Constraining Compact DM with lensed GWs
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Constraints on the total mass fraction in the form of PBH
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Gravitational Waves
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MOTIVATION

Since the period of GW is of order 1 millisecond, microlensing by
objects which introduce time delays of order 1 millisecond will result
In interference between the multiple microlensed images.
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PBHs at cosmic distances with masses a few tens of solar masses, can
produce such time delays.



Interference of GW
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Interference of GW
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Relative shift proportional to the mass of the microlens




Interference of GW

Magnification depends on Frequency
Assume wave optics and solve diffraction integral in Fourier space

Looks like misalignment of spins




“Classic” View

Caustic region
without microlenses

J.M. Diego 2018




If lensing is degenerate with the mass, how can this be tested?

Microlensing of highly magnified GW is not only possible, is unavoidable.
Then, interference effects should be observable at LIGO frequencies.
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Diffraction integral
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Diffraction integral

Fw,p) = A,
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h(t) (arbitrary units)
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Effects on the strain (from stellar/lremnants microlenses)

h(t) (arbitrary units)
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Microlensing by 30 M, PBH near critical curves of galaxies and clusters

- 0.3% POS

Positive parity

3.3% POS

0.3% NEG

cb
c
<
o
©
o
@©
E
c
i)
®
3
=
c
o
@®©
=

Negative parity

3.3% NEG




o
c
S
o
©
3
P
S
0
7p)
c
0
®
3
=
c
o
(1]
=

1%Pos! i

Positive parity

Negative parity




PROBABILITY OF DISTORTION (macromodel magnification = 10x3)

0.10
0.01

NEG
1.0% PBH

0.10

Magnification

0.1

NEG POS
0.01 L 0-3% PBH 0.3% PBH
1.0 74 WA e R e - - _.__,.. = = — -
- Py —~ N et
I 50% ]
- POS 90%
' E_u N'DI P|EH| Ll 9?% A
100 1000 100 1000
GW Frequency (HZ) J.M. Diego 2020




PROBABILITY OF DISTORTION (macromodel magnification = 50x3)
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Is LIGO already seeing Lensed GWs?
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Is LIGO already seeing Lensed GWs?

Observed
. *M =M (1+2)
%’

Inferred

h(t) ~ sqrt() (M™ID(z))F(t,M,6)

D(Zest) =D(Ztrue)lsq rt(”)
IF an event at high z is magnified by a large factor, u, then if lensing is

ignored, it will appear as a much closer event with a larger mass.

Then, IF the probability of lensing is reasonable, some of the LIGO
events may be actually distant lensed events with smaller masses

Unlike other events (SNe, GRB, etc) all sky is observed at once. The
only limitations are dictated by the geometric factor, 0.



Inferred M., [M,]
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LENSING INTERPRETATION OF LIGO DETECTIONS
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Lensing predicts also a bimodal mass function
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Is LIGO already seeing Lensed GWs?

DraAFT VERSION 14 May 2021
Typeset using IATEX twocolumn style in AASTeX62

Search for lensing signatures in the gravitational-wave observations from the first half of LIGO-Virgo’s third observing run

THE LIGO SciENTIFIC COLLABORATION AND THE VIRGO COLLABORATION

(Dated: 13 May 2021)

ABSTRACT

We search for signatures of gravitational lensing in the gravitational-wave signals from compact binary coales-
cences detected by Advanced LIGO and Advanced Virgo during O3a, the first half of their third observing run.
We study: 1) the expected rate of lensing at current detector sensitivity and the implications of a non-observation
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Recently, the LIGO-Virgo Collaboration (LVC) concluded that there is no evidence for lensed
gravitational waves (GW) in the first half of the O3 run [1], claiming “We find the observation
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CONCLUSIONS

PBH are a candidate for DM which become popular after LIGO
detected a relatively abundant of BH with >20 M

LIGO - IF the rate of events at z~2 is in the range of 10”4, the low
frequency events observed by LIGO are (likely) gravitationally lensed
WG at z>1 with BH masses ~ 10 Msun.

Lensing at high magnification should be affected by microlensing and
Interference (pattern needs to be incorporated in templates)

Microlensing can set limits on the abundance of BH (including PBH)
Images with negative parity should show interference signs more often
LIGO may be already observing strongly lensed GWs. Detalled

analyses of their strains may reveal microlensing signatures from
Intervening compact dark matter structures.
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Microlensing at extreme macromodel magnification

Image Plane

Images with
Negative parity

Classic view

Source Plane
Smooth model

VS

Images with
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Microlens _mode|

More microlenses —» More distortion

J.M. Diego, 2018



P. Kelly, J.M. Diego et al 2018, Nature Ast. 2, 334-342
The Icarus Event Diego, J.M., Kaiser, N. et al. 2018, Apj, 857, 25
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Net probability by all halos & at all redshifts

for a source at z=2
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A back of the envelope calculation

Probability of having magnification larger than 100 : ~3E-7

Volume between z=1.9 and 2.1 . ~ 100 Gpc®

Rate of events at z=2 . ~ 3E4 /(yr Gpc?)
Compare with ~10° per
yr & Gpc® for SNe

Total Number of events between z=1.9 and 2.1 . 3E6 per year

Total Number of u>100 events between z=1.9 and 2.1 : ~ 1 per year

Rate needs to be of order 10*for lensing hypothesis to work

We do not know what the actual rate is !



Rate(z) [yr'Gpc”]

Model elements: Rates and BBH mass function

Basic assumption is that the rate of events at high-z is high to
compensate the small probability for lensing

Mass function is assumed to be “natural”, that is, consistent with
observational constrains from our Galaxy

>1 order of magnitude smaller than SNe rate
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Rate(z) [yr'Gpc”]

Abbott et al. 2018 (1811.12940)
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Inferred M, [M,]

Strong Evolution + Monochromatic MF
A simple monochromatic mass function already
does a decent job at reproducing the data
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Modest Evolution +Broad MF
Many events should have been detected
by LIGO in this regime. Where are they?
Strong Evolution + Gauss MF
A Gaussian mass function goes

in the right direction Broadhurst, Diego & Smoot 2018






