen).

Ian GoodFellow presented in 2014 the Generative Adversarial Networks [8],
a new kind of algorithm for approaching generative modeling. It was based on
two competing neural networks which played in a 2 role game: the counter-
feiter (so-called Generator) trying to make fake money and the police (so-called
Discriminator) trying to discriminate between fake and real money. These al-
gorithms proved to be very effective generating images but they were extremely
difficult to train, specially because in most of the cases one of the two models
become too strong compared with the other and the system diverges [58].

The list of recent remarkable achievements is very extensive so only the ones
which are most related with this work have been mentioned.

2.3 Generative modeling

One of the most trending topics in the current state of the art of deep learning
is generative modeling. These techniques belong to the unsupervised learning
branch since they don’t need labeled data to be executed. The general approach
consists of collecting a big amount of data in some domain (they can be of any
type: images, text, audio, video, structured data, graphs, etc.) and train a
model which will generate data like them.

There are different types of generative models. They share some properties
and differ in other ones but there is not a clear way of deciding which one is
better than the other; each of them has its own advantages and disadvantages.
In this section the three most popular approaches will be covered: autoregressive
models (Fully Visible Belief Networks, FVBN), Variational Autoencoders and
Generative Adversarial Networks (see figure 2.9). Different generative modeling
algorithms will be discussed from the deep learning perspective.

Figure 2.9: Generative Modeling Taxonomy, borrowed and simplified from [59].

The generative models are intended to “understand” the data that they
are trained on, rather than memorizing them. One of the reasons why this
assumption can be taken is that the models have much less parameters than



2.3. GENERATIVE MODELING 23

the size of the data, so no data memorization can be considered if the model
successfully predicts good quality samples

Generally speaking, generative models start learning from scratch. They
have to learn everything related to the structure and variability of the data
they are designed to generate. In the case of the images, for instance, they have
to learn different textures, different backgrounds, the fact that nearby pixels
have a high likelihood of having similar colors, etc. In the case of character-
level text generation, they will learn from the most basic concepts like starting
the sentences with a capital letter, inserting a space after a comma or separate
the concepts in words, which will be separated with a space, the correctly use
of tenses, the use of singular and plural forms, or even the use of the passive
voice.

Mathematically, considering a set of examples x(1), x(2), ...x(N) sampled from
a real distribution pdata(x), the goal of the generator is to find a set of parameters
θ such that pθmodel(x) ≈ pdata(x) given a divergence metric (for example the KL
Divergence [47] or the JS Divergence [60]). The figure 2.10 shows a conceptual
example of this process.

Figure 2.10: Given a real distribution (a), in which the dots represent the
empirical distribution that the model is considering for infering the modeled
distribution, the set of parameters θ of a model are adjusted so that pθ(x) ≈
p(x), producing (b). As it can be seen in (c), the match is not exact. There is a
part of the space which matches (stripped pattern), another part in which there
is real distribution and the model does not cover (green), and another part of
the space the model samples from but, that would not be considered as real
samples (red).

The generative modelling is a very complex task that requires of very ad-
vanced techniques. That is maybe the main reason why deep learning takes
advantage of the situation. The main challenge that appears in the generative
models field is the difficulty of correctly measure the success of the models. How
is it possible to mathematically determine if a image generator is generating im-
ages which look great to a human eye? or how is it possible to measure how
natural it feels a generated sentence? Some algorithms (autoregressive models,
for instance) directly maximize the likelihood of the data, so that the quality
of the generations is directly correlated with the estimated probability. Others



24 CHAPTER 2. BACKGROUND

instead, do not provide an explicit density function and the quality of the results
is much more difficult to assess (this is the case of GANs).

2.3.1 Autoregressive models (Fully Visible Belief Networks)

This family of algorithms represent the most simple approach in the generative
modeling field. They are based on the idea of generating data given previ-
ous samples, i.e. they implement a “next-step prediction” model: pmodel(x) =∏t
i=1 pmodel(x

(i)|x(1), ..., x(i−1)). These models are also known as Fully-visible
belief networks (FVBN ) and are typically trained by applying Maximum Likeli-
hood [61, 59]. The density distribution obtained through the application of this
algorithm is fully tractable, i.e. the pmodel density function is known.

These models are very well-suited for discrete data distributions generation
since the inference process is simply based on sampling from a modeled prob-
ability distribution. They can generate one step at a time: in the case of the
images, they can grow the image a bunch of rows and columns in each step;
in the case of character-level language generation, they generate a character at
a time. That is the reason why these models are very inefficient in time com-
plexity (O(n)). Furthermore, these models are not parallelizable, due to their
sequential nature.

An example of autoregressive model for natural language generation at char-
acter level is the char-rnn model [62, 63]. This model uses a recurrent neural
network trained to generate the next character given a sequence. Once it is
trained and converges, the inference phase consists of choosing a start character
and making chained predictions: for each prediction, the network will output
a likelihood for each character, then a sampling given the output probabilities
should be made in order to forward the chosen character to the input of the
next state. The process is graphically described in figure 2.11

With the aim of providing intuition about the modeling power of this ap-
proach, we have trained a shallow char-rnn (i.e. one hidden layer) with a window
size of 100 characters4 using 800 randomly chosen books from the Gutenberg5

project. After achieving convergence, the model has been provided with the
first 100 characters of the War of the Worlds book as initialization. The results
are shown below.

“No one would have believed in the last years of the
nineteenth century that this world was being watched together
far out to the thought, ’that will cled it announced for them bloody
I have last instant all the strayes as thomass us? This is, and the
single War camp, until we proguted it toward the mouncin to lint of
the enemy respectful, then the ribonament had been their courts and
papers she been ended bent tense freely after good to the eyes to av-
ole. The gather flooded by Wayer a great time home engaged in the

4meaning Pθ(x(t)) = Pθ(x(t−100)) · Pθ(x(t−99))...P θ(x(t−1)), assuming it is a Markov
process

5https://www.gutenberg.org

https://www.gutenberg.org


2.3. GENERATIVE MODELING 25

Figure 2.11: char-rnn autoregressive architecture for natural language gener-
ation in its inference phase using a multi-rnn setting. The bubbles represent
hidden recurrent cells (e.g. LSTM), the squares are the inputs and outputs
and the dashed arrows show the sampling process. For the sake of clarity, the
maximum probability has been taken in the output sampling process.

exhausting day of the dutie of summers and jangers untourant alto-
gether of mountains. But was the mystery arising half die for some
regarding the raider. This top was a Catelumberhand life by the river
were business, and other ebbsake and septimum at the campaich, wa,
and he showed my brethren.”

- char-rnn, 2017

In the case of the images, PixelRNN is a great example of FVBN autore-
gressive model which was published in 2016. It can be seen an extension of
the char-rnn to 2 dimensions [64] that proved to achieve successful results in
images.

2.3.2 Variational autoencoders

Variational Autoencoders (VAE) are a probabilistic version of traditional au-
toencoders that allow generating data from them by sampling from a random
distribution of latent variables z [65, 66]. These algorithms define an explicit
but intractable density function which cannot directly be optimized. Instead,
variational inference methods are used as an aproximation to maximize the
likelihood of p(x).

Given the probabilistic model structure of figure 2.12, the posterior proba-
bility p(z|x) is intended to be computed. Applying Bayes theorem: pθ(z|x(i)) =



26 CHAPTER 2. BACKGROUND

Figure 2.12: VAE as a structured probabilistic model.

pθ(x(i)|z)·pθ(z)
pθ(x(i))

= pθ(x(i),z)
pθ(x(i))

where pθ(x
(i)) =

∫
pθ(z) · pθ(x(i)|z)δz is intractable,

i.e. it is not possible to optimize it directly.

Here is where variational inference takes place. In order to arrive to a solu-
tion, qφ(z|x(i)) ≈ pθ(z|x(i)) will be found. To achieve it, Kullback-Leibler (DKL)
divergence [47] between p and q will be used. The objective of the problem is
reduced then to the expressions shown in the equation 2.7

min
θ,φ

DKL

(
qφ(z|x(i)) ‖ pθ(z|x(i))

)
(2.7)

DKL(qφ(z|x(i)) ‖ pθ(z|x(i))) = −
∑
z

(
qφ(z|x(i)) · log

pθ(x
(i)|z)

qφ(z|x(i))

)

= −
∑
z

qφ(z|x(i)) ·

log
pθ(x

(i), z)

qφ(z|x(i))
− log(pθ(x

(i)))︸ ︷︷ ︸
does not

depend on z




= −
∑
z

(
qφ(z|x(i)) · log

(
pθ(x

(i), z)

qφ(z|x(i))

))
...

+ log(pθ(x
(i))) ·

���
���

��:1∑
z

(
qφ(z|x(i))

)



2.3. GENERATIVE MODELING 27

log(pθ(x
(i))) = DKL(qφ(z|x(i)) ‖ pθ(z|x(i))) +

∑
z

(
qφ(z|x(i)) · log

(
pθ(x

(i), z)

qφ(z|x(i))

))
= DKL(qφ(z|x(i)) ‖ pθ(z|x(i)))...

+
∑
z

(
qφ(z|x(i)) · log

(
pθ(x

(i)|z) · pθ(z)
qφ(z|x(i))

))
= DKL(qφ(z|x(i)) ‖ pθ(z|x(i))) +

∑
z

(
qφ(z|x(i)) · log

(
pθ(x

(i)|z)
))

...

+
∑
z

(
qφ(z|x(i)) · log

(
pθ(z)

qφ(z|x(i))

))
= DKL(qφ(z|x(i)) ‖ pθ(z|x(i)))︸ ︷︷ ︸

>0

...

+ Ez log pθ(x
(i)|z)−DKL(qφ(z|x(i)) ‖ pθ(z))︸ ︷︷ ︸

L(x(i),θ,φ)

Where the L(x(i), θ, φ) represents a lower bound in the optimization function
(see equation 2.8) because the KL divergence of equation 2.7 is always greater
or equal to zero. As the lower bound expression is tractable and maximizing
it would, indeed, maximize p0(x(i)), the optimization problem can be approxi-
mated as shown in equation 2.9. Maximizing the lower bound would assure that
the log-likelihood of the data is at least as big as its lower bound [66].

The lower bound is basically formed by 2 components: the generation loss
and the latent loss. The first one is Ez log pθ(x

(i)|z) and quantifies the quality of
the samples at the output of the decoder (the reconstruction error). The second
one is DKL(qφ(z|x(i)) ‖ pθ(z)) and keeps the distribution of z close to pθ(z).

log(p0(x(i))) ≥ L(x(i,θ,φ)) (2.8)

θ, φ← arg max
θ,φ

N∑
i=1

(
L(x(i,θ,φ))

)
(2.9)

In terms of neural networks architectures, qφ(z|x(i)) and pθ(x
(i)|z) are the

encoder and the decoder of the variational autoencoder architecture, respec-
tively, where φ and θ are the respective parameters of the networks, x is the
input data sample and z is the set of latent variables.

