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Pérez-Diukina, C., Sabater-Garćıa, P., and Zaragoza-Chichell, J. . . . . . . . . . . . . . . . . . . . . . . . . . 50

Partial Differential Equations in Random Walk Spaces
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Applications of fractals, for image compression and
realistic terrain generation

Cayetano Manchón Pernis ♭

(♭) tano@tano.xyz

1 Introducción

Fractals and the theory on which they are based can be used for different applications, for example,
using the self-similarity properties of fractals we can develop image compression methods, on the
other hand, we can also take advantage of their great resemblance to elements of nature to generate
realistic terrain for video games or animation. We will discuss these two applications and show
the results obtained.

2 Image compression

Fractals can be used for lossy image compression [10] [9], this kind of compression assumes a loss
of information when compressing the image under a certain tolerance level, i.e., you cannot get
exactly the same image you compressed.
The idea comes from dividing into range blocks and domain blocks, the range blocks must not
overlap and must cover the whole image, the domain blocks can overlap and do not have to cover
the whole image. From here it is necessary to find a set of contractive affine transformations over
the domain blocks to generate all the range blocks.
This search can be very computationally expensive, for this reason, the type of contractive map-
pings to be tested and the number of possible domain blocks are usually limited. With that in
mind a possible solution of the problem would be:

• We divide the image in range blocks, note that these blocks are the ones that will form the
final image once decompressed, to save information it is important that the codification of
each transformation occupy less memory than each block, for example, we can take blocks
8 × 8, if the image is 512 × 512 we will obtain a total of 64 × 64 = 4096 blocks.

• We divide the image in a list of all the possible domain blocks that we are going to consider,
for example we consider 16×16 blocks allowing overlapping between them, with a 512×512
image we can obtain 497 × 497 = 247009 blocks.

• Then we test the contractive transformations between the range blocks and the domain
blocks, note that we always apply the same contraction, we scale by 0.5 each domain block.
With this in mind, for each range block, we look for the domain block that most closely re-
sembles it after applying the transformation. Note that we can also test different orientations
to find better matches.
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• After this we have a list of domain blocks and contractive mappings that can be used to
reconstruct the original image.

We can start from an arbitrary image from which we obtain the initial domain blocks and apply
iterated transformations until the original image is obtained.

2.1 Results

We have made a variation of the previous algorithm and applied the compression to an image in
order to analyze the results.

Our implementation of the algorithm [11] consists of dividing the image into range blocks just
as previously explained and then search in the same image for the most similar one but with
two times the size, if one is found, this range block is removed from the image and added as a
transformation. We apply this iteratively until we finish with all the Range Blocks, finally we will
have obtained a fragment of the original image that we will be able to reconstruct if we apply the
transformations in the inverse order to how we obtained them.

In the images 1, 2 we can see the results of compression and decompression when applying the
mentioned algorithm and in the images 3, 4 the same but increasing the tolerance when comparing
the blocks, we can appreciate a higher compression ratio at the cost of a loss of quality, we could
also test different types of contractive mappings which would increase the quality at the price of
increasing the computational cost.

Figure 1: Image compressed Figure 2: Image decompressed
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Figure 3: Image compressed high tolerance Figure 4: Image compressed high tolerance

3 Procedural terrain generation

Fractals are commonly used in computer graphics for the procedural terrain generation [6] [5]. For
this purpose, height maps are generated, they are 2-dimensional grids that store in each cell how
high that particular point should be. The reason for using fractals is that fractional Brownian
motion, which is also often called 1/fβ type noise, has a strong resemblance to the structure of
mountains.
We will use the fractal dimension, Df given by De the Euclidean dimension and H as the holder
exponent, this relates to the noise 1/fβ as follows:

Df = De + 1 − H = DE + 3 − β

2
In order to preserve the fractal properties it must be satisfied that:

H ∈ (0, 1) β ∈ (2, 3)

The H maps directly to the roughness of the terrain, increasing roughness as H approaches 0 and
increasing smoothness as H approaches 1.
We will discus two well known algorithms for fractal terrain generation, ”Midpoint displacement”
and ”Noise synthesis”.

3.1 Midpoint displacement algorithm

The idea of the algorithm in 1D consists of, first we give fixed values to the extremes of the
height map, then we take the midpoint and its new value will be the interpolation between its
extremes plus a random offset using a Gaussian distribution, in the next iteration we take two
new midpoints, interpolate and add the offset, we repeat this until the height map is complete.
The key point is that at each iteration the random offset is calculated by:

rand(minh, maxh) × (1 − H)iter

Where rand(minh, maxh) refers to obtaining the random value between the interval (minh, maxh)
and iter refers to the current iteration.
In figures 5, 6, 7 and 8 generated from our implementation [12] we can see the evolution of the
algorithm.

3
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Figure 5: 1 subdivision Figure 6: 3 subdivisions

Figure 7: 7 subdivisions Figure 8: 1023 subdivisions

This is good, but to do it in 2D ”displacing the midpoint” is not that obvious, in order to apply
this idea to surfaces we use the diamond-square algorithm [2] [3] [4] that selects intermediate
points of the height map in a robust way.
As you can see in the figure 9 first we put fixed values to the corners, then for each square with
values already set we take the midpoint and give as value the average of the four corners plus
the random offset (this is the diamond step), for each diamond with values we take the midpoint
and give as value the average between the four corners plus the random offset (this is the square
step), repeat these two steps until the height map is complete.

Figure 9: Square diamond algorithm [5]

In figures 10, 11 and 12 generated from our implementation [12], we can see the results and how
varying the H parameter affects the smoothness of the terrain.

3.2 Noise synthesis algorithm

The Midpoint Displacement algorithm gives good results but has certain limitations, its recursive
nature and the need to know the global state of the height map to complete it makes it an
inefficient algorithm at large scales.
On the other hand, Noise Synthesis [6] is a purely functional algorithm that enables you to obtain
the height of a point x,y without the need of having a global knowledge of the map. This allows
you to generate height maps of indeterminate size in a parallel way.
To learn about this method we must first introduce several concepts. Noise function, is a

4
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Figure 10: Midpoint H = 0.40 Figure 11: Midpoint H = 0.50

Figure 12: Midpoint H = 0.60

random continuous map defined as: f : R2 → Y with Y = (−1, 1). Octaves the number of
examples of noise functions used. Lacunarity the frequency variation in each octave.

The idea is to start with a noise function, Perlin Noise [1] is a good function to generate terrain,
and add octaves whose frequency varies according to the lacunarity and its amplitude according
to the H.

Being L the lacunarity, and N the total number of octaves. The function can be expressed as
follows:

NoiseSynth(x, y) =
N−1∑
n=0

(noise(x × Ln, y × Ln) × (1 − H)n)

In the figures 13, 14, 15, 16, 17 generated from our implementation [12], we can see the results
obtained by varying some of the parameters, H affects the result as expected, and as we increase
the number of octaves or we increase the number of octaves or the lacunarity the roughness
increases.

5
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Figure 13: Noise syntehesis with octaves = 12,
lacunarity = 2.0 and H = 0.40

Figure 14: Noise syntehesis with octaves = 12,
lacunarity = 2.0 and H = 0.50

Figure 15: Noise syntehesis with octaves = 12,
lacunarity = 2.0 and H = 0.60

Figure 16: Noise syntehesis with octaves = 6,
lacunarity = 2.0 and H = 0.50

Figure 17: Noise syntehesis with octaves = 6,
lacunarity = 2.5 and H = 0.50

4 Conclusions

We have seen the usefulness of fractals in solving real-world problems, looking for fractal shapes
in problems and finding the mathematical way to fit them there. Both image compression and
terrain generation are very broad fields where a wide variety of algorithms can be created using
fractals to solve problems, each with its advantages and disadvantages.

