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NS asymmetry as GW emission source

Aasi et al, 2014
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ellipticity in asymmetric NSs

A rotating NS generates GWs if it has some long-living
axial asymmetry δR/R: mountains, glitches, precession,
osc. modes, magnetic deformations.
ellipticity ε =

Ixx−Iyy
Izz
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NS structure
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Inhomogeneous crust: PASTA phases

Source: COMPSTAR outreach

Microscopic models must reflect correlations (also defects or
impurities) → extract elastic properties → GW amplitude h0.

Microscopic Many-body calculations provide correlations at high
order
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Simulations in a box with MD

Nuclear dynamics are solved using a thermostat hamiltonian with
kinetic and 2B (+3B) potential at finite T and density.
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Thermal bath: better T control in the NVT system than rescaling

nb = 0.016 fm−3, Ye = 0.2 for Q = 106MeV(fm/c)2 (upper) and

Q = 108MeV(fm/c)2 (lower) [Pérez-Garcı́a et al 2018]
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Lower densities in neutron rich pasta

0.03fm−3 proton density isosurface
nb = 0.05 fm−3 (left) and nb = 0.025 fm−3 (right).

Watanabe et al 2003, Horowitz, Pérez-Garcı́a et al.

2004,2005, Caplan et al 2018 and more
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Convergence: single ion approximation

Goriely et al., 2010.
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Ions in a degenerate e− Fermi sea: Ewald sum

Watanabe et al., 2013.

Coulomb parameter Γ = (Ze)2/akBT , a/L = (3/4πN)1/3.
Melting condition: Γ > 175.

In-medium: Debye interaction 1
Rij
e−Rij/λe with electron

screening length λe = 1
2kFe

√
π
α and Gaussian ionic charges

ρ(r) ∼ e−r2/Λ.
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Outer crust: single ion approximation

PG, Barba, Albertus in prep 2021.
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Summing at all orders in-medium potentials

Contribution from real and reciprocal ~h space (for example in
pure Coulomb)
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∑

iQi
∑

j>iQj
erfc(κrij)

rij

Urecip = 4π
V

∑∞
h>0

e−h
2/4κ2

h2

([∑
iQi cos

(
~h · ~ri

)]2

+
[∑

iQi sin
(
~h · ~ri

)]2
)

where ~h = 2πĤ−1~n , ~n = (nx, ny, nz) and V = det(Ĥ) is the cell
volume.
Corrected energy: U = Ureal + Urecip − Uself

This will translate into the forces appearing in the STRESS
TENSOR.
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Charged Multipoles θαβ
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Stress in the NS crust (pure Coulomb)
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Non Ewald calculations with Hadrons

Pasta max. breaking strains of order 0.1 MeV/fm3. nb = 0.05 fm−3 ,
Yp = 0.4. Caplan et al., 2018.
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10−5 < σmax < 10−1. Ushomirsky, Cutler et al. 2000
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Is NS crust really elastic?

The STRESS tensor and the strain tensor εµν can be expressed
in cartesian coord. (fixed V)

σαβ =Cαβxxεxx + 2Cαβxyεxy + 2Cαβxzεxz

+ Cαβyyεyy + 2Cαβyzεyz + Cαβzzεzz

as εµν → 0 the stress vanishes according to Hooke’s law.

Caplan et al., 2018.
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Oscillation modes

Andersson and Kokkotas, 2010.
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Additional coefficients in NS crust-core: shear viscosity

Kubo formulas for time correlations allow obtaining shear
viscosity

η =
β

V

∫ ∞
0
〈σxy(t)σxy(0)〉 dt

The dissipation timescale of r-modes due to the presence of the
Ekman layer roughly follows from

tEk ≈
tsv√
Re

where Re = ρbR
2
bΩ/η is the Reynolds number (the ratio

between the Coriolis force and viscosity)
Rb and ρb are the location of, and density in the Ekman layer
(base of the NS crust).
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Additional coefficients in NS crust: bulk viscosity

bulk viscosity
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Kilonovae and GW: multimessenger signal in BNS will
probe NS crust

MAAT @ GTC Prada et al., https://arxiv.org/abs/2007.01603
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Conclusions

NSs crust is an interesting place to develop axial
asymmetries capable of powering GW emission.

Microscopic simulations of neutron rich matter can provide
a richer description of stresses in the crust due due to
dynamical instabilities in an isolated object or binary

Outer crust based on OCP description is a meaningful
approximation to a multiple component hadron system.

Preliminary analysis indicate in-medium effects must not
be discarded and non-linear deformations may follow.

THANK YOU