The distribution of the latent variable P (z) is usually chosen as a N (0, 1).
In order to be able to force this constraint while assuring global derivability in
all the parts of the architecture, a reparametrization trick is used. It consists
of predicting the mean and the covariance of the latent vector variables sep-
arately in the output of the encoder and then sampling from the distribution
defined by those parameters (see figure 2.13). This is different than the classical
autoencoder setting in which the encoder directly generates z.



28 CHAPTER 2. BACKGROUND

Figure 2.13: VAE neural network architecture and reparametrization trick.

Figure 2.14: GAN as a structured probabilistic model.

2.3.3 Generative adversarial networks

The Generative Adversarial Network (GAN ) are the most recent family of algo-
rithms presented in this section. It has had an enormous support in the research
community since it was presented in 2014 [8]: in 4 years, more than 250 versions
and enhancements have been published 6.

The objective of the algorithm is to learn to represent an estimate (called
pmodel subsequently) of a given distribution (called pdata from now on). This
family of algorithms are able to learn the pmodel distribution implicitly, allowing
sampling from it but not providing access to the distribution itself. It has been
proven [59] that if infinite amounts of data is provided to a large enough model,
the convergence of the algorithm corresponds to recovering pdata exactly.

The original algorithm consists of a neural network system built with 2 play-
ers: a generator and a discriminator. The whole system is optimized (sometimes
in a zero-sum game) until the Nash equilibrium7 is reached (ideally). If any of the
networks becomes unexpectedly strong, the system usually diverges. However
there are mechanisms to avoid it [59]. There has to be a strength compromise
between both networks to assure stability and there are different approaches to
control these situations. The whole system is a structured probabilistic model
[40] containing latent variables z and observed variables x (see figure 2.14).

The generator takes z as input data and θ(G) as parameters. This network,
being provided with a vector z of random variables (typically 100), is in charge

6The GAN zoo: https://deephunt.in/the-gan-zoo-79597dc8c347?gi=4428c735f538
7the Nash Equilibrium is the solution of a game, as opposed to a local optimum, which is

the solution of an optimization problem

https://deephunt.in/the-gan-zoo-79597dc8c347?gi=4428c735f538


2.3. GENERATIVE MODELING 29

of generating samples which fool the discriminator so that it categorizes them as
real samples. When the algorithm converges, the random variables have become
into latent variables and when z is provided, the generator generates a sample x
drawn from pmodel (where ideally pmodel = pdata). It is easy to empirically check
that the latent variables encode, in some way, the knowledge of the generated
samples: see figure 2.15 for an example. It is commonly said as an analogy that
the generator plays the role of a counterfeiter.

Figure 2.15: Ian Goodfellow illustrated in the NIPS 2016 conference tutorial [59]
how it was possible to perform arithmetic operations in the input latent vector
space. If a vector representing an “average man” is subtracted from a “man with
sunglasses” vector and a vector corresponding to an “average woman” is added,
then the resulting vector generates an image of a “woman with sunglasses”. The
fact that the semantics of the images are preserved in the vector space proves
that there is some knowledge encapsulated in the vector space. However, in
vanilla GANs there is not a trivial way of treating the features encoded in the
vector space because they are not orthogonalized (i.e. the features can be linear
combinations of several input variables).

The discriminator takes x as input data and θ(D) as parameters and plays
the role of a policeman which decides if its input samples are real or fake.
It consists of a network implementing a binary classifier through traditional
supervised learning techniques. The output of the discriminator is the only
part of the whole system in which the loss is calculated; afterwards the gradient
of the error is backpropagated through all the network.

Assuring derivability in all the components of the whole system (generator
and discriminator) is sine qua non condicio without which it would not be
possible to train the algorithm; the gradient needs to be propagated from the
output of the discriminator to the input of the generator.

Both players have a cost function assigned which depends on both parame-
ters sets (θ(G), θ(D)) but one player cannot control the other’s parameters (see
equations 2.10 and 2.11, where J (D) refers to the discriminator cost function
and J (G) refers to the generator cost function). That is why it is considered a
game and not an optimization problem and that is also where the “adversarial”



30 CHAPTER 2. BACKGROUND

term comes from.

θ(D) = arg min
θ(D)

J (D)(θ(D), θ(G)) (2.10)

θ(G) = arg min
θ(G)

J (G)(θ(D), θ(G)) (2.11)

Ian Goodfellow presented 2 options with regard to the cost functions. The
first one consists of a zero-sum game (also called minimax) in which the dis-

criminator cost Jθ
(D)

is the average crossentropy loss of two minibatches, one
generated and one real (see equation 2.12), and the generator loss is simply
J (G) = −J (D). This is an elegant solution because it represents a minimax
game but in practice it thrives to convergence issues 8. To solve them, an al-
ternative loss for the generator is presented in equation 2.13 where, in the case
of the generator, only the minibatch of the generated data is involved in its pa-
rameters optimization. This reformulation of the problem makes the system not
being a minimax game, but it alleviates the problem of the vanishing gradient.
In the first formulation the generator tries to fool the discriminator by making
it fail in all their predictions, while in the new formulation it tries to fool the
discriminator by making it fail in their predictions over the generated samples.
The author highly encourages using the second formulation.

J (D)(θ(D), θ(G)) = −1

2
· Ex∼pdata (logD(x))− 1

2
· Ez log (1−D(G(x))) (2.12)

J (G)(θ(D), θ(G)) = − · Ez log (D(G(x))) (2.13)

The training process consists of simultaneous SGD updates and is described
in algorithm 1 and in the figure 2.16

2.3.4 Comparison between generative model techniques

As a recap, the main advantages and disadvantages of each generative modeling
methodology are described in table 2.1.

8when the discriminator becomes too strong, the gradient signal of the generator vanishes
and the system diverges [59]



2.3. GENERATIVE MODELING 31

Table 2.1: Advantages and disadvantages of the most common generative mod-
eling techniques

Advantages Disadvantages

Autoregressive
models (FVBNs)

- Provide a fully tractable
density function which
allows to directly
optimize it.
- Produce a very good
quality estimator.
- Proved to work well
with continuous and
discrete data

- Impossible to
parallelize which
make the model have
linear complexity with
the size of the input.
- Does not correctly
handle multiple
solutions problems.

Variational
Autoencoders

- Provide an
approximation to the
density function, allowing
sampling from it.
- Allow going back and
forward (i.e. inferring
latent codes from existing
samples).
- Proved to work well with
continuous and discrete
data.

- Produce low-quality
samples.
- The quality estimate
is not as good as the
FVBN ones.
- Does not handle
correctly multiple
solutions problems.

Generative
Adversarial
Networks

- Produce very good quality
samples.
- Naturally handles multiple
solutions problems.
- Have a higher degree of
freedom in terms of
architectural. design

- Do not provide
any explicit density
function.
- Difficult to train.
- Lack of robust
quality estimator
(has to be engineered).



32 CHAPTER 2. BACKGROUND

Algorithm 1 GAN training process as explained in the original paper. Gen-
erally, Adam optimizer is chosen (by recommendation of the author), equal
learning rates for G and D (α← 0.0001), and minibatch size of m = 128

Require: α, the learning rate. (θ(D), θ(G)), the initialized parameters of D
and G respectively. data, a set of observed examples to sample from. Z, a
random distribution to sample from. m, the minibatch size.

1: while (θ(D), θ(G)) have not converged do
2: Sample {x(i)}mi=1 ∼ pdata a minibatch of real data
3: Sample {z(i)}mi=1 ∼ pZ a minibatch of prior samples
4: gD ← ∇θ(D)J (D)(x, z, θ(D), θ(G))
5: gG ← ∇θ(G)J (G)(z, θ(D), θ(G))
6: θ(D) ← θ(D) − α ·Adam(θ(D), gD)
7: θ(G) ← θ(G) − α ·Adam(θ(G), gG)
8: end while

.

.

.
$

Figure 2.16: Generative Adversarial Network general procedure.



Chapter 3

Methods

Despite the great ability of the Generative Adversarial Networks (GAN ) of
producing very sharp and visual-appealing images, they have been branded
as being remarkably difficult to train [9, 67, 68, 69]. The generator and the
discriminator losses must be balanced so that no one of them is much bigger than
the other one, otherwise the algorithm diverges. The algorithms described in
this section, WGAN and its WGAN-GP variation, represent successful attempts
to solve these issues. WGAN is the first approach that successfully stabilizes
GANs but it still presents some inconsistencies, specially when working with
complex architectures. WGAN-GP starts from WGAN and implements some
modifications that solve, or at least effectively reduce, these inconsistencies.

The text generation is a very challenging task for Generative Adversarial
Networks, as stated in the section 1.3, and that is why WGAN and WGAN-GP
have been chosen as the first candidates for attempting to solve it.

3.1 Wasserstein Generative Adversarial Networks
(WGAN)

In 2017 Arjovsky et al. presented the Wasserstein GAN [9], a variation of the
GAN algorithm that solved most of the difficulties that ocurred when training
GANs. As proved by [70], the losses of the generator and the discriminator of a
GAN must be balanced so that the discriminator does not achieve the optimal
point, otherwise either the generator gradients vanish, or the generator updates
become very unstable (depending on the formulation that is chosen for the GAN
[8]).

As it is broadly discussed in [9], the divergence metrics that the original
formulation minimizes, lead to a potentially not-continuous optimization space
with respect to the generator parameters, leading to training difficulties. That
motivates the author to propose minimizing the Wasserstein-1 distance (abbre-
viated as Wasserstein distance from now on) which is continuous and differen-
tiable in almost all the space if the whole system is a Lipschitz function [9]. The

33



34 CHAPTER 3. METHODS

Wasserstein distance can be informally understood as follows: if the two distri-
butions to be compared (p and q) are viewed as piles of dirt, the Wasserstein
distance would provide the cost of optimally transporting mass from one distri-
bution to another in order to transform the distribution q into the distribution
p. The use of this new distance makes it possible to train the discriminator to
optimality, assuring that the further generator updates are accurate.

A function f : X → Y is K-Lipschitz if there exists a real K ≥ 0 such that
for all x1 and x2 in X it satisfies the equation 3.1, where d is a metric function.
In a more straightforward way, a function is K-Lipschitz if its derivatives are
bounded to the [−K,K] range.

d(f(x1), f(x2)) ≤ Kd(x1, x2) (3.1)

The cost function of the WGAN is defined in the equation 3.2. As it can be
noticed, by comparison with equations 2.12 and 2.13, the logarithms have been
removed. In this new formulation, the discriminator can provide unbounded
values, and that is why it is so-called critic instead of discriminator (think of
an art critic as an analogy). This notation will be adopted from now on.

min
G

max
D

Ex∼Pr [D(x)]− Ex̃∼Pg [D(x̃)] (3.2)

In order to assure Lipschitz continuity, the authors propose to clip the
weights of the critic network to c, i.e. after each critic update, all the weights
of the network belonging to the critic are trimmed to belong the [−c, c] range.
The author recognizes that though this procedure assures Lipschitz continuity,
it is too rough and needs for further investigation, but it still yields to good per-
formance, improving the stability and results of the original formulation. The c
parameter must be correctly chosen; if it is too large the critic needs too updates
to reach optimality, if it is too small vanishing gradient issues can appear [9].
The whole training process is described in algorithm 2.