6
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Applications of Mathematics in Epidemics

Emilia Giulia Tersigni ♭,
(♭) eter@alumni.uv.es

1 Introduction

Broadly speaking, a model is an abstract representation of selected aspects of reality. Certain
parameters are isolated and their relationships are studied in order to capture the pattern of a
natural phenomenon, on which, among other things, forecasts are intended to be made.
Each model serves a special purpose in a specific period; from certain assumptions and based on a
set of data, it gives a result with a certain level of confidence. Models are not a tabula rasa, there
is information that is assumed to be (approximately) true and that is not constantly made explicit.
Exemplarily, the transmission rate or the immunity lapse are assumed once they are unknown.
Data are the inputs, the primary elements of the models, so the better quality they are, the better
results they are likely to report. For example, records of hospitalised coronavirus deaths are more
accurate than those of (probable) coronavirus deaths, since in the former case the records are
one-to-one with the truth, whereas in the latter case there is at least an under-recording of those
who died in their homes without any evidence. In addition to answering the key questions we
have indicated, epidemiological models need to be tested. Every model is evaluated before it is
put into operation, we may mention that the success of a model is measured by its experimental
adequacy: good models are those that make realistic predictions, let us say the closest to the truth.

2 SIR model

In this section we will analyze the classic Kermack and Mc-Kendrick model (for more details
see [1]) a SIR-type model, by dividing the population of people attacked by the virus into three
classes.

We will start with class S which corresponds to the group of individuals susceptible to a com-
municable disease. These individuals do not have immunity to the infectious agent so they may
become infected if exposed. The second class, denoted by I, represents the group of infected
individuals who are capable of transmitting the disease to susceptible persons with whom they
come into contact. Finally, class R represents individuals who have or have had the infection and
who become immune to the disease or die, and as a consequence these individuals do not affect
the dynamics of disease transmission when they come into contact with other people.

The model presented here is based on the following assumptions (see [4]):
The population to be considered in this model is constant and its size is equal to N, that is, the
same birth and death rates will be considered throughout the process of spread of the disease,
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since the duration of an epidemic is short. The immigration and emigration of the population
will not be estimated, that is, the population will be considered closed. The latency period from
the instant of exposure to that at which the person becomes infectious is small enough not to be
taken. Infectious individuals will leave their class at a constant rate γ to belong to the recovered
class.

2.1 Ordinary differential equations of the model

This subsection is based on [3, 4].

According to the previous assumptions we will present the differential equations that model an
epidemic, based on the division that was made (N, S, I, R), as shown in Figure 1 that represents
the model diagram.

Figure 1: Diagram of SIR model

The number of susceptible individuals that become infectious is proportional to the product of the
number of susceptible individuals by infectious individuals, that is, the rate of loss of susceptible
individuals is βSI. Thus we obtain the first equation that describes the susceptible individuals.

S′(t) = −βS(t)I(t),

the negative sign indicates the loss of susceptible individuals.
βS(t)I(t) further suggests the rate of gain of infectious persons, and represents the rate of gain
of recovered persons, that is, I suggests the output of the infectious class, thus we obtain the
differential equation for the infected.

I ′(t) = βS(t)I(t) − γI(t),

and the equation describing the recovered is,

R′(t) = γI(t),

since it suggests exit from the infectious class with a positive γ rate.
Considering that total population N was divided into Susceptible, Infectious and Recovered, we
have that N = S(t) + I(t) + R(t).
From the above we obtain the following system of equations (1) which is known as the classical
Kermack and Mc-Kendrick model.

S′(t) = −βS(t)I(t), S(0) = S0

I ′(t) = βS(t)I(t) − γI(t), I(0) = I0

R′(t) = γI(t), R(0) = R0,

(1)

9
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3 Modifications made to the model to describe successive waves
of COVID-19

In this section we will analyze whether SIR-type model is able to make accurate predictions about
the course of diseases such as COVID-19 (for more details see [2]).

3.1 Can the SIR model predict successive waves of COVID-19?

Looking at the model assumptions, neither births nor deaths are considered, not even those
produced by the infection under study. Furthermore, the fact that β and γ are constant does not
reflect the effect of realistic measures such as social distancing or scientific breakthroughs. Figure
2 shows how far the classical SIR model is from modeling correctly the course of COVID-19 in a
specific territory.

Figure 2: In these graphs we have depicted in red the evolution of active cases of COVID-19 in
Italy between the 20th of march 2020 (zero in the horizontal axis) and the 29th of April 2020 (tick
39 in the horizontal axis). In blue we have depicted the evolution predicted by the classical SIR
model calibrated with the data released by the Italian authorities on the 20th of march 2020. It
can be clearly seen that the classical SIR model is not an adequate tool to model this pandemic.

In the following we will look at a mathematical model that maintains the simplicity of the classical
SIR model, but at the same time predicts with a considerable accuracy the evolution of COVID-19
under certain reasonable assumptions. The model is tested with the official data regarding the
course of COVID-19 in Italy and Spain.
The model will be a non-independent SIR-type model with vital dynamics, non-constant popula-
tion and exponentially decaying infection and death rates to model the expansion of the COVID-19
in various territories, focusing on 2 of the most affected by this pandemic disease. It is calibrated
according to the data gathered in a period of time that includes at least 30 days, beginning at
least 10 days after the declaration of either partial or total lockdown.
The model we recommend here is based on two sets of assumptions. The principles of the first
set outline the equations of the model. We consider in essence a SIR model with vital dynamics
with the following characteristics:

(a) Neither the transmission rate β nor the death rate µ′ due to COVID-19 are constant in
our model. The accessible official data in the countries studied suggest that in the early
stages of pandemic disease in countries with strict control on social distancing, both β and
µ′ decay exponentially (see, for example, Figures 2 and 3) to their baseline values β and µ′

respectively. This would possibly be due to the fact that the evolution of the variables is still
a transient and therefore some time is required until the parameters reach their asymptotic
values.

10
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(b) We consider a recuperation rate γ that is not necessarily constant either. Although the ob-
served values of γ are somehow stable in the three territories studied, the monthly variations
of γ generate significant changes in the main epidemiological parameters. The way in which
we chose the values of γ is explained in the set of principles that give the calibration of the
model.

(c) We consider the existence of a constant birth rate λ > 0 that is the same for all three
categories S, I and R. We further assume that all the descendants are born free of infection,
but without immunity.

(d) Finally, we consider the existence of a constant death rate µ > 0 due to death reasons other
than COVID-19.

Figure 3: In the left, representation of βe and β for Italy during the calibration period. In the
right, representation of µ′

e and µ′ for Italy during the calibration period.

The above assumptions produce the following relationship among the variables S, I, R:
S′(t) = (λ − µ)S(t) + λ(I(t) + R(t)) − βS(t)I(t),

I ′(t) = βS(t)I(t) − γI(t) − µ′I(t) − µI(t),

R′(t) = γI(t) − µR(t).

(2)

The second set of hypotheses defines how the parameters β, µ′, γ, λ and µ have to be chosen, or
in other terms, the way the model should be calibrated:

(a) The values of λ and µ are provided in Table 1 ( [2]).

