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The distance duality relation

Etherington relation: relates the luminosity distance to the angular
diameter distance at any redshift z

dr(z) = (1 + 2)*da(2)

Duality parameter N ( z )

Hint of new physics ?7(2:) % 1 or €0 % 0



Strongly Lensed GW events: da(z)

In order for our method to work, we must independently measure the
following observables:
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Strongly Lensed GW events: da(z)
(21, 25, At,A), Op, os15)
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Strongly Lensed GW events: da(z)

Then we can solve uniquely for the angular diameter distance
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Luminosity distance from GW signals

The luminosity distance to the source can be directly obtained by
matching the GW signals to the GW templates.
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Our method to measure the duality relation requires direct measurements of
source redhsift, achievable only for NS-NS and NS-BH mergers.
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Fiducial cosmological distances

Forecast direct measurements of the duality parameter from the ET

We use a MCMC approach to create mock samples.
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Redshift distribution of SL GW sources based on the initial
configuration of ET.



Fiducial cosmological distances

Modification of the luminosity distance
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Mock sample: at each redshift we create mock distances da(zg) and dp (z)
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Mock DDR data points

MCMC-like approach to obtain the mean values and the errors of the
data points as follows:

1. Using the mock distances at each redshift D; ,,0ck
we draw 10,000 random samples from the assumed
distribution for D; yock-

2. We then estimate 1(z;) at each redshift z; for each

of the 10,000 random points using Eq. (2)) to obtain 12) = 2.
10,000 realisations of the distribution of 7(z;). = (1+2)<®

3. We estimate the mean and standard deviation of
log,,n(z;) at each redshift point to create our final

mock sample. N ,
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Machine Learning

Machine learning (ML) is the study of computer algorithms that improve automatically
through experience

-Can remove biases due to a priori chosen models.

-Will play a big role in testing accurately the ACDM model.
CLASS|ICAL MACHINE LEARNING

-Search for new physics or systematics in the data. _— pty \ (abeled
or numerical n any way
-Search for tensions in the data by placing tighter SUPERVISED uNSU“’ERWSED
constraints on parameters. oo y ore oy sty Jenes; Nt
CLASSlFICATlON ?LUSTLERILNG Find idden
: . vide the socks by color» «Split PtS"S"t 1. thing ependencies
-Applied to reconstruct consistency tests of ACDM. . " ASSOCIATION
«Find What clothes | often
/ REGRESS‘ON wear togethery»
«Divide the ties by length» ':,, : ‘
N DIMENSI|ON *

REDUCTION

(generalization)
«Make the best outfits from the given clothes»



Genetic Algorithms (GA)

-The GA is a stochastic optimization and reconstruction ML approach,
not very different from MCMC.

-The model itself 1s evolving as the code runs, since we are exploring
the functional space.

-It’s not biased by a priori selected models or other assumptions.

-Strong mathematical foundations with several rigorous theorems on
convergence, selection, etc.

12

-Well tested and simple to implement.



Genetic Algorithms

Reconstruct data without assumptions on the theoretical model

-Stochastic search approach niial mopulation }
-Start with a set of functions and grammar
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Results
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Conclusions

I. Test of fundamental physics with strong GW lensing
[I. Methodology to create direct duality relation mocks

[II. A Machine Learning approach to reconstruct the duality relation
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