Empirical trials of this method shown improved stability of the optimization
process. Mode collapse1 [9] is also reduced when compared with traditional
GAN systems.

A comparison of the generated samples between GAN and WGAN is shown
in figure 3.1.

3.2 Wasserstein Generative Adversarial Networks
with gradient penalty (WGAN-GP)

Gulrajani et al. presented in the NIPS 2017 conference a modification of the
original WGAN [71]. They basically replaced the weight clipping by a penalty
term of the critic gradient norm with respect to its input. The authors start

1it is a failure mode that is frequently observed in some GAN architectures. When it
occurs, the generator produces always almost the same image (or set of images); i.e. the
variability of the generated samples is dramatically reduced.



3.2. WGAN-GP 35

Algorithm 2 WGAN training process as explained in the original paper.The
default values provided by the author are: RMSprop optimizer, α ← 0.00005,
c← 0.01, ncritic = 5 and minibatch size of m = 64

Require: α, the learning rate. (θ(D), θ(G)), the initialized parameters of D (the
critic) and G (the generator) respectively. data, a set of observed examples
to sample from. Z, a random distribution to sample from. m, the minibatch
size. c, the clipping parameter. ncritic the number of iterations of the critic
per generator iteration.

1: while θ(G) has not converged do
2: for t = 0, ..., ncritic do
3: Sample {x(i)}mi=1 ∼ pdata a minibatch of real data
4: Sample {z(i)}mi=1 ∼ pZ a minibatch of prior samples
5: gD ← ∇θ(D) [ 1

m

∑m
i=1 fθ(D)(x(i))− 1

m

∑m
i=1 fθ(D)(gθ(g)(z

(i)))]

6: θ(D) ← θ(D) − α ·RMSProp(θ(D), gD)
7: θ(D) ← clip(θ(D),−c, c)
8: end for
9: Sample {z(i)}mi=1 ∼ pZ a minibatch of prior samples

10: gG ← −∇θ(G)
1
m

∑m
i=1 fθ(D)(gθ(g)(z

(i)))

11: θ(G) ← θ(G) − α ·RMSProp(θ(G), gG)
12: end while

Figure 3.1: Comparison between GAN and WGAN using the LSUN image
dataset. As it can be seen the results are quite similar, but the WGAN training
process is much more stable than the GAN, allowing the algorithm to work with
more complex architectures.



36 CHAPTER 3. METHODS

providing a set of arguments that prove the difficulties introduced by applying
weight constraints in the WGAN algorithm; they are summarized below.

• The critic function achieved when applying weight constraints is biased
towards much simpler functions, ignoring higher moments in the data
distribution. That capacity under-use in the critic yields to very poor
approximations of the real data distribution in the generator (see figure
3.3-left).

• When the weight clipping threshold c is not carefully chosen it results in
either vanishing gradients or exploding gradients (see figure 3.3-right).

These issues and the experimental results motivate the authors of [71] pro-
pose an alternative way of enforcing the Lipschitz continuity constraint: penal-
izing the gradient norm of the critic with respect to its inputs. In order to make
it tractable, [71] propose using a softer version of the constraint by introducing
random samples x̂ ∼ Px̂. The WGAN-GP critic objective, defined in equation
3.3 is then composed of two components: the original WGAN critic loss defined
by [9] plus the gradient norm penalty introduced by [71].

Lcritic = E
x̃∼Pg

[D(x̃)]− E
x∼Pr

[D(x)]︸ ︷︷ ︸
original WGAN critic loss

+λ E
x̂∼Px̂

[(‖∇x̂D(x̂)‖2 − 1)2]︸ ︷︷ ︸
gradient norm penalty

(3.3)

The sampling distribution given by x̂ ∼ Px̂ is defined as sampling uniformly
along straight lines between the real data distribution Pr and the implicit gen-
erator distribution Pg. This is proposed as an alternative method for locally en-
forcing the Lipschitz constraint, because enforcing it everywhere is intractable
[71]. Gulrajani et al. argue that this approach yields good performance models
in practice. Regarding the penalty coefficient (λ), the authors recommend to
fix it to λ = 10 as a rule of thumb, because it showed good results in a wide
variety of tasks and architectures. The whole algorithm procedure is described
in Algorithm 3.

The WGAN-GP loss is not compatible with the use of batch normalization
in the critic architecture because the gradient penalty is applied at input level,
not at batch level2. The authors propose using layer-normalization, instead.

A comparison a set of generated samples between GAN and WGAN is shown
in figure 3.2.

2applying batch normalization using a batch size of 1 is also not an option because empirical
trials that will be described in the results section showed a strong dependency of the quality
of the generations with the batch size



3.2. WGAN-GP 37

Figure 3.2: Comparison between WGAN and WGAN-GP using the LSUN im-
age dataset. As it can be seen the results are very similar, but the WGAN-GP
modification produces a much more stable model, which in practice converges
more easily. This version also allows the algorithm to converge with more com-
plex architectures.

Figure 3.3: Representation of the issues happening in WGAN (with weight
clipping) in comparison with the results obtained with WGAN-GP (WGAN
with gradient penalty). Figure extracted from the Gulrajani et al. original
paper [71]. The figure in the left shows the value surfaces for the critics trained
optimally on toy datasets, using the original WGAN formulation (top), and the
WGAN-GP formulation (bottom). It is easy to see how the original WGAN
ends up producing extremely simple critic value functions while the WGAN-GP
achieve much more complex ones. The figure in the right shows how original
WGAN produces either vanishing or exploding gradients depending on the value
of c while the new WGAN-GP achieves much more stable gradients.



38 CHAPTER 3. METHODS

Algorithm 3 WGAN-GP training process as explained in the original pa-
per.The default values provided by the author are: Adam optimizer with
α ← 0.0001, β1 = 0, β2 = 0.9; ncritic = 5, λ = 10 and minibatch size of
m = 64

Require: α, the learning rate. (θ(D), θ(G)), the initialized parameters of D (the
critic) and G (the generator) respectively. data, a set of observed examples
to sample from. Z, a random distribution to sample from. m, the minibatch
size. λ, the gradient penalty parameter. ncritic the number of iterations of
the critic per generator iteration.

1: while θ(G) has not converged do
2: for t = 0, ..., ncritic do
3: for i = 0, ...,m do
4: Sample ε ∼ U(0, 1) a random number between 0 and 1
5: Sample x ∼ pdata real data
6: Sample z ∼ pZ a prior sample
7: x̃← Gθ(G)(z)
8: x̂← εx+ (1− ε)x̃
9: L

(i)
(D) ← Dθ(D)(x̃)−Dθ(D)(x) + λ(‖∇x̂Dθ(D)(x̂)‖2 − 1)2

10: end for
11: θ(D) ← Adam(∇θ(D)

1
m

∑m
i=1 L

(i)
(D), θ

(D), α, β1, β2)

12: end for
13: Sample {z(i)}mi=1 ∼ pZ a minibatch of prior samples
14: θ(G) ← Adam(∇θ(G)

1
m

∑m
i=1−Dθ(D)(Gθ(G)(z)), θ(G), α, β1, β2)

15: end while



Chapter 4

Proposal

The neural network architecture design represented a considerably big part of
the effort done in this work. The process of coming with a good architecture
took up to 37 different architecture iterations. Many of them didn’t work well
while some others were promising at the beginning and had to be tested for a
long time to see if they worked better than the previous ones.

The two big families of neural networks have been used in order to be as
exhaustive as possible in the attempt of generating text with Generative Ad-
versarial Networks: Convolutional Neural Networks and Recurrent Neural Net-
works. Both types of neural networks have been combined in 37 different ways,
varying their principal parameters and two of them (the ones which performed
better), are described in detail in this section.

The first idea was building a network composed of a recurrent neural net-
work in the generator and a recurrent neural network in the critic. In the
implementation phase a technical difficulty was found when building a critic us-
ing recurrent neural networks while applying the gradient penalty term: neither
tensorflow nor pytorch support second order derivatives applied to recurrent
neural networks. That difficulty has been broadly discussed over the tensorflow
and pytorch community and there is not an easy way of overcome it; that is the
reason why this solution was discarded.

Among the 37 architecture iterations, there were two of them that achieved
significantly better results than the other ones. The convolutional-convolutional
and the RNN decoder-convolutional architectures; they will be called CNN ar-
chitecture and RNN architecture (respectively) for brevity. The results of the
next section will be focused on these two settings.

Details about the 37 architectures that were tested and their main features
are summarized in appendix A. For further details, the GitHub repository1 of the
project can be reviewed. In chapter 6, the main take aways of the experimental
process have been summarized. Each of the architecture iterations can be found
in the repository. They have been arranged in different branches. Appendix A

1 https://github.com/ivallesp/scriptGAN

39

https://github.com/ivallesp/scriptGAN


40 CHAPTER 4. PROPOSAL

contains a table summarizing further details of each of the versions in GitHub.

4.1 RNN architecture

The RNN architecture is composed of a recurrent neural network setting in the
generator and a convolutional neural network in the critic. The details of the
architecture are described below and summarized in the figure 4.1.

The generator has three blocks: (1) a projection block which adapts the
latent vector of the input to the initial state of the recurrent block, (2) the
recurrent block formed of LSTM (Long-Short Term Memory) cells of size 1024,
arranged in a single layer and (3) a block of dense layers applied over each
sequence step separately that is intended to adapt the output of the generator
to the required shape before applying the softmax transformation.

The projection block consists of 2 dense layers that take the latent vector
z (with dz elements) and produce two vectors of size 1024 (the same size as
number of units in the LSTM ). These two vectors will be the initial states (h
and c) of the recurrent module.

The LSTM cells of the recurrent block are arranged in a decoder structure
[72], which has the following features.

• It receives a context in form of two vectors as initial state which, in this
case, is a projection of the random latent vector z.

• The outputs of the t− 1 sequence step are forwarded to the inputs of the
t sequence step without any treatment.

• The first input is a trigger signal (also known as the <GO> symbol), which
in this case is as simple as a vector of ones. Intuitively it is a way of telling
the network that this sequence step will be the start of a new sentence.

As stated in appendix A, a multi-layer RNN setting has been tested pro-
ducing worse results.

All the generated sequence steps are passed to the block of dense layers to
refine the predictions. In this block, the output of the recurrent block is reshaped
so that the timesteps of the sequences are processed independently, that was
intended to help the model producing one hot encodding similar outputs. At
the end of the dense layers, the output is reshaped again to its original set
of 3-dimensions and a softmax is applied to all the sequence steps in order to
normalize the outputs.

Batch Normalization has been applied over all the generator architecture
producing, in practice, a general improvement of the stability of the system.
That happens because the batch normalization operation over the layers of a
neural network reduces the covariance shift [73]. Figure 4.1a shows the generator
architecture.