(b) As mentioned above, although the observed monthly mean values of the recovery rate γ
are fairly stable in all the territories studied, it should not be assumed that γ is necessarily
constant. When data from Italy and the United States are examined in relation to mortality
and recovery, variations in rates are noted until asymptotic values are reached. However,
we assume that γ is constant during each calendar month or along the calibration period
for each country. The values assigned to γ are based on the observed monthly mean values
of γ. Commonly the values of γ turn out to be very uniform, with quite a few exceptions,
such as the months of May and June in Italy, with values that are twice as big as in the
other months studied.

(c) With regard to the determination of β and µ′ we have seen a significant drop in the infection
and mortality rate in the official data published by the authorities of the three territories
studied. The functions β and µ′ are defined by means of an exponential regression on
the official data. It should be mentioned that, according to the actual data, mortality

11
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approaches its asymptotic value in a relatively short period of time. This is consistent with
the assumption that major changes, such as novel control policies or a sudden change in
sociological behavior have the potential to produce a transient state in which the model
parameters have the potential to change until they approach their baseline values.

It is essential to specify that we have run this model using the normalized variables:

SN (t) = S(t)
N

, IN (t) = I(t)
N

, RN (t) = R(t)
N

,

where N = S + I + R is the total population. In this new variables the model would be
S′

N (t) = (λ − µ)SN (t) + λ(IN (t) + RN (t)) − βSN (t)IN (t),

I ′
N (t) = βSN (t)IN (t) − γIN (t) − µ′IN (t) − µIN (t),

R′
N (t) = γIN (t) − µRN (t),

(3)

where the parameters λ, µ, β, µ′ and γ are all normalized.
We assume that the initial population of the nations under analysis is the population they had in
2018.
In order to asses the precision of the model, we have compared the reported active cases Ie(t) and
the model’s outcome for I(t) during the 40-day calibration period in Figure 4.
When we have β(t) and µ′(t) for Spain for a defined choice of β0 and µ′ we perform a 37 day
simulation of the model and compare the result with the reported data. Note that cumulative
deaths here are counted from 24 March, not from the beginning of the pandemic disease.

Figure 4: In the left, representation of the daily number of reported active cases in Spain Ie(t)
compared with the model’s outcome I(t). In the right, representation of the deaths by COVID-19
in Spain from March 24th until May 17th, 2020. Here De(t) appears in blue whereas D(t) is
shown in red. On the bottom, representation of the daily number of active cases in Italy Ie(t)
compared with the model’s outcome for I(t) during the calibration period, from 20/03/2020 to
29/04/2020.

12
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Figure 5: In the left, comparison of the transmission function β∗(t) used in the model and the
observed values of βe(t) until mid November 2020. In the right, comparison of the death rate
function µ′(t) used in the model and the observed values of βe(t) until mid November 2020.

In the Italian situation we have the possibility to look at a slight but steady increase in the values
of βe(t) from July onwards (see blue graph in Figure 5).

The function β∗(t) is depicted in Figure 5 in red, together with βe(t).
The accuracy of the model’s outcomes with β(t) replaced by β∗(t) is shown Figures 6.

Figure 6: In the left, the number of deaths by COVID-19 in Italy since the 20th of march com-
pared with the deaths predicted by the model. In the right, comparison the observed cumulative
incidence in 14 days per 100,000 inhabitants in Italy since mid August with the values predicted
by our model. On the bottom, comparison of the model’s outcome for I(t) and the observed
values Ie(t) of active cases in Italy until mid november 2020.

Running the model with β∗(t) the outcome for cumulative incidence in 14 days per 100,000
inhabitants and the real reported incidence have been sketched in Figure 7.

13
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Figure 7: In the left, euristic construction of the transmission function β∗(t) for Spain during the
second surge. In the right, we show the cumulative incidence in 14 days per 100,000 inhabitants
in Spain obtained with our model compared with real cumulative incidence data.

Figure 8: In the left, real data of cumulative deaths by COVID-19 are compared with the model
outcome for cumulative deaths since the 24th of March. In the right, estimated values of active
cases and people with immunity in Spain between the 24th of March and mid November 2020.

Figure 9: In the left picture we have a projection on the daily number of deaths in Italy starting
in mid November 2020. In the right we have a projection on the cumulative incidence in 14 days
per 100,000 inhabitants in Italy starting in mid November 2020.

4 Results

In this paper we have observed that the course of coronavirus in 2 territories, Italy and Spain,
can be modelled by means of a simple SIR-type model with non-constant parameters. The limits,
after a transient state, tend to approach their asymptotic values. In other words, especially true
for the mortality rate µ′ and the recovery rate. The transmission rate also shows a tendency to
approach its asymptotic value, but is sensitive to sociological changes, such as increased mobility,
a relaxation of social distancing and the massive use of protective equipment such as masks. We
have shown that a correct choice of transmission capacity makes it possible to obtain quite realistic

14
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results. Using the model, we have also been able to make some predictions for the situation in
Italy. These predictions are quite negative even in the best-case scenario, which should serve as a
motivation to redouble everyone’s efforts.

5 Conclusions and discussion

Explanatory mathematical models of infectious diseases are intended to allow to predict the
evolution of the disease considering a wide range of possible scenarios. In this paper we propose
a mathematical model to study the current transmission dynamics of SARS-CoV-2. We tested
the model using registered cases and population data from Spain and Italy. The model is able to
predict others wave of the pandemic.
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Fractals everywhere?

Fernán González Ibáñez ♮

(♮) gonifer@alumni.uv.es

1 Are fractals real ?

Do fractal structures exist in real world? The first idea which came to our minds is ”yes”. We have
seen the books from Benoit Mandelbrot ”Fractal Objects” or ”The Fractal Geometry of Nature” [1]
or the thousands of articles which have the name ”fractal” in the title but if we see the definition
of Hausdorff measure, how do they know if an object is a fractal?

Mandelbrot in his book The Fractal Geometry of Nature states that fractal patterns are present
in a lot of fields of science but not in all of them. Mandelbrot also said that fractals must have
a high order of self-similarity, such as the fractality in metal fractures which can be measured
with more than 5 magnitude order [2], not less than 3 in a lot of articles, such as Avnir et al.
showed [3].

1.1 Geography

Since the birth of the concept of fractals, they have been have been linked to the orography of
the terrain. From rivers to coasts, all the elements that nature has shaped has irregular pat-
terns [6] [5]. As previously, mentioned the idea of fractal object was born measuring the coast
of Great Britain as a law of powers: Length(G) = M · G1−D where M is a positive constant, G
is the length of the straight segment while Length(G) is the length of the full coast measured
with straight lines of length G and D is the fractal dimension least equal the unit. In the case of
Great Britain coast 1 − D = −0.25 therefore D = 1.25 but in the case of the South African coast
D = 1.04. [8]

Meanwhile, Mandelbrot in 1961 also hypothesised that rivers have a fractal dimension of 1.2. This
idea was based on the work of M. Gray in 1961. This work reported that there was a relationship
between the length and the area of a river given by the following expression L(R) = 1.4 ·A0.568 [7].
Mandelbrot took this work and approximated the fractal dimension multiplying the exponent by
two. This idea was wrong. Later in 1988 David G. Tarboton et al. published an article stating
that the fractal dimension of the rivers are nearby 2, in some cases upper like Souhegan rive
in New Hampshire which fractal dimension is 1.8 while Squanacook also in New Hampshire has
2.5 [9]. Later in 1996 Montgomery showed that the fractal dimension was correlated with the
sinuosity of a river and the environment [10].
Fractal dimension can be seen in geography as the complexity of a geographical feature such as
the the coast, the border between two countries or the sinuosity of a river. However, this number
should never be taken as a proof of the fractality of the geographical feature.
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1.2 Economy

In Economy exists a hypothesis about the behaviour of the markets called Fractal Market Hy-
pothesis (FMH). This hypothesis states that analysing financial time series is based on fractal
geometry, specifically the self-affine properties of stochastic fields. There exists other hypothesis
about the behaviour of the markets based on mathematical concepts such as the Random Walk
or Efficient Market Hypotheses [11].
The Fractal Market Hypothesis was born in the 1990s with the work of Edgar Peters [11]. This
idea was previously hypothesised by Mandelbrot in his book ”The fractal geometry of nature” but
he was not the first to come up with this idea. In 1938 Nelson Elliot had already observed the
self-affinity in the financial time series data [12].
This hypothesis is supported by multiple articles such as the work of Takayuki Mizuno et al.
analysing the foreign exchange data of USD-JPY for 13 years where they found out that the
fluctuation of the foreign exchange of USD-JPY has the self-similarity property in long terms.
However, the self-similarity disappears when the window is small. The fractal dimension of the
foreign exchange data of USD-JPY is nearby 1.7 [13]. The FMH is supported by the article
of Skjeltorp, where the Norwegian stock market is studied and it undermines the random walk
hypothesis [14].

1.3 Biology

As previously mentioned, nature is irregular and depends a lot of the weather, the environment
. . . But the growth of some fruits such as broccoli or cauliflower has self-similar property but is the
statistical one. Nevertheless, this self-similarity of this fruits is not regular, given the radius and
the number of number of branches per node can obtain pretty different results. This statement
is a counterpoint to fractal theory, although in the article of Grey and K. Kjems refuted the
hypothesis of Broccoli and Cauliflower has fractal structure. However in this article the authors
presented the other hypothesis of diffusion-limited aggregation [15]. Nowadays the variants of
broccoli or cauliflower, such as Romanesco Minaret, have a higher statistical self-similar structure.

Also fractal behaviour is present in the growth of bacterial, as shown in the article of Obert et
al. [16]. In this article, they study the growth patterns of two microbial species but they may give
rise to some doubts about the fractal structure of this growth and about the difference between
this patter and the one generated by diffusion-limited aggregation.

Therefore it can be concluded that living organisms have power-law-like growth. This hypothesis
was discarded by Panico and Starling where they stated that retinal neurons and vessels are not
fractals they are just space-fillings curves or in the work of Grey et al. natural patterns are
diffusion-limited aggregation [ [15], [20]].

1.4 Cosmology

The large-scale distribution of matter in the universe, similar to a Gruyère cheese with its large
voids and cheese zones, is called the cosmic web. The early work of John Peebles estimated a
constant fractal dimension of D = 1.23 ± 0.04 [18]. We now know that this fractal dimension
is scale-dependent. The cosmic web has a multifractal structure. Jaan Einasto et al. published
an estimate of the effective fractal dimension D(r) ≤ 3 observed in the SDSS galactic catalogue,
the cosmic simulations Millennium and EAGLE, and the prediction of the LCDM cosmological
model [17].
The effective fractal dimension of a random distribution of galaxies is D = 3, the distribution of
galaxies near the voids of the cosmic web leads to D = 2, in these walls a filamentary distribution
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is observed with D = 1; finally, within galactic clusters a point-like distribution is found with
D = 0. Thus, the change of D(r) with distance r, in units of Mpc/h1, allows us to determine the
scale of each of these structures. At small scales D(0) = 1.5, as predicted by the LCDM model;
this value decreases to a minimum D(0.8) = 0; then grows to D(3) = 2; and finally continues to
grow to D(100) = 3, at the largest distances considered. [19]

1.5 How fractals are measured?

Since the idea of fractals was sketched by Benoit Mandelbrot in late 60’s based on the idea of Fry
Richardson [6]. The idea of fractal have been applied in many fields of sciences as it haven been
seen in the previous section. In that context the measure of the fractal dimension have been the
main goal. To achieve this objective there are a family of algorithms which are based on the idea
of Minkowski–Bouligand dimension or Box Dimension have been used.
This dimension has many names, such as, information dimension, Kolmogorov entropy, capacity
dimension among others. The origin of this dimension is near in time to Hausdorff dimension, at
the beginning of the XX century. The definition of Box Dimension was provided by Pntrjagin and
Schnirelmann in his article ”Sur une propriété métrique de la dimension”. This dimension is used
in real world problems due to it is easy to calculated or estimated for a finite range of values.
Definition 1. [4] Let δ > 0 and F ⊂ Rn a non-empty bounded subset. The smallest number of
set of diameter at most δ that cover F as Nδ(F ). Thus the box dimension of F is given by:

dimB(F ) := lim
δ→0

log(Nδ(F ))
log(1

δ )
(1)

A theoretical connection between Hausdorff dimension and box dimension is that dimH(F ) ≤
dimB(F ) ≤ dimB(F ). The Box counting dimension is very useful due to the following theorem:
Theorem 1. [4] Let δ > 0 and F be a non-empty bounded subset of Rn. The following definitions
of Nδ(F ) are equivalent for box dimension calculation purposes:

1. The smallest number of sets of diameter at most δ that cover F .

2. The smallest number of closed balls of radius δ that cover F .

3. The smallest number of cubes of side δ that cover F .

4. The number of δ-cubes that intersect F .

5. The largest number of disjoint balls of radius δ with centres in F .

From the above theorem, two equivalent dimensions arise: the box counting dimension and the
circle counting dimension. The famous one is the box counting due to is simpler introduce a
square than circle in a computer.
One of the most common topics is ”neurons have a fractal structure” and it is a very popular
topic in medicine and neuroscience. The first step to analysis this structure is to reformulate it as
”neurons has statistical self-similar structure” This hypothesis was discredited in 1995 by Panico
and Sterling who tested that Retinal neurons and vessels are not fractals [20]. In their work they
developed a synthetic fractal pattern which has the same fractal dimension although it was a draw
without some lines.
Therefore, applying the box-counting method to patterns that that there are not fractals its only
a upper-bound for the Hausdorff measure as it was proved by Moran that this only equal in a
very specific case therefor the Hausdorff dimension can be the same as the Euclidean one making
all of this articles a dead letter.

1Megaparsec per hour
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1.6 Does fractal really exists?

As previously, mentioned fractals in nature do not exist due to it finite the nature and the definition
of fractal dimension needs the infinite to exist. Nature must necessarily be pre-fractal, self-similar
only on a certain number of scales.
In non-mathematical articles, the results are presented with a resolution of 3 or 4 orders of
magnited, as showed in the article of Avnir et al. where they say that: ”have been swayed by
the widespread image and belief that fractality has been found over many orders of magnitude
in experimental documentation” [3]. In this article they studied more than 90 papers of Physical
Review Letters and Physical Review published between 1990 and 1996 with the word fractal. Most
of these physical systems show self-similarity only in scale factors within two orders of magnitude
and none were observed to be more than 3 orders of magnitude. Therefore if an article contains
the word fractal it should be taken with care. The article must have a high order of self-similarity
and not less than three orders.
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IX Congreso del Máster en Investigación Matemática
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1 Introduction

Set theory is an interesting branch of mathematics, out of its applications we can find being
employed as a foundational system for the whole of mathematics or providing as framework to
develop a mathematical theory of infinity. In this article we will present the set theory from an
axiomatic point of view. In particular we will introduce the Zermelo-Fraenkel set theory with
the axiom of choice. This model, denoted by ZFC, consists of the axioms of extensionality, pairs,
unions, subsets, replacement, infinity and the axiom of choice.
Later, we will define two important concepts of set theory: the ordinals and the cardinals, which
are both a generalization of naturals. The former represents order, while the latter represents
quantity.