The critic is built up using convolutional and average pooling layers due to
the second-order derivative constraints imposed by TensorFlow. It is based on



4.2. CNN ARCHITECTURE 41

4 convolutional blocks consisting of: 2 1D-convolutions of size 9 and stride 1
and an average pooling layer just afterwards with a size of 2 and a stride of 2.
The size of the last average pooling layer is increased to 8 in order to reduce
all the sequence to a single number. This number represents the output of the
critic. The complete critic architecture is shown in figure 4.1b. The size of
the convolution has been fixed to 9 because it showed both, stability and high
performance. Larger convolution sizes tend to turn the GAN more unstable
while smaller sizes produce worse performance. The average pooling size and
stride has been fixed to 2 in order to reduce the size of the sequence by half
after each convolutional block.

There are some meta-parameters (described below) that represent design
decisions and that must to be also taken into consideration.

• The batch size used to train this network has been B = 512 and the size of
the latent vector z has been fixed to dz = 100. A strong relation between
the batch size and the model performance has been found: the bigger the
batch, the better the performance.

• Adam has been chosen as optimizer for the generator and the critic, with
learning rates of 1 ·10−5 and 1.5 ·10−5, respectively. Higher learning rates
empirically shown more chances to destabilize the model.

• The learning rate of the critic has been chosen slightly larger than the
one of the generator following the recommendations on training the critic
until optimality before each generator step (proposed by [9] and [71]).

• The number of successive adjustments of the critic has been fixed to
ncritic = 10, which showed good results in practice in all the trials.

4.2 CNN architecture

The CNN architecture uses the same critic as the RNN architecture described
in section 4.1. The only difference of this architecture over the RNN one is the
generator architecture which, in this case, uses a convolutional neural network.

The convolutional neural network in the generator is quite simple. It consists
of three blocks: (1) projection of the z vector, (2) 4 1d-convolutional blocks to
transform the input to sequences of text, and (3) a final 1d-convolution that
produces C values per character.

The meta-parameters used in the RNN architecture (described in section
4.1) remain the same in this version.

Figures 4.2a 4.2b show the generator and critic architectures in form of a
schema.



42 CHAPTER 4. PROPOSAL

(a)
Latent vector Z

(B x dz)

(b)

Conv. block 1

· Conv1d + Conv1d

  - # filters = 64

  - kernel size = 9

  - strides = 1

  - padding = SAME

  - activation = leaky ReLU

· Average pooling

  - pool size = 2

  - strides = 2

Conv. block 2

· Conv1d + Conv1d

  - # filters = 128

  - kernel size = 9

  - strides = 1

  - padding = SAME

  - activation = leaky ReLU

· Average pooling

  - pool size = 2

  - strides = 2

Conv. block 3

· Conv1d + Conv1d

  - # filters = 256

  - kernel size = 9

  - strides = 1

  - padding = SAME

  - activation = leaky ReLU

· Average pooling

  - pool size = 2

  - strides = 2

Conv. block 4

· Conv1d + Conv1d

  - # filters = 512

  - kernel size = 9

  - strides = 1

  - padding = SAME

  - activation = leaky ReLU

· Average pooling

  - pool size = 8

  - strides = 2

· Conv1d

 - # Filters = kernel_size = 

strides = 1

 - padding = SAME

 - activation = None

Input

(B x L x C)

Conv. outputs

(B x L x 64)

Avg. pooling

output

(B x L/2 x 64)

Conv. outputs

(B x L/2 x 128)

Avg. pooling

output

(B x L/4 x 128)

Conv. outputs

(B x L/4 x 256)

Avg. pooling

output

(B x L/8 x 256)

Conv. outputs

(B x L/8 x 512)

Output

(B x 1)

Figure 4.1: Recurrent architecture. (a) generator architecture, with a projection
module for adapting the latent vector to the initial state of the recurrent mod-
ule, a recurrent module with 1024 LSTM units and L timesteps in a decoder
setting, and a set of dense layers for adapting the output before the softmax
transformation. (b) critic architecture, only containing a combination of convo-
lutional layers and average pooling so that each input sentence, of length L and
C variables, is progressively reduced to a single number.



4.2. CNN ARCHITECTURE 43

(a)

· Batch Normalization

· Dense projection

layer

  - # units = L * C

· Leaky Relu

· Reshape

· Batch Normalization

· Conv1d 

  - # filters = 256

  - kernel size = 9

  - strides = 1

  - padding = SAME

· Leaky Relu

· Batch Normalization

· Conv1d 

  - # filters = 256

  - kernel size = 9

  - strides = 1

  - padding = SAME

· Leaky Relu

· Batch Normalization

· Conv1d 

  - # filters = 256

  - kernel size = 9

  - strides = 1

  - padding = SAME

· Leaky Relu

· Batch Normalization

· Conv1d 

  - # filters = 256

  - kernel size = 9

  - strides = 1

  - padding = SAME

· Leaky Relu

· Batch Normalization

· Conv1d 

  - # filters = C

  - kernel size = 9

  - strides = 1

  - padding = SAME

· Softmax

Latent vector Z

(B x dz)

Projected hidden

output

(B x L x C)

Convolved hidden

output

(B x L x 256)

Convolved hidden

output

(B x L x 256)

Convolved hidden

output

(B x L x 256)

Convolved hidden

output

(B x L x 256)

Convolved 

output

(B x L x C)

(b)

Conv. block 1

· Conv1d + Conv1d

  - # filters = 64

  - kernel size = 9

  - strides = 1

  - padding = SAME

  - activation = leaky ReLU

· Average pooling

  - pool size = 2

  - strides = 2

Conv. block 2

· Conv1d + Conv1d

  - # filters = 128

  - kernel size = 9

  - strides = 1

  - padding = SAME

  - activation = leaky ReLU

· Average pooling

  - pool size = 2

  - strides = 2

Conv. block 3

· Conv1d + Conv1d

  - # filters = 256

  - kernel size = 9

  - strides = 1

  - padding = SAME

  - activation = leaky ReLU

· Average pooling

  - pool size = 2

  - strides = 2

Conv. block 4

· Conv1d + Conv1d

  - # filters = 512

  - kernel size = 9

  - strides = 1

  - padding = SAME

  - activation = leaky ReLU

· Average pooling

  - pool size = 8

  - strides = 2

· Conv1d

 - # Filters = kernel_size = 

strides = 1

 - padding = SAME

 - activation = None

Input

(B x L x C)

Conv. outputs

(B x L x 64)

Avg. pooling

output

(B x L/2 x 64)

Conv. outputs

(B x L/2 x 128)

Avg. pooling

output

(B x L/4 x 128)

Conv. outputs

(B x L/4 x 256)

Avg. pooling

output

(B x L/8 x 256)

Conv. outputs

(B x L/8 x 512)

Output

(B x 1)

Figure 4.2: CNN architecture. (a) generator architecture containing only con-
volutional layers after the projection step. All the convolutions in this archi-
tectures are the same size and all of them (but the last one) are based on 256
filters. The last one has the same number of filters as the size of the character
set (i.e. C). (b) critic architecture, only containing a combination of convolu-
tional layers and average pooling so that each input sentence, of length L and
C variables, is progressively reduced to a single number.



44 CHAPTER 4. PROPOSAL



Chapter 5

Experimental setting and
results

5.1 Data

In this study, the distribution of a dataset is intended to be learned. The chosen
dataset must have a set of features in order to be eligible for this study; they
are briefly described below.

• It has to be formed of sentences because the algorithm is intended to write
text at sentence level.

• The sentences in the real dataset must be morphologically, syntactically
and semantically correct. That will be achieved only if the quality of
the data is good enough. The reason why it is required is because the
algorithm is going to learn from the distribution of data which is provided;
if a bad quality data is provided, the generations will be bad quality too.

• The data must have high variability so that the model can learn a spread
distribution, otherwise the model will be prone to mode collapse (get-
ting stuck in modes of the distribution, i.e. generating almost the same
sentence every time).

• The data must represent general usage of the language (English in this
case) in order to draw generalizable conclusions. The reason why no dif-
ferent trials with different datasets have been conducted is because the
models applied in this work are very computational expensive and run-
ning the algorithms through different datasets is unaffordable.

• The sentences in the dataset must not be very long so that the memory
required by the data lets the complexity of the architecture be big enough
to model the language successfully.

45



46 CHAPTER 5. EXPERIMENTAL SETTING AND RESULTS

One of the biggest existing corpus containing bilions of sentences that can
be found on the internet is twitter. That is the reason why in the begining of
this work twitter data were considered as the main data distribution to learn
from. The main benefit of using this corpora is that the sentences contained
on it (the tweets) are constrained to a maximum length. Nevertheless, due to
the complexity of the modeling task, twitter data turned out to be too noisy
because of the following reasons.

• Twitter uses hashtags and mentions, which are quite dependent on the
temporal context and on the topology of the social network. This infor-
mation is very difficult to model by an algorithm that only sees at the
twitter streamline without any order and does not consider the surround-
ing context and the users relations beyond the social network.

• Most of the tweets contain plenty of acronyms, abbreviations and informal
language which significantly complicates the data distribution.

• Insolating the tweets belonging to a specific language is not a straightfor-
ward task, specially with such an informal register.

• It is difficult to get content with high variability because the users and the
hashtags, by definition, are biased. The majority of the twitter publicly
available data are collected by selecting a random sample of users or one
or a set of hashtags, instead of selecting a real random sample of tweets.

For that reasons, a more curated corpora was desired. After an exhaustive
research Tatoeba corpus1 was found. Tatoeba is a large open-source and free
collection of sentences written in multiple languages which is intended to be a
powerful resource for natural language processing tasks. It is specially focused
on machine translation tasks. The sentences contained in this corpus have been
included by the community of registered users and they have an impressive
quality. A sample of english sentences extracted from this collection is included
below as an example.

Is it cruel to declaw your cat?

I learned English words by heart all day yesterday.

I knew that someone would come.

Any gentleman would not use such language.

Mary is still living with her parents.

The eastern sky was getting light.

You are weak.

I very seldom eat lobster.

Those are the leftovers from lunch.

Do you like your new apartment?

It took him three tries.

Tom walked into his room.

1https://tatoeba.org/eng/



5.1. DATA 47

I’d like to thank you all for coming today.

Tom was elected captain.

I’ll throttle him!

Tom really inspired me.

Tom didn’t understand Mary’s joke.

I want to send this letter to Japan.

He’s wearing sunglasses.

Tom will unlikely have to do that anytime soon.

With Fadil, Layla finally found the excitement she had been craving.

Don’t talk about my daughters like that.

Can we help?

Mary is saving money so she can go to Japan.

They weren’t busy.

He put his arm around my waist.

Didn’t you know that the east Asian New Year is today?

Rarely have I heard such a load of rubbish.

She came with her hands in her pockets.

You like to sing, don’t you?

Tom claims he was drunk at the time.

I’m glad you accepted my offer.

Mary says she has to speak French.

Don’t attempt to do this by yourself.

My shift’s over.

It’s going to be easy to do that.

Are there many Chinese restaurants in Boston?

Tom didn’t seem surprised when I told him I didn’t need to do that.

The sentences in this collection have been slightly preprocessed in order to
have an even cleaner corpus. The steps followed to get the clean set are sum-
marized below. In addition, figure 5.1 shows the quantity of filtered sentences
in each step.

• The sentences labeled as belonging to a language different from english
were removed (the collection was reduced from 6.2 million sentences to
890.2 thousand).