2 Main results

2.1 The model ZFC

We will explain all axioms except the axiom of infinity, which will we discussed later on.

• The axiom of extensionality asserts that two sets which have the same elements are
equal:

∀v0∀v1(∀v2(v2 ∈ v0 ⇔ v2 ∈ v1) ⇒ v0 ≃ v1)

• The axiom of pairs:

∀v0∀v1∃v2∀v3(v3 ∈ v2 ⇔ (v3 ≃ v0 ∨ v3 ≃ v1))

The axiom of unions:

∀v0∃v1∀v2(v2 ∈ v1 ⇔ ∃v3(v3 ∈ v0 ∧ v2 ∈ v3))

• The axiom of subsets asserts that for every set a exists a set b whose elements are the
subsets of a:

∀v0∃v1∀v2(v2 ∈ v1 ⇔ ∀v3(v3 ∈ v2 ⇒ v3 ∈ v0))
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• The axiom scheme of replacement comprises all formulas of the following form:

∀v0∀v1 . . . ∀vn

(∀w0∀w1∀w2((F [w0, w1, v1, . . . , vn] ∧ F [w0, w2, v1, . . . , vn]) ⇒
w1 ≃ w2) ⇒ ∃vn+1∀vn+2(vn+2 ∈ vn+1 ⇔ ∃w0(w0 ∈ v0

∧ F [w0, vn+2, v1, . . . , vn])))

where n is an integer and F [w0, w1, v1, . . . , vn] is a formula of L.

• The axiom of choice: Let (ai)i∈I be a family of set such that ai is non-empty for every
i ∈ I. Then ∏i∈I(ai) is not empty.

2.2 Ordinal numbers

Definition 1. Let α be a set. We say that α is an ordinal if

1. α is transitive, that is, every element of a set that belongs to α also belongs to α:

∀v0∀v1((v0 ∈ α ∧ v1 ∈ v0) ⇒ v1 ∈ α),

2. the relation ∈ is a well order on α, that is,

• ∈ is transitive,
• ∈ is reflexive,
• if x, y ∈ α, x ̸= y, then x ∈ y or y ∈ x.
• every non-empty subset of α has a least element.

We write On[v0] to denote the formula that express that v0 is an ordinal.

Let α be a set, an initial segment of α is a subset β of α with the property

y ∈ β, x ∈ y ⇒ x ∈ β.

A proper initial segment of α is an initial segment that is not the empty set or α, such as

Sx = {y ∈ α : y ∈ x}.

Proposition 1. Let α be an ordinal. The following statements are true:

1. α /∈ α,

2. if β ∈ α, then β is an ordinal,

3. if β ∈ α, then β = Sβ,

4. if β is another ordinal, then α ⊆ β if and only if α ≤ β.

Proposition 2. Let X be a transitive set of ordinals such that, for all distinct elements x and y
in X, x ∈ y or y ∈ x. then X is an ordinal.

Proposition 2 and its corollaries are extremelly useful to construct the ordinals.

Corollary 1. If α is an ordinal and β is an initial segment of α, then β is an ordinal. Moreover,
if β ̸= α, then β ∈ α.
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Corollary 2. If α is an ordinal, then β = α ∪ {α} is an ordinal.

The ordinal α ∪ {α} will be denoted as α+, and is called successor of α. If a non-empty ordinal
is not the successor of another ordinal, then it is called limit ordinal.

Proposition 3. If f is an isomorphism from α to β, α, β ordinals, then α = β and f is the
identity on α.

As a consequence, we have the following proposition:

Proposition 4. If α and β are ordinals, then exactly one of the following holds:

1. α ∈ β,

2. β ∈ α,

3. α = β.

Now, Proposition 2 can be rephased as ‘every transitive set of ordinals is an ordinal’. We are
interested in the class formed by all ordinals (all sets v0 that satisfy On[v0]).
Every non-empty class of ordinals contains a least element.

Proposition 5. The class of ordinals is not a set.

The idea of the ordinals as a numeric system analogous to natural numbers is based on the
following theorem:

Theorem 1 (Zermelo’s Theorem). Let X be a well-ordered set, then there exists one and only
one ordinal α isomorphic to X. Moreover, there is only an isomorphism from α to X.

We denote as Ord(X) the ordinal that is isomorphic to a well ordered set (X, R), which is unique.
We may use the ordinals as a criterion to ‘measure’ the ‘length’ of a well-ordered set. If X and Y
are isomorphic well-ordered sets, then Ord(X) = Ord(Y ). As ordinals have a uniqueness property,
we can use Ord(X) being the ‘length’ of the well-ordered set X.
We propose to take the ordinals as a system of numbers, generalizing the idea of natural numbers.
To describe ordinals as numbers, the first ordinal is the empty set, which we can relate to the first
natural, and the following ordinals are obtained using the definition of successor,

0 = ∅
1 = {∅} = {0}
2 = {∅, {∅}} = {0, 1}
3 = {0, 1, 2}
4 = {0, 1, 2, 3}

. . .

n = {0, 1, 2, ..., n − 1}
. . .

We need to introduce a new axiom, to extend to infinite ordinals:

• The axiom of infinity:

∃v0(On[v0] ∧ ¬v0 ≃ ∅ ∧ ∀v1¬v0 ≃ v1 ∪ {v1})

There exists a limit ordinal, or equivalently, there exists an infinite ordinal.
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As the class of all ordinals is well-ordered, there exists a least infinite ordinal, denoted by ω, and

ω = {0, 1, 2, ..., n, ...},

the least infinite ordinal is equal to the set of finite ordinals. Its successor is

ω+ = ω + 1 = {0, 1, 2, ..., n, ..., ω}.

We can define operations on ordinals analogously to the operations we define with integers. All
details of the operations can be found on [2].

Definition 2. Let α, β ordinals, we set

A = α ⊎ β ≡ (α, 0) ∪ (β, 1),

with a well order of A

(ν, i) <A (τ, j) ⇐⇒ (i < j) ∨ (i = j ∧ ν < τ).

The ordinal sum is set as
α + β = Ord(A, <A)

We can define the ordinal product as an iterated sum.

Definition 3. Let α, β ordinals, the ordinal product is

α × β =
∑
η<β

α.

Theorem 2. Let α, β, γ be ordinals. Then,

1. α + (β + γ) = (α + β) + γ,

2. α × (β × γ) = (α × β) × γ,

3. α × (β + γ) = (α × β) + (α × γ),

4. α + 0 = α = 0 + α,

5. α × 0 = 0 × α = 0,

6. α+ = α + 1,

7. if α and β are finite, then so are α + β and α × β,

8. if α+ = β+, then α = β,

9. if α and β are finite, then α < β if and only if there exists γ, non-zero ordinal, such that
α + γ = β.