• The sentences longer than 64 characters were discarded (the colection was
reduced to 829.8 thousand).

• The sentences containing characters which do not belong to the set of the
100 most common characters across all the english sentences were removed
(the collection was reduced to 828.9 thousand)

At the end of the preprocessing phase, two synthetic symbols were appended
to each sentence: a <START> symbol at the begining and an <END> symbol at
the end. The sentences that are shorter than L = 64+2 are right padded with a
third synthetic symbol <UNK>. These preprocessing steps are necessary so that



48 CHAPTER 5. EXPERIMENTAL SETTING AND RESULTS

Figure 5.1: Filters applied over the original Tatoeba collection and number of
sentences (in thousands) affected.

all the sentences contain the same number of characters in order to be stacked
together in a 3-dimensional matrix to form the minibatches. The characters
of the sentences in this stage are converted to a 103-elements binary vectors
using one hot encoding. These vectors have been stacked together so that each
sentence forms a matrix of shape (L x C), where L = 66 is the maximum length
of the sentences and C = 103 is the cardinality of the character set.

5.2 Metrics and KPIs

One of the most discussed difficulties when dealing with Generative Adversarial
Networks is the lack of a robust evaluation method, then there is not such an
automatic way of quantifying how good the generated samples are. In the last
years there has been a substantial amount of research in this area and some
techniques have been developed for measuring how appealing some generated
images are to the human judgment [74, 75, 76]. This is not the case of the text,
probably because the vast majority of the research studies on GANs are related
to images.

In order to compare between architectures, an evaluation metric is needed.
BLEU score [77] is a widely used metric to automatically evaluate machine
translation tasks, but in this case, as there are not specific target sentences
to compare with, it is not possible to use it directly. Instead, a more simple
approach has been proposed: using the n-gram precision scores described in [77].
As stated by the authors, they are not robust metrics, but still provide with
a way of comparing between models and are strongly correlated to the human
judgement. These metrics are described below. In the following definitions,
let R be the distribution of real samples and |S| the number of words in the
sentence. All the following equations are defined for a given sentence S drawn
from G, the distribution of generated samples.



5.2. METRICS AND KPIS 49

1-gram precision

Measures the percentage of the words in the generated sentences which also
appeared at least once in the real dataset (the Tatoeba dataset). Equation 5.1
shows how to calculate it, where w represents a word in the generated sentence.

Prec1 =

∑
w∈S

g(w)

|S|
where g(w) =

{
1 if w ∈ R
0 if w /∈ R

(5.1)

2-gram precision

Measures the percentage of the pairs of contiguous words in the generated
sentences which also appeared at least once in the real dataset (the Tatoeba
dataset). Equation 5.2 shows how to calculate it where (w1, w2) represents a
bigram (i.e. a combination of two contiguous words appearing in the text) in
the generated sentence.

Prec2 =

∑
w1,w2∈S

g((w1, w2))

|S| − 1
(5.2)

where g((w1, w2)) =

{
1 if (w1, w2) ∈ R
0 if (w1, w2) /∈ R

3-gram precision

Measures the percentage of the triplets of contiguous words in the generated
sentences which also appeared at least once in the real dataset (the Tatoeba
dataset). Equation 5.2 shows how to calculate it, where (w1, w2, w3) represents
a trigram (i.e. a combination of three contiguous words appearing in the text)
in the generated sentence.

Prec3 =

∑
w1,w2,w3∈S

g((w1, w2, w3))

|S| − 2
(5.3)

where g((w1, w2, w3)) =

{
1 if (w1, w2, w3) ∈ R
0 if (w1, w2, w3) /∈ R

All the defined metrics range from 0 to 1, where 0 means a bad generation
and 1 a perfect one. Below, a set of drawbacks related with the use of these
metrics are enumerated.

• Longer sentences are more likely to contain mistakes than shorter ones:
each of the metrics defined above does not depend on the length of the
sentences, so it is easy to assume that they will easily produce higher



50 CHAPTER 5. EXPERIMENTAL SETTING AND RESULTS

scores for shorter sentences. For example, the following sentence would
score Prec1 = Prec2 = Prec3 = 100% only containing 9 characters:
“a bad cat”.

• The real dataset is not perfect: the metrics defined above are based on
observations over the original dataset and assume that it does not have
errors. For example, if a wrong triplet of words appear in the real dataset,
it will always be considered as a valid language construction for measuring
the results.

• The real dataset does not fully cover the whole space of possibilities: if
the model comes up with a new construction that never appeared in the
real dataset, it will be labeled as an error.

• The correctness of a sentence depends on its whole content: the metrics
defined above only take into account contiguous triplets of words, which
may result in wrong measurements in some special cases. For example, the
following sentence would be scored as Prec1 = Prec2 = Prec3 = 100%:
“In the house of the king of the king of the king of the king”.

• The variability of the generator is not asessed by these metrics. That
makes it necessary to manually-review the generated sentences so that
the typical failure modes of the GANs, like mode-collapse, do not happen.

Despite the weaknesses of these metrics, there are some reasons why they
have been used in this work; they are summarized below.

• The models proposed in this work are character-based and the metrics
proposed are word-based. If no correct words are generated, it is very un-
likely that the weaknesses discussed above arise. There is a low probability
of getting incorrect good measurements due to this reason

• The metrics defined above have not been used for optimizing the param-
eters of the models and the design decisions that have been taken are not
based on a single minibatch measurement.

• Not only these metrics have been evaluated for inferring decisions in the
design process, but also manual evaluations over the generated samples
have been conducted.

• The Tatoeba dataset is quite large and the variability that it covers is also
large. That makes the metrics be more robust because a large proportion
of the total set of valid constructions appears in the original data.



5.3. RESULTS 51

5.3 Results

In this section the results for the two architectures described in section 4 are
both qualitatively and quantitatively discussed. The experiments have been
conducted using the Google TensorFlow 1.3.0 library [78] in Python 3.6.3 from
the Anaconda distribution. The results have been logged using Tensorboard.
The algorithms have been run in a single GPU (Nvidia Titan XP) during 65
days to achieve the results presented in this section.

The models have been trained from scratch, without using any pretrained
model nor any kind a priori knowledge about the language. With the aim of
evaluating them, two sets of 5000 sentences have been generated using each of
the algorithms.

The achieved results in terms of n-gram precision are summarized in table
5.1. It shows the metrics values achieved by both algorithms in their best
iteration2. The evolution of the metrics in each iteration is shown in figure 5.2.
As it can be seen, the CNN architecture achieves substantially better results
than the RNN one. Looking at the tendency in the figures representing the
evolution of the metrics, it seems that the RNN architecture has converged
to its optimal point while the CNN one seems to be still improving. Both
algorithms have been stopped due to a time constraint. All the results and
generated samples appearing in this section have been calculated in an out of
sample trend, i.e. they have been generated using new randomized z vectors,
assuring they are different than the vectors for which the models have been
adjusted at training time.

Architecture Best Iteration Prec1 (µ± σ) Prec2 (µ± σ) Prec3 (µ± σ)

RNN (v14) 1064600 0.538± 0.242 0.321± 0.239 0.124± 0.188
CNN (v20) 2675000 0.673± 0.231 0.457± 0.254 0.186± 0.219

Table 5.1: Results for the best iterations of the RNN and CNN architectures.
They have been measured over a sample of 5000 generated sentences using
the iteration step of the models which better results showed in the training
phase. In bold, the architecture which showed better performance (the CNN
architecture). For the best case the results can be read as: on average, the
67.3% of the words, the 45.7% of the bigrams and the 18.6% of the trigrams
generated by the algorithm are known, meaning that they appeared at least
once in the real dataset (Tatoeba).

As it has been discussed in section 3, it is very important to manually revise
the sentences generated by the algorithms so that most of the complex structure
of the language which is not correctly assessed by the metrics, can be assessed
by the human judgement. One of the most important things to evaluate is
if there is mode collapse: in this context, it would be the case if there were
almost no variability between the generated sentences; i.e. if they looked like

2An iteration consists of one set of adjustments to the discriminator and to the generator



52 CHAPTER 5. EXPERIMENTAL SETTING AND RESULTS

0 500000 1000000 1500000 2000000 2500000 3000000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0
1-
gr
am

 p
re
cis

io
n

μCNN
σCNN
μRNN
σRNN

0 500000 1000000 1500000 2000000 2500000 3000000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

2-
gr
am

 p
re
cis

io
n

μCNN
σCNN
μRNN
σRNN

0 500000 1000000 1500000 2000000 2500000 3000000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

3-
gr
am

 p
re
cis

io
n

μCNN
σCNN
μRNN
σRNN

Figure 5.2: Evolution of the three metrics in each iteration step for the RNN
and the CNN algorithms.



5.3. RESULTS 53

the same sentence with small or even no variation. The sentences shown below
correspond to the ones which have higher compound n-gram precision, calculated
as the product of the three metrics (Prec1 · Prec2 · Prec3)

Below, a set of the top 40 sentences generated by the RNN architecture have
been included in order to perform the manual assessment.

This is your had to dying all of anymore.

I think Mary will fell hot what Tom going to that much bepach.

I’m noting that happened.

I busy was on the change I long mamied today?

Tom didn’t for Tom.

We’re minuted at home down.

You are so bick.

Mary old Mary that Tom will how to do that.

I need a treak that you.

I will bigies very your aroud.

It is quile exacely from are even sest a policy.

That’s very talking my make beltrietime.

I’m taking tn gee to watched the house.

They were plans to mead, pofice.

I’m splak is my colfer off sere.

Tom know that me.

Can he wae now.

The expender is finitiker, Tom.

Tom is thy very cands.

I was make hom so sugged better the still with you.

I don’t think Mary want to help Tom.

Do you want to go alk that where tvey stuld like.

What man wart’s a under tone?

Momy aky, you’re not adrired.

I’m sure you think Tom knowmed in you and happed her.

I always enterbering up to she on the ous it?

Tom said that you’vera fould here.

I think hars even that Mary were knars.

Tom sumgeng all three book simewhere.

I like to help you?

I just know inythe balle always tho frout.

My prace himing anstous of ealiglans of herself.

You mid this prevent suroubly.

The money pointal.

Tom silled whe longer us again.

The maiturg you manes on flece.

Tom isn’t his rest.

Tom forlld doink with this per.

I haven’t give met.

We can’t like this oves for famich.



54 CHAPTER 5. EXPERIMENTAL SETTING AND RESULTS

A set of the top 40 sentences generated by the CNN architecture are shown
below.

Tom and Mary wasn’t to do you do here.

Are you going to take.

Tom needed to do?

Tom and Mary doesn’t do that.

We have to leave.

Mary should have to want to win?

Tom doesn’t know.

I’d like to.

I know what you said you want.

Are you.

I like to help you?

I’m going to be.

You didn’t want them.

I thought you didn’t do that.

We don’t want me.

Tom didn’t like anything.

Tom and Mary wanted to do that.

Tom wasn’t here?

I got him.

Tom is going to do that the time.

Mary didn’t want to help.

I need to do that?

Why are you and you have?

I’d like that.

It’s not you.

That’s the last meeting.

I don’t want to tell Tom and Mary like it.

How did you need to go.

I need Tom.

I need to help Mary.

Tom is not to do?

Tom doesn’t want to get here.

I want to do that.

Tom is going to go.

Tom is going to help us.

I know that Tom and Mary about?

We couldn’t come.

I thought Tom was?

Did you get his name.

I don’t say Tom was ready.

As it can be noticed after reading the sentences, both algorithms are working
well: no failure modes (like mode collapse) seem to be present. However, the
majority of the sentences present at least one mistake, specially the long ones.



5.3. RESULTS 55

This can be happening because of the inner constraints in the network design
introduced by the fact of using gradient descent: the whole system has to be
differentiable. The biggest limitation that this produces is the technical impos-
sibility of building a fully visible belief network architecture in the generator, be-
cause the sampling operation is not differentiable. That forces the algorithm to
directly generate (pseudo) one-hot-encoding-like representations, which is much
more inaccurate and difficult than generating a probability distribution for the
next-character conditioned to the previous ones: P (ct|ct−1, ct−2, ct−3, ..., c1).
Without this feature, the model has to decide in each sequence step which char-
acters to output and it does not allow implementing more complex heuristics
(beam search [79] for example). Strictly in that sense, it would be desirable to
use some hessian-free optimization method [80] instead of gradient descent, but
it would enormously complicate the training phase.

Finally, the results from the different aspects of the language have been
analyzed below.

• Morphology : as it can be noticed after reading the generated samples, the
morphology of the words in the sentences is quite good. The algorithms
learned plenty of complex aspects of the language: apostrophes, question
marks, correctly use of capital letters, punctuation symbols and general
use of different vocabulary. The 1-gram precision is a good indicator of
how good the morphology of the generated samples looks like.

• Syntax : the majority of the generated samples show a good local syntax
but most of them show issues in the general view. It seems that the
networks have been able to form words and combine them so that they
have a good local structure. Even though, the global structure of the
majority of the generated samples seems not to be preserved. 2 and 3-
gram precision are good proxies for assessing the local syntax correctness.

• Semantics: in this case it happens something similar as in the syntax case.
The models were able to produce sentences with local sense but with a
lack of global sense. There has not been found a metric for quantifying
this performance but the human judgement.



56 CHAPTER 5. EXPERIMENTAL SETTING AND RESULTS



Chapter 6

Conclusions

The results in section 5.3 show that the Generative Adversarial Networks are
able to generate text. However, the optimal models have taken a long time
to train and no impressive results have been achieved. Apart from this, early
trials with noisier datasets (twitter) showed that the model performance in
text generation tasks highly depends on the quality of the data. Compared to
other tasks like image and audio generation, in which these models showed very
impressive results, GANs seem not to be the generative model which best suits
for text generation. Ian Goodfellow [7] stated that GAN models usually struggle
with discrete data generation and proposed using algorithms to train them which
do not require gradient computations nor differentiability of the model function:
for example the reinforce algorithm [81] or other typical algorithms broadly
known in the reinforcement learning field [82]. Still, it can be concluded that
the GAN algorithms should not be the choice when a text generation task arises.

From the architectures tested during this work, a set of take away conclu-
sions have been compiled and described below. Not all these conclusions were
expected, but they are result of the experimentation.

• Reducing the noise signal of the minibatches is highly recommended. It
can be done by increasing their size, so that differences between the gradi-
ents from one minibatch to another are minimized. It showed a meaningful
improvement in the final performance of the experiments conducted during
this project.

• The convolutional neural networks filter size showed to be a crucial pa-
rameter to tune in the performance-stability trade off. Large convolutions
yielded better results while making the whole system more prone to di-
verge and vice-versa. Optimal convolution sizes ranged from 9 to 11. A
possible explaination of this may be the fact that the convolution sizes
control the complexity of the model. Large complexities tend to produce
overfitting while small ones lead to underfitting.

• Increasing the number of recurrent cells in the recurrent modules substan-

57



58 CHAPTER 6. CONCLUSIONS

tially improved the quality of the generations. This may happen because
the more number of cells a network has, the more predicting power and
memory is it provided with. In this case, large amounts of memory are
required in order to make the model able to correctly model the complex
structures of the language.

The results can be generalized to all kinds of Generative Adversarial Net-
works adjusted with gradient based optimization methods, because even having
achieved very stable models (at least with both CNN and RNN architectures),
the resulting models do not show very good results in comparison to other
methods (char-rnn for instance).

In the research and development of this work, some GAN versions trained
using reinforcement learning algorithms and showing good results have appeared
in the bibliography [83, 84, 85, 86, 87, 88]. Still, other models like variational
autoencoders perform well without such a complex setting.

Nevertheless, a potential production-ready application for the architectures
developed in this work could be a keyword generation system for specific do-
mains. As they represent short pieces of text which may not be gramatically
correct, the approaches described in this work could perform well. A good ex-
ample could be generating novel keywords for increasing the variability of them
in online marketing campaigns. In this field, vast amounts of keywords are used
in order to try to cover a whole field maximizing the market share1. This task
is typically done manually, with the help of some automation tools. These algo-
rithms could ingest a big amount of existing keywords and generate new ones,
strongly related with the existing ones, but different.

1understood as the proportion of the keywords market which is owned by the user with
respect to the competence



Chapter 7

Next steps

A set of next steps has been identified in order to provide the reader with
ideas on how to continue this research line, in case he/she is interested. These
ideas have been collected during the research and development of this work, and
only those which have been partially tested or even not tested (and seem to be
promising to the intuition of the author) have been included here.

• The use of a recurrent neural network in the discriminator seems to be
very appropriate due to the sequential nature of text. However, it would
require the model not to apply the gradient penalty in the GAN loss func-
tion; because it implies a second derivative to be calculated. As explained
in section 4, there is a technical limitation in the main frameworks when
performing this task. That is why it could be a good idea to start from
the WGAN definition and try to improve the way it enforces the Lips-
chitz constraint avoiding using second-order derivatives calculations. A
good example of this effort is the SLOGAN [89] definition but it did not
perform well in practice. That is why a soft version of the weight clipping
is proposed. Instead of clipping the weights of the network cutting the ex-
treme values to fit in a given range, the following function could be used:
W← c · tanh(W).

• The Gumbel softmax seems to be a promising way of turning the sampling
operation into a differentiable function, which would be useful for using
a recurrent neural network in the discriminator while applying a gradient
penalty in the loss function. It has been tested in this work and it did not
produced good results, but further tests should be done in order to fully
discard this alternative.

• Reinforcement learning optimization algorithms can be a good way of
overcoming the problem, because it removes the differentiability constraint
in the network and fully visible belief networks could be used.

• The algorithms proposed in this work should be tested using much shorter
texts, such as keywords. The hypothesis in this scenario is that the re-

59



60 CHAPTER 7. NEXT STEPS

current neural network would produce dramatically better results because
the error which is propagated in the pseudo-sampling operation that the
network is currently forced to do would decrease with the length of the
sentences generated. This error must grow exponentially with the size of
the generated sentence.

• Developing compatibility with second-order derivarives in the general frame-
works (Tensorflow and Pytorch) would be extremely useful for this study,
allowing us building sequential discriminators.

• Using skip-gram precision as additional evaluation metric must be desir-
able. It consists of calculating non-contiguous words matching proportions
between the generated samples and the real dataset. It would enormously
help quantifying the global syntax correctness of the generated sentences.



Appendices

61





Appendix A

Tested architectures

In the following table, a set of architecture designs are summarized. Numerical
results of accuracy are not provided because not all the architecture designs
in the table has been tested until optimality (because they have shown some
issues in early steps of the optimization process) and some of them even didn’t
converge. The goal of this information is to give a general overview of all the
techniques and alternatives that have been exhausted during the final architec-
ture design and which have formed the iterative process for coming up with the
best performing architectures. The versions have been enumerated chronologi-
cally so that V1 was the first test and V36 the last one.

The architectures for which convergence was achieved have been highlighted
in bold. Versions 14 and 20 (highlighted in italics) correspond with the RNN
and Convolutional architectures described in section 4.1 and 4.2.

Version GAN Family
Batch
Size

Learning
rates1

Description Results

V1
WGAN-

GP
32

10−5,
1.5 · 10−4

Embedding in the
generator recurrent
module, applied in
the decoder to each
output

The model con-
verges but it is a bit
unstable

V2
WGAN-

GP
32

10−5,
1.5 · 10−4

Generator without
embedding in the
recurrent module,
learning rate of the
generator increased
x15

The model con-
verges and is stable,
but the discrimina-
tor seems to be too
strong

V3
WGAN-
GP

32
10−5,
1.5 · 10−4

Discriminator pro-
vided with some
dense layers at the
end instead of using
only convolutional
layers and average
pooling

The model con-
verges and is stable,
but it does not show
any improvement
over previous trials

63



64 APPENDIX A. TESTED ARCHITECTURES

V4 WGAN-GP 32
10−5,
1.5 · 10−4

Convolutional blocks
in the discriminator
changed by inception-
1d modules

The model does not
converge

V5 WGAN-GP 32
10−5,
2.5 · 10−4

Convolutional blocks
in the discriminator
changed by inception-
1d modules. Lipschitz
constant increased to
100

The model does not
converge

V6
WGAN-
GP

32
10−5,
1.5 · 10−4

Add some discrete
terms to the genera-
tor input latent vec-
tor in order to try to
help it generate dis-
crete distributions

The model con-
verges, is stable and
slightly improves
previous trials

V7 WGAN-GP 32
10−5,
1.5 · 10−4

Increased the size of
the generator and the
discriminator x4

The model does not
converge

V8 WGAN-GP 32
10−5,
1.5 · 10−4

Increased the size of
the convolution to 15
(over V7)

The model does not
converge

V9
WGAN-
GP

32
10−5,
1.5 · 10−4

Increased the size of
the convolution to
15 (over V2)

The model con-
verges, is stable and
improves previous
trials

V10
WGAN-
GP

32
10−5,
1.5 · 10−4

Implementation of
CT-GAN over the
architecture of V2

The model con-
verges and is ex-
tremely stable, but
does not achieve
better results

V11 CT-GAN 32
10−5,
10−5

From V10, fixed
the same learning
rates for the gener-
ator and the critic
(0.0001) and imple-
mented CT-GAN
[90]

The model con-
verges and is ex-
tremely stable, but
achieves very poor
results

V12
WGAN-
GP

32
10−5,
1.5 · 10−4

Add some noise
to the real data
one hot encodding
in order to make it
easy for the gener-
ator to approximate
the required encod-
ing. Architecture of
V2.