Finally, we define the ordinal exponentiation based on the ordinal product, as follows:

Definition 4. Let α be an ordinal. αβ is defined by recursion so that

α0 = 1,

αβ+1 = αβ × α,

αβ = lim
η<β

αη, if β is a limit ordinal.
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IX Congreso del Máster en Investigación Matemática

The operations defined above can be used to obtain a picture of the ordinal number system, as a
generalization of the natural numbers. We can see all detail on [3].

0, 1, 2, ..., n, ..., ω, ω + 1, ω + 2, ..., ω + n, ..., ω + ω = ω × 2,

ω × 2 + 1, ω × 2 + 2, ..., ω × 2 + n, ..., ω × 3, ...

ω × ω = ω2, ω2 + 1, ω2 + 2, ..., ω3, ..., ω3 + ω, ..., ω3 + ω2, ..., ω4, ...

ωω, ωω + 1, ..., ωω×2, ..., ωω×3, ..., ωω×ω = ωω2
, ..., ωω3

, ..., ωωω
, ...

2.3 Cardinal numbers

The natural concept of counting the elements of a given set is deeply rooted in all human beings
of any culture. Following the construction of the ordinal numbers, we can generalize this idea of
‘counting’ to extend our notions of comparing finite sets to also infinite sets. This is the path
to define a new type of numbers: cardinal numbers. Before we start formalizing these, we must
understand what it means to compare the largeness of different sets. The idea behind is very
simple, two sets are equal in size if it is possible to totally map one using as indexes the elements
of the other. Correspondence is the key to understand this type of concepts about the size of sets
and so it shows the Definition 5:

Definition 5. Given two sets x and y, we say that x is subpotent to y if there exists an injec-
tion from x to y. In addition, if a bijection can be form between the two sets, we say they are
equipotent.

The Definition 5 establishes a good comparing sets criteria that induces a natural meta-relation
within the class of all sets. This relation can be expressed as x is related with y if they are
equipotent. It is easy to prove that this meta-relation is reflexive, symmetrical and transitive, and
so splits the class of all sets into different equivalence classes. The next pass shall be to choose a
representative of each class.

Definition 6. Given a set x, we define card(x) as the least ordinal that is equipotent to x and we
called it the cardinal of x.

Theorem 3. (Cantor-Bernstein) If x is subpotent to y and y is subpotent to x, then x and y are
equipotent.

Definition 7. Let x and y be two disjoint sets with λ = card(x) and µ = card(y), we define the
following operations on their cardinals:

1. λ + µ = card(x ⊎ y),

2. λ × µ = card(x × y),

3. λµ = card(xy).

Theorem 4. (Cantor) Let λ be a cardinal, then 2λ > λ.

The Cantor’s Theorem 4 makes possible to construct a larger cardinal of any given cardinal λ by
doing 2λ. Also, contains a result of huge importance as it is the fact that the power set is strictly
bigger than the original set (any set, not only cardinals). This, which can seem obvious for finite
cardinals, is deeply shocking when thinking about the size of infinite cardinals.

Proposition 6. Let R be the set of real numbers, then card(R) = 2ℵ0.
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Proposition 7. If x is a set of cardinals, then sup x is also a cardinal.

Theorem 5. Let λ, µ be cardinals. If at least one of them is infinite, the following statements
are true:

1. λ + µ = sup{λ, µ},

2. λ × µ = sup{λ, µ}.

The construction of the cardinal numbers and its main results can be reviewed in [2] and [3].

3 Conclusions

Set theory is a discipline deeply in contact with pure logic, its starting point is close to the
rudimentary definitions on which mathematics are sustained. Sets are an indispensable tool to
make reasoning through every single part of this science of numbers and ‘x’s. Also, we have seen
that they can be used to generalise in different ways natural numbers. The ordinals are a good
representation of the notion of order carried by the set N but extend this concept to the domain
of infinite sets. They are also useful to construct induction proofs over non finite sets. In the same
way, from ordinals, another generalization of naturals can be constructed, this time by extending
the meaning of ‘quantity’. These are the cardinal numbers, which are indeed a subset of ordinals
that can help us to compare whether finite or infinite sets. It is clear that all these applications of
set theory are an important part of mathematics and they transform the infinite into a knowable
concept.
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1 Introduction

In 1965, Zadeh [9] introduced fuzzy logic as an extension of the constitution of classical logic
beyond false and true values. Fuzzy logic consists of three main processing parts: fuzzification,
inference engine and defuzzification. Since then, this method has been found to be applicable in
many research lines, especially in image processing and decision-making.

In the image processing field, many methods of denoising have been presented with the goal of
suppressing Gaussian noise and preserving the details and structure of the colour images. The
earliest ways for smoothing the Gaussian noise were based on a linear approach, for instance,
arithmetic mean filter (AMF) [8], which has the ability to suppress the noise by taking advantage
of the zero-mean property; however, the texture and details of the images are blurred. This flaw
sparks off the development of many non-linear methods to detect the image edges and smooth
them with less capability to protect them from blur. Within the non-linear methods, a well-known
method bilateral filter (BF) [11] uses the average to take advantage of the zero-mean property.
Also, other methods of filtering use different ways to improve the result by minimizing the noise in
the colour images; for example, the method Eigenvector analysis filter (EIG) [1] uses the technique
of weighted pixel averaging to approach the colour images denoising problem based on eigenvectors.

In this study, a fuzzy inference system is designed and used to determine the amount of noise
that should be removed from the colour images. The transformation of the image space from
RGB space to an eigenvector space is required to perform the eigenvectors analysis to have the
ability to process the correlation between the channels and then extract the three coefficients, as
the colour images have three channels – red, blue and green. These coefficients are intended to
be the inputs of the fuzzy system.

The setting of the fuzzy inference system is going to conclude which of the three channels should
be smoothed in low or high performance, depending on the information of the channels. The
amount of denoising is related to the information in the image. If there are edges and details that
we need to preserve in the window of an image, gentle smoothing is required. On the other hand,
flat regions in the image indicate that no information needs to be retained; hence, the system is
smooth at its highest capability.
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Therefore, the system produces three smoothing coefficients for each of the three windows of the
image and using these results; we can proceed with the denoising process. When the noise is
suppressed and the quality is improved, the image is returned to its RGB space.

Lastly, after obtaining the results, it is necessary to compare the system’s output with the origi-
nal picture and other different filtering methods based on a well-known image quality assessment
method: Peak signal-to-noise ratio (PSNR) [8], which is a way of measuring how well details of
the images are preserved. If the result of the fuzzy inference system is less than the expectation
in this comparison, we require adjustments to the parameters or the set of the rules in the fuzzy
system to maximize the smoothing capability.

This method has shown promising results without a shadow of a doubt in terms of PSNR during
the primary experimental and trial stages; as the experimental results section stated, and it should
be pointed out, the fuzzy inference system still requires more optimization of the parameters and
rules setting for denoising colour images at a maximum capability.

This extended abstract is structured as follows: Section 1.2 gives an explanation of the designed
method. Section 1.3 showed the experimental results and a comparison against other methods of
minimizing noise. Lastly, the conclusion is presented in section 1.4.

2 Method details

This section presents the proposed fuzzy inference system components for denoising the colour
images based on the general structure shown in Figure 1.