The model con-
verges and is rel-
atively stable, but
does not achieve
good results

V13
WGAN-
GP

128
10−5,
1.5 · 10−4

Increased the batch
size to 128 using the
V2 architecture

The model con-
verges and is stable.
It achieves much
better results

V14 WGAN-GP 512
10−5,
1.5 · 10−4

Increased the batch
size to 512 using the
V2 architecture

The model converges
and is stable. It
achieves even better re-
sults than V13



65

V15 WGAN-GP 32
10−5,
1.5 · 10−4

From V2, add 2
additional recurrent
layers to try a Mul-
tiRNN setting in the
generator

The model con-
verges and is stable.
It does not improve
previous trials

V16 CT-GAN 256
10−5,
1.5 · 10−4

Implementation of CT-
GAN over the architec-
ture of V4 (with incep-
tion modules in the dis-
criminator)

The model does not
converge

V17
WGAN-
GP

256
10−5,
1.5 · 10−4

Removed the feed-
forward connections
in the recurrent
module of the gen-
erator, over V2

The model con-
verges and is rel-
atively stable, but
does not show any
improvement over
the previous trials

V18
WGAN-
GP

256
10−5,
1.5 · 10−4

Starting from V17,
changed the LSTM
cells by GRU cells

The model con-
verges and is rel-
atively stable, but
produces worse
results than the V17

V19
WGAN-
GP

512
10−5,
1.5 · 10−4

Starting from V14,
changed the LSTM
cells by GRU cells

The model con-
verges and is stable,
but does not im-
prove the V14

V20 WGAN-GP 512
10−5,
1.5 · 10−4

Starting from V14,
changed the architec-
ture of the generator
by a convolutional
neural network

The model converges
and is stable. In ad-
dition, it improves sig-
nificantly over V14

V21 WGAN-GP 512
10−5,
1.5 · 10−4

Starting from V14,
changed the ar-
chitecture of the
generator by a con-
volutional+recurrent
neural network with
a context vector as
initial state. Increased
the size of the discrim-
inator network.

The model does not
converge

V22 WGAN-GP 512
10−5,
1.5 · 10−4

Starting from V14,
changed the ar-
chitecture of the
generator by a con-
volutional+recurrent
neural network with a
zeros vector as initial
state. Increased the
size of the discrimina-
tor network.

The model does not
converge

V23 WGAN-GP 512
10−5,
1.5 · 10−4

Starting from V1, add
a softmax in the output
of each cell and multi-
plied the softmax input
by 10 in order to pro-
duce sharper encodings

The model does not
converge



66 APPENDIX A. TESTED ARCHITECTURES

V24
WGAN-
GP

512
10−5,
1.5 · 10−4

Starting from V1,
add a softmax in the
output of each cell

The model con-
verges and produces
better results than
V1, but they are
worse than the pre-
vious trials

V25 WGAN-GP 512
5 · 10−5,
1.5 · 10−4

Starting from V21, in-
creased the generator
learning rate by 5

The model does not
converge

V26 WGAN-GP 512
10−5,
1.5 · 10−4

Implemented a Gumbel
softmax in the gener-
ator recurrent module,
at the end of each cell

The model does not
converge

V27 WGAN-GP 512
10−5,
1.5 · 10−4

Starting from V26, re-
moved the softmax op-
eration

The model does not
converge

V28 WGAN-GP 512
5 · 10−5,
1.5 · 10−4

Starting from V26,
fixed equal learning
rates

The model does not
converge

V28b WGAN-GP 512
5 · 10−5,
1.5 · 10−4

Starting from V28,
switched the generator
architecture to a Multi-
RNN and implemented
an annealing of the
Gumbel’s Softmax tao
parameter

The model does not
converge

V29 WGAN-GP 512
10−5,
1.5 · 10−4

Starting from V26, add
dense layers at the end
of the discriminator

The model does not
converge

V31
WGAN-
GP

128
10−5,
1.5 · 10−4

Test with pytorch,
V14 similar imple-
mentation

The model con-
verges and produces
good results, a bit
worse than V14

V32
WGAN-
GP

512
10−5,
1.5 · 10−4

V14 applying some
changes to the syn-
thetic instances used
to apply the gradi-
ent penalty: now
interpolating over
the batch dimension
only

The model con-
verges but does
not produce better
results than the
previous trials

V33
WGAN-
GP

128
10−4,
1.5 · 10−3

V14 applying some
changes to the syn-
thetic instances used
to apply the gradi-
ent penalty: now in-
terpolating over the
batch dimension 0
and 2

The model does not
converge

V34
WGAN-
GP

128
10−5,
10−5

V31 with equal
learning rates

The model con-
verges but produces
worse results than
V31



67

V35 SLOGAN 64
10−5,
10−5

SLOGAN implementa-
tion2 [89] in order to
use an RNN-RNN ar-
chitecture (RNN for
the generator and RNN
for the critic). Only
using the last sequence
step in the critic

The model does not
converge

V36 SLOGAN 512
10−5,
10−5

SLOGAN implementa-
tion in order to use
an RNN-RNN architec-
ture (RNN for the gen-
erator and RNN for the
critic). Using all the
sequence steps in the
critic

The model does not
converge

1first, for the generator and second for the critic
2unpublished implementation of a WGAN alternative without using gradient penalty terms

in the loss function



68 APPENDIX A. TESTED ARCHITECTURES



Bibliography

[1] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of gans
for improved quality, stability, and variation,” in NIPS 2017 conference,
2017.

[2] A. J. Cawsey, B. L. Webber, and R. B. Jones, “Natural language generation
in health care,” Journal of the American Medical Informatics Association,
vol. 4, pp. 473–482, Nov. 1997.

[3] O. Rambow, S. Bangalore, and M. Walker, “Natural language generation
in dialog systems,” in Proceedings of the First International Conference on
Human Language Technology Research, HLT ’01, (Stroudsburg, PA, USA),
pp. 1–4, Association for Computational Linguistics, 2001.

[4] D. Z. Inkpen and G. Hirst, “Near-synonym choice in natural language gen-
eration,” in In Proceedings of the International Conference RANLP-2003
(Recent Advances in Natural Language Processing), pp. 4–3, John Ben-
jamins Publishing Company, 2003.

[5] R. Lebret, D. Grangier, and M. Auli, “Neural text generation from struc-
tured data with application to the biography domain,” in Empirical Meth-
ods in Natural Language Processing (EMNLP), Nov. 2016.

[6] D. Wulf and V. Bertsch, “A natural language generation approach to sup-
port understanding and traceability of multi-dimensional preferential sen-
sitivity analysis in multi-criteria decision making,” Expert Systems with
Applications, vol. 83, pp. 131 – 144, 2017.

[7] I. GoodFellow, “Generative adversarial networks for text (reddit
discussion).” https://www.reddit.com/r/MachineLearning/comments/

40ldq6/generative_adversarial_networks_for_text/.

[8] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in Neural Information Processing Systems 27 (Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, eds.),
pp. 2672–2680, Curran Associates, Inc., 2014.

69

https://www.reddit.com/r/MachineLearning/comments/40ldq6/generative_adversarial_networks_for_text/
https://www.reddit.com/r/MachineLearning/comments/40ldq6/generative_adversarial_networks_for_text/


70 BIBLIOGRAPHY

[9] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adver-
sarial networks,” in Proceedings of the 34th International Conference on
Machine Learning (D. Precup and Y. W. Teh, eds.), vol. 70 of Proceedings
of Machine Learning Research, (International Convention Centre, Sydney,
Australia), pp. 214–223, PMLR, Aug. 2017.

[10] N. J. Nilsson, The Quest for Artificial Intelligence. New York, NY, USA:
Cambridge University Press, 1st ed., 2009.

[11] W. Mcculloch and W. Pitts, “A logical calculus of ideas immanent in ner-
vous activity,” Bulletin of Mathematical Biophysics, vol. 5, pp. 127–147,
1943.

[12] A. M. Turing, “On computable numbers, with an application to the
Entscheidungsproblem,” London Mathematical Society, vol. 2, no. 42,
pp. 230–265, 1936.

[13] A. Hodges, Alan Turing: The Enigma. Walker & Company, 2000.

[14] A. M. Turing, “Computing Machinery and Intelligence,” Mind, vol. LIX,
pp. 433–460, 1950.

[15] J. Lighthill, “Artificial intelligence: A general survey,” Artificial Intelli-
gence: a paper symposium, Science Research Council, 1973.

[16] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
Pearson Education, 2 ed., 2003.

[17] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning represen-
tations by back-propagating errors,” Nature, vol. 323, pp. 533–536, Oct.
1986.

[18] G. Tesauro, “Temporal difference learning and td-gammon,” Communica-
tions of the ACM, vol. 38, pp. 58–68, Mar. 1995.

[19] G. E. Moore, “Cramming more components onto integrated circuits,” Elec-
tronics, vol. 38, April 1965.

[20] M. Lipshutz, R. McEntire, and D. P. McKay, “Lima: a logistics inven-
tory management assistant,” The Seventh IEEE Conference on Artificial
Intelligence Application, vol. I, pp. 393–397, Feb 1991.

[21] M. Benaroch and V. Dhar, “An intelligent assistant for financial hedg-
ing,” in The Seventh IEEE Conference on Artificial Intelligence Applica-
tion, vol. I, pp. 168–174, Feb 1991.

[22] L. Johnson and A. Hoback, “From prototype to production: expanding
expert systems project management planning,” in IEEE/ACM Interna-
tional Conference on Developing and Managing Expert System Programs,
pp. 286–294, Sep 1991.



BIBLIOGRAPHY 71

[23] T. Falas, A. Charitou, and C. Charalambous, “The application of artificial
neural networks in the prediction of earnings,” in Neural Networks, 1994.
IEEE World Congress on Computational Intelligence, vol. 6, pp. 3629–
3633, Jun. 1994.

[24] M. G. Dorrer, A. N. Gorban, and V. I. Zenkin, “Neural networks in psychol-
ogy: classical explicit diagnoses,” in The Second International Symposium
on Neuroinformatics and Neurocomputers, pp. 281–284, Sep 1995.

[25] E. Denby and J. Gammack, “The naming of colours: investigating a psy-
chological curiosity using AI,” in Neural Information Processing Systems,
1999, vol. 3, pp. 964–973, 1999.

[26] T. Ogawa, T. Minohara, H. Kanada, and Y. Kosugi, “A neural network
model for realizing geometric illusions based on acute-angled expansion,”
in Neural Information Processing, 1999. Proceedings. ICONIP ’99. 6th In-
ternational Conference on, vol. 2, pp. 550–555, 1999.

[27] L. I. Perlovsky, “Emotions, learning and control,” in Proceedings of the 1999
IEEE International Symposium on Intelligent Control Intelligent Systems
and Semiotics, pp. 132–137, 1999.

[28] N. DeClaris, “A systems approach to medical decision aiding,” in Confer-
ence Proceedings 1991 IEEE International Conference on Systems, Man,
and Cybernetics, vol. 3, pp. 2103–2107, Oct. 1991.

[29] D. A. Klein and E. H. Shortliffe, “Interactive diagnosis and repair of
decision-theoretic models,” The Seventh IEEE Conference on Artificial In-
telligence Application, vol. I, pp. 289–293, Feb 1991.

[30] W. F. Punch, “Large interactions of compiled and causal reasoning in di-
agnosis,” IEEE Expert, vol. 7, pp. 28–35, Feb 1992.

[31] A. Cinar, E. Tatura, J. DeCicco, R. Raj, N. Aggarwal, M. Chesebro,
J. Evans, M. Shah-Khan, and A. Zloza, “Automated patient monitoring
and diagnosis assistance by integrating statistical and artificial intelligence
tools,” vol. 2, p. 700, Oct 1999.