Figure 1: Components of designed fuzzy inference system

The fuzzy inference system [4, 7] is consists of four important phases: (i) crisp values that used
as inputs to the system are the values that obtained from the eigenvector analysis called σn(ui) ,
σn(uj), and σn(uk) and this analysis is explained in greater details in [1] and we will demonstrate
the fuzzy inference system only; (ii) Fuzzification process means the transformation of the crisp
inputs to linguistic terms over the membership function, and the membership functions are used
in the fuzzification and defuzzification steps of the fuzzy inference system. In the system, the
crisp inputs are fuzzified into three sets as the parameters of the eigenvector analysis produced
three, and each parameter will be in a separate input set, and every fuzzy set is divided into two
subsets: low and high. The parameters for inputs and outputs sets are specified by trials and
error, and finding an appropriate procedure to set them is part of future work. It has been chosen
the membership function be Gaussian, and these membership functions are adopted due to their
simplicity and dependency only on two parameters which will be useful to save time during the
optimization stage. (iii) inference process, this stage is applying the set of linguistic rules in the
form of IF - THEN and in this step, the inference transforms the fuzzy input values to fuzzy
output values. The set of the rules that are defined for processing the denoising in the fuzzy
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inference system is the following:

• IF the inputs σn(ui) is low, and σn(uj) is low and σn(uk) is low Then the smoothing
coefficients Ci is low and, Cj is low and Ck is low.

• IF the inputs σn(ui) is low, and σn(uj) is low and σn(uk) is high Then the smoothing
coefficients Ci is low and, Cj is low and Ck is high.

• IF the inputs σn(ui) is low, and σn(uj) is high and σn(uk) is low Then the smoothing
coefficients Ci is low and, Cj is high and Ck is low.

• IF the inputs σn(ui) is high, and σn(uj) is low and σn(uk) is low Then the smoothing
coefficients Ci is high and, Cj is low and Ck is low.

After the inference processing, the result must be defuzzified to obtain the final crisp output Ci,
Cj and Ck that used to smooth the colour image, the last phase of the fuzzy inference system is
(iv) defuzzification which is consists of transforming the linguistic variables to crisp values through
the membership functions, and the membership function that used in the last phase are Gaussian
membership function for the same reason aforementioned. The fuzzy inference system inputs and
outputs are depicted in Figure 2.

Figure 2: The designed fuzzy inference system consisting three inputs (the first three from the
left) sets and three output sets

3 Experimental results

In this section, test images of Pills, Lenna and Head-Phone of different sizes have been used for
this experiment to evaluate the effectiveness of the proposed method. These images are contam-
inated with different levels of Gaussian noise. The use of PSNR to assess the performance of
the proposed method compared against following filters: Bilateral filter (BF) [11], Fuzzy vector
median filter (FVMF) [3], Fuzzy Noise Reduction Filter (FNRF) [2], Collaborative Wavelet Filter
(CWF) [5,6] and lastly, Eigenvector analysis filter (EIG) [1].
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The results of filters showed in the Tables 1, 2 and 3 and in each table, the best result for each noise
level is written in blue, and the second-best is written in red. Roughly speaking, the proposed
method has advantages in about 60% of cases, either first or second-best results, achieving a
minimizing of noise as well as preserving the image structures. These results tended to improve
in future work.
Furthermore, some denoised images using the proposed filter and EIG filter are exhibited in the
Figures 4, 5 and 6. Generally, the images produced by the proposed method are visually satisfying
in terms of details preservation and suppressing the noise in viewpoint.

Figure 3: Test images (size): (a) Pills (50x50), (b) Lenna (90x90), (c) Head-Phone (100x100)

PSNR of Pills image
Filter s = 5 s = 10 s = 20 s = 30
None 34.44 28.41 22.60 19.21
BF 35.52 30.18 26.36 24.24
FVMF 28.02 26.83 24.82 23.45
FNRF 34.83 32.38 28.23 26.09
CWF 38.24 33.17 26.60 23.02
EIG 37.30 32.58 28.52 26.20
Proposed 37.14 32.53 28.54 26.16

Table 1: Performance comparison in terms of PSNR using the Pills image contaminated with
different standard deviation s of Gaussian noise. In each table, the best result for each noise level
and performance measure is written in blue, and the second best, in red.

PSNR of Lenna image
Filter s = 5 s = 10 s = 20 s = 30
None 34.44 28.33 22.54 19.17
BF 35.88 30.98 27.40 25.36
FVMF 29.03 27.81 25.86 24.88
FNRF 35.33 32.62 28.73 26.71
CWF 39.64 34.37 28.48 26.14
EIG 37.74 33.25 29.04 26.98
Proposed 37.66 33.08 29.08 26.90

Table 2: Performance comparison in terms of PSNR using the Lenna image contaminated with
different standard deviation s of Gaussian noise. In each table, the best result for each noise level
and performance measure is written in blue, and the second best, in red.
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PSNR of HeadPhone image
Filter s = 5 s = 10 s = 20 s = 30
None 40.17 34.20 28.30 25.00
BF 40.19 28.81 25.47 24.48
FVMF 24.35 24.19 23.89 23.50
FNRF 32.23 31.75 30.26 28.62
CWF 40.05 35.36 30.96 28.06
EIG 40.17 36.43 31.86 29.09
Proposed 40.44 35.92 31.36 28.72

Table 3: Performance comparison in terms of PSNR using the Head-Phone image contaminated
with different standard deviation s of Gaussian noise. In each table, the best result for each noise
level and performance measure is written in blue, and the second best, in red.

Figure 4: Visual comparison of filters output: (a) Original Pills image, (b) corrupted image with
s = 10 Gaussian noise, (c) EIG filter output (d) Prop osed filter output

Figure 5: Visual comparison of filters output: (a) Original Lenna image, (b) corrupted image with
s = 20 Gaussian noise, (c) EIG filter output (d) Proposed filter output

Figure 6: Visual comparison of filters output: (a) Original Head-Phone image, (b) corrupted
image with s = 30 Gaussian noise, (c) EIG filter output (d) Proposed filter output

31
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4 Conclusion

In this extended abstract, we introduce an ongoing filtering method using a fuzzy inference system
to determine the amount of noise that should be minimized. The proposed method has shown the
use of fuzzy logic is effective despite its simplicity and competitive results in the primary stages
against other filtering methods—the need for more experiments and optimization of the system
to maximize the capability of the smoothing.
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1 Introduction

Type 1 Diabetes is a disease that affects more than 400 million people and it does not allow
them to have a normal life. Studies have been made since 1970s to understand this disease and
different models to predict the body response have been developed since. The first worldwide
accepted model was the Bergman model, developed in 1981 [1], was a model created to measure
the glucose in a patient with Type 1 Diabetes. Years later the Hovorka model was created to solve
the delay problem provoked by the subcutaneous administration of insulin [5]. Very recently a
new model including fractional derivatives was developed to include this same delay but avoiding
the complexity of the Hovorka model [10].
In this article the mathematical and control tools needed to treat this model will be introduced.
Then each model will be explained and a methodology to solve this models. Finally, we will
obtain numerical results that validate the capability to control the glucose concentration in blood
function for this three models. At the end a brief comparison of the models and results will be
done and we propose future work that can be done to introduce more complex control systems.



IX Congreso del Máster en Investigación Matemática

2 Models

2.1 Bergman

The first model that was studied in the interaction processes of glucose and insulin was the
Bergman model. It is a non-linear model with two coupled differential equations where the aim is
to model the interaction between the concentration of insulin in blood I(t) (input of the model)
and that of glucose G(t) (output or variable to control).{

Ẋ(t) = −p2 · X(t) + p3(I(t) − Ib)
Ġ(t) = −(p1 + X(t))G(t) + p1Gb + Gmeal(t)

Symbol Quantity
X(t) effect of insulin.