[32] T. Smithers, M. X. Tang, and N. Tomes, “An approach to intelligent drug
design support,” in [1993] Proceedings of the Twenty-sixth Hawaii Interna-
tional Conference on System Sciences, vol. I, pp. 634–645, Jan 1993.

[33] J.-H. Yoo, B.-H. Kang, and J.-U. Choi, “A hybrid approach to auto-
insurance claim processing system,” vol. 1, pp. 537–542, Oct 1994.

[34] H. M. Mashaly, A. M. Sharaf, M. M. Mansour, and A. A. El-Sattar, “Imple-
mentation of an artificial neural network based controller for a photovoltaic
energy scheme,” vol. 4, pp. 2545–2549, Jun 1994.



72 BIBLIOGRAPHY

[35] T. Koyama, T. Horie, T. Yoshioka, F. Yoshitani, and J. Takahashi, “A
highly intelligible speech synthesis for banking services in financial network
system anser,” in IVTTA: Interactive Voice Technology for Telecommuni-
cations Applications. IEEE 4th Workshop, pp. 87–90, Sep 1998.

[36] M. Campbell, A. J. H. Jr., and F. hsiung Hsu, “Deep blue,” Artificial
Intelligence, vol. 134, pp. 57–83, 2002.

[37] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,
T. Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui,
L. Sifre, G. van den Driessche, T. Graepel, and D. Hassabis, “Mastering
the game of go without human knowledge,” in Nature, vol. 550, pp. 354–
359, Oct 2017.

[38] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan,
and D. Hassabis, “Mastering chess and shogi by self-play with a general
reinforcement learning algorithm,” Dec 2017.

[39] A. Rahimi, “Nips 2017, test-of-time award presentation,” in NIPS 2017,
Presented in the NIPS conference as a Test-of-time award presentation,
Long Beach, CA, 2017.

[40] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[41] F. Rosenblatt, “The perceptron: A probabilistic model for information
storage and organization in the brain,” Psychological Review, pp. 65–386,
1958.

[42] B. Widrow, “An adaptive ’Adaline’ neuron using chemical ’memistors’,”
technical report at Stanford university, Solid-State Electronics Laboratory,
under an Office of Naval Research contract, 1960.

[43] M. Minsky and S. Papert, Perceptrons: An Introduction to Computational
Geometry. Cambridge, MA, USA: MIT Press, 1969.

[44] K. Fukushima, “Neocognitron: A self-organizing neural network model for
a mechanism of pattern recognition unaffected by shift in position,” vol. 36,
pp. 193–202, Feb 1980.

[45] J. J. Hopfield, “Neural networks and physical systems with emergent collec-
tive computational abilities,” National Academy of Sciences of the United
States of America, vol. 79, pp. 2554–2558, Apr. 1982.

[46] P. Smolensky, “Parallel distributed processing: Explorations in the mi-
crostructure of cognition,” ch. Information Processing in Dynamical Sys-
tems: Foundations of Harmony Theory, pp. 194–281, Cambridge, MA,
USA: MIT Press, 1986.

http://www.deeplearningbook.org


BIBLIOGRAPHY 73

[47] S. Kullback and R. A. Leibler, “On information and sufficiency,” Ann.
Math. Statist., vol. 22, no. 1, pp. 79–86, 1951.

[48] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, pp. 1735–1780, Nov. 1997.

[49] “A survey on the application of recurrent neural networks to statistical
language modeling,” Computer Speech and Language, vol. 30, no. 1, pp. 61
– 98, 2015.

[50] F. M. Bianchi, E. Maiorino, M. C. Kampffmeyer, A. Rizzi, and R. Jenssen,
“An overview and comparative analysis of recurrent neural networks for
short term load forecasting,” CoRR, vol. abs/1705.04378, 2017.

[51] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proceedings of the IEEE, vol. 86,
pp. 2278–2324, Nov 1998.

[52] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-wise
training of deep networks,” NIPS, 2007.

[53] G. Tesauro, “Practical issues in temporal difference learning,” Machine
Learning, vol. 8, pp. 257–277, May 1992.

[54] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in 25th International Confer-
ence on Neural Information Processing Systems, vol. 1 of NIPS’12, (USA),
pp. 1097–1105, Curran Associates Inc., 2012.

[55] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Improving neural networks by preventing co-adaptation of feature
detectors,” CoRR, 2012.

[56] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov, “Dropout: A simple way to prevent neural networks from overfitting,”
Journal of Machine Learning Research, vol. 15, pp. 1929–1958, 2014.

[57] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” in Proceedings of Workshop at ICLR
2013.

[58] D. Wu and X. Liu, “Improve training stability of semi-supervised generative
adversarial networks with collaborative training,” in Proceedings of ICLR
2018, Sep. 2017.

[59] I. J. Goodfellow, “NIPS 2016 tutorial: Generative adversarial networks,”
Neural Information Processing Systems, Dec. 2016.

[60] B. Fuglede and F. Topsoe, “Jensen-shannon divergence and hilbert space
embedding,” in International Symposium on Information Theory, 2004,
pp. 31–, June 2004.



74 BIBLIOGRAPHY

[61] B. J. Frey, G. E. Hinton, and P. Dayan, “Does the wake-sleep algorithm
produce good density estimators?,” in Advances in Neural information Pro-
cessing Systems, pp. 661–667, MIT Press, 1996.

[62] I. Sutskever, J. Martens, and G. E. Hinton, “Generating text with recur-
rent neural networks,” Proceedings of the 28th International Conference on
Machine Learning (ICML-11), Bellevue, Washington, USA, pp. 1017–1024,
Jan. 2011.

[63] A. Graves, “Generating sequences with recurrent neural networks,” De-
partment of Computer Science, University of Toronto, CoRR, 2013.

[64] A. van den Oord, N. Kalchbrenner, and K. Kavukcuoglu, “Pixel recurrent
neural networks,” in Proceedings of the 33nd International Conference on
Machine Learning, ICML 2016, New York City, NY, USA, Jun. 2016.

[65] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” The
International Conference on Learning Representations (ICLR), Banff, Dec.
2013.

[66] C. Doersch, “Tutorial on variational autoencoders,” Technical Report.
Carnegie Mellon / UC Berkeley, 2016.

[67] L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein, “Unrolled generative
adversarial networks,” in proceedings of ICLR, 2017.

[68] B. Poole, A. A. Alemi, J. Sohl-Dickstein, and A. Angelova, “Improved
generator objectives for gans,” NIPS Workshop on Adversarial Learning,
Google AI, 2016.

[69] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and
X. Chen, “Improved techniques for training gans,” in Proceedings of the
30th International Conference on Neural Information Processing Systems,
NIPS’16, (USA), pp. 2234–2242, Curran Associates Inc., 2016.

[70] M. Arjovsky and L. Bottou, “Towards Principled Methods for Training
Generative Adversarial Networks,” in proceedings of ICLR, Jan. 2017.

[71] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville, “Im-
proved Training of Wasserstein GANs,” Advances in Neural Information
Processing Systems (NIPS), 2017.

[72] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in 27th International Conference on Neural Infor-
mation Processing Systems - Volume 2, NIPS’14, (Cambridge, MA, USA),
pp. 3104–3112, MIT Press, 2014.

[73] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in 32nd International Con-
ference on International Conference on Machine Learning - Volume 37,
ICML’15, pp. 448–456, JMLR.org, 2015.



BIBLIOGRAPHY 75

[74] Z. Zhou, W. Zhang, and J. Wang, “Inception score, label smoothing, gra-
dient vanishing and -log(d(x)) alternative,” CoRR, Aug. 2017.

[75] A. Borji, “Pros and cons of GAN evaluation measures,” Center for Research
in Computer Vision, University of Central Florida, Orlando, FL, USA,
CoRR, Feb. 2018.

[76] S. Barratt and R. Sharma, “A note on the inception score,” Department
of Electrical Engineering, Stanford University, Stanford, CA, USA, Jan.
2018.

[77] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: A method for
automatic evaluation of machine translation,” in Proceedings of the 40th
Annual Meeting on Association for Computational Linguistics, ACL ’02,
(Stroudsburg, PA, USA), pp. 311–318, Association for Computational Lin-
guistics, 2002.

[78] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Cor-
rado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Lev-
enberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster,
J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke,
V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke,
Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine learning on het-
erogeneous systems,” 2015. Software available from tensorflow.org.

[79] M. Freitag and Y. Al-Onaizan, “Beam search strategies for neural ma-
chine translation,” in Proceedings of the First Workshop on Neural Machine
Translation, pages 56–60, Vancouver, Canada, Aug. 2017.

[80] J. Martens and I. Sutskever, Training Deep and Recurrent Networks with
Hessian-Free Optimization, pp. 479–535. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012.

[81] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning.
Cambridge, MA, USA: MIT Press, 1st ed., 1998.

[82] C. Szepesvári, Algorithms for Reinforcement Learning. Morgan & Claypool,
2010.

[83] Y. Zhang, Z. Gan, K. Fan, Z. Chen, R. Henao, D. Shen, and L. Carin,
“Adversarial Feature Matching for Text Generation,” Jun. 2017.

[84] Y. Zhang, Z. Gan, and L. Carin, “Generating Text via Adversarial Train-
ing,” in Workshop on Adversarial Training, NIPS 2016, Barcelona, Spain,
2016.

[85] J. Guo, S. Lu, H. Cai, W. Zhang, Y. Yu, and J. Wang, “Long Text Gen-
eration via Adversarial Training with Leaked Information,” CoRR, Sep.
2017.



76 BIBLIOGRAPHY

[86] W. Fedus, I. Goodfellow, and A. M. Dai, “MaskGAN: Better Text Gener-
ation via Filling in the ,” in Proceedings of ICLR 2018, Jan. 2018.

[87] Z. Hu, Z. Yang, X. Liang, R. Salakhutdinov, and E. P. Xing, “Toward Con-
trolled Generation of Text,” in Proceedings of Machine Learning Research,
Mar. 2017.

[88] S. Rajeswar, S. Subramanian, F. Dutil, C. Pal, and A. Courville, “Adver-
sarial Generation of Natural Language,” CoRR, May. 2017.

[89] Lernappart, “More improved training of wasserstein gans and dragan.”
https://lernapparat.de/more-improved-wgan/.

[90] X. Wei, B. Gong, Z. Liu, W. Lu, and L. Wang, “Improving the improved
training of wasserstein gans: A consistency term and its dual effect,” CoRR,
Mar. 2018.

https://lernapparat.de/more-improved-wgan/

	Introduction
	Motivation
	Hypotheses and research questions
	Objectives
	Structure

	Background
	Neural Networks and artificial intelligence
	Deep learning
	Generative modeling
	Autoregressive models (Fully Visible Belief Networks)
	Variational autoencoders
	Generative adversarial networks
	Comparison between generative model techniques


	Methods
	WGAN
	WGAN-GP

	Proposal
	RNN architecture
	CNN architecture

	Experimental setting and results
	Data
	Metrics and KPIs
	Results

	Conclusions
	Next steps
	Appendices
	Tested architectures