Ib basal levels of insulin concentration
Gb basal levels of glucose concentration

Gmeal alteration in the glucose concentration due to food intake
p1, p2, p3 kinematic coefficients

Table 1: Variables used in the Fractional Derivative Model

2.2 Hovorka

In 2004, a new non linear model to predict the glucose concentration levels was developed by
Roman Hovorka and his collaborators. This model consists in 3 different subsystems, each one
focused on modelling one different aspect of the process. This different subsystems can be seen
in with all the processes that take place.

Figure 1: Representation of the entire Hovorka model
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Glucose subsystem

dQ1(t)
dt

= −
[

F c
01

VGG(t) + x1(t)
]

Q1(t) + k12Q2(t) − FR + UG(t) + EGP0 [1 − x3(t)]

dQ2(t)
dt

= x1(t)Q1(t) − [k12 + x2(t)] Q2(t)y(t)G(t) = Q1(t)/VG

Insulin subsystem

This subsystem represents how the insulin kinetics works:

dS1(t)
dt

= u(t) − S1(t)
tmax,I

dS2(t)
dt

= S1(t)
tmax,I

− S2(t)
tmax,I

dI(t)
d(t) = UI(t)

VI
− keI(t)

Insulin action subsystem

This subsystem represents how the insulin affects the glucose kinetics

dx1
dt

= −ka1x1(t) + kb1I(t)
dx2
dt

= −ka2x2(t) + kb2I(t)
dx3
dt

= −ka3x3(t) + kb3I(t)

Symbol Quantity
Q1 Glucose mass in accessible compartment
Q2 Glucose mass in non-accessible compartment
k12 transfer rate from non-accessible to accessible compartment
VG distribution volume of accessible compartment
y, G Measurable glucose concentration

EGP0 Endogenous glucose production with zero insulin concentration
S1 absorption of short-action insulin
S2 absorption of short-action insulin

u(t) administration of insulin
ke fractional elimination rate

UI(t) total insulin absorption rate
x1 effecto of insulin on glucose distribution/transport
x2 effect on glucose disposal
x3 effect on endogenous glucose production

Table 2: Variables used in the Hovorka model
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2.3 Fractional Derivative

The use of fractional-order calculus for control engineering is introduced by Oustaloup [13] in 1995.
Since then, it has been shown that most real processes are fractional. Thus, fractional-order model
can describe the dynamics of a system more accurately than an integer-order model [10].
We present a non-lineal system of three α-order fractional derivative equations for modeling the
dynamics of glucose and insulin concentration in blood. [14], [15]

Dα
0 g(t) = −[p1 + x(t)]g(t) + p1gb + m(t)

Dα
0 x(t) = −p2x(t) + p3i(t)

Dα
0 i(t) = −ni(t) + τu(t)

Symbol Quantity
Dα

0 α-order fractional time derivative for a starting time a = t0 = 0.
g(t) Blood glucose concentration
gb Basal value of blood glucose concentration.

x(t) Dynamic insulin response.
i(t) Blood insulin concentration.
m(t) Glucose disturbance input (meals).
u(t) Exogenous insulin rate input (control function).
p1 Insulin-independent rate of glucose uptake in muscles.
p2 Rate for decrease in tissue of glucose uptake.
p3 insulin-dependent increase of tissue glucose uptake.
n Decay rate for insulin in blood.
τ Insulin input conversion factor.
xb Basal value of the dynamic insulin response.

Table 3: Variables used in the Fractional Derivative Model

3 Numerical Results

In this section graphical results will be shown. In the Bergman model, the control results are
explained and for the Hovorka and fractional models solutions for simple functions will be pre-
sented.

3.1 Bergman

Transfer function of the Bergman model

We apply the Laplace transform to both equations of the linearized Bergman system.{
s · L [X](s) − X(0) = −p2 · L [X](s) + p3 · L [Ĩ](s)

s · L [G̃](s) − G̃(0) = −p1 · L [G̃](s) − Gb · L [X](s) + L [G̃meal](s)

In this way, thanks to the Laplace transform, we have managed to go from a system in differential
equations to an algebraic system. We will consider two conditions to apply to the previous system,
the first is that the initial conditions are zero (X(0) = G̃(0) = 0), and the second is that the glucose
supply due to the meal will be null (Gmeal = 0). The first condition is reasonable since it is simply
assumed that the system starts from equilibrium conditions, while the second is assumed because

36
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the function Gmeal will be considered in the control model as a disturbance of the system. That is,
we will calculate the transfer function without it, but we will take it into account in the simulation
and we will see how the control algorithm neutralizes its effect.
With the previous conditions and rewriting the equations we obtain:{

L [X](s) = p3
s+p2

· L [Ĩ](s)
s · L [G̃](s) = −p1 · L [G̃](s) − Gb · L [X](s) .

And by the substitution method we get the transfer function.

L [G̃](s)
L [Ĩ](s)

= −p3Gb

(s + p1)(s + p2) .

Finally, the numerical values of the parameters are obtained from [2] and are shown on table 4.
So the transfer function is:

L [G̃](s)
L [Ĩ](s)

= −344.4
s2 + 0.044s + 0.00039 .

p1 p2 p3 Gb Ib

0.0317 0.0123 4.92 70 7

Table 4: Parameters of the Bergman minimal model

Using the Matlab simulation program Simulink it has been possible to design a PID controller
such as in the scheme 2.

Figure 2: Control system scheme

The Simulink blocks diagram is shown in figure 3, and the coefficients of the designed controller
are Kp = −200, Ki = −5, Kd = −1 and N = 100.

Figure 3: Simulink blocks diagram
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3.2 Graphical Representations

Different perturbation signals Gmeal(t) have been tested, the first being a unit step. Given this
signal, the result has been satisfactory, as shown in the figure 4 obtained from the simulation.

Figure 4: Results when applying unitary step on Gmeal(t)

Another signal of Gmeal(t) that has been modeled has been a triangular peak generated by the
intake of foods with a high glycemic index, as shown in figure 1.5.

(a) (b)

Figure 5: Peak function on Gmeal(t) (a) and results when applying a peak function on Gmeal(t)
(b)

The last signal that has been tested has been a sinusoidal with amplitude 100, obtaining as a
result figure 6.

Figure 6: Results when applying a sinus function on Gmeal(t)

Given the previous results one can conclude that the designed PID controller is capable of neu-
tralize the possible perturbation in glucose due to a food input or even to physical exercise.
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3.3 Hovorka

Glucose subsystem study

The found solution for the glucose subsystem compartments are:

Q1(t) = e

∫ t

0
F c

01−VGx1G(t1)
VGG(t1) dt1

(
Qb + ·

∫ t1

0

1
VGG(t2)e

−
∫ t2

0
−F c

01−VGx1G(t1)
VGG(t1) dt1 · EGP0VGG(t2)−

FRVGG(t2) + UG(t)VGG(t2) − EGP0VGx3G(t2) + k12VGG(t2)Q2(t2)dt2)

Q2(t) = Q1(t)
VG

and the graphs for this solutions are:

(a) (b)

Figure 7: Glucose mass in the accessible compartment(A) and glucose mass in the non-accessible
compartment(B)

Insulin subsystem study

Similarly we found the solution for the insulin subsystem compartments and we graph this solu-
tions separately.

S1(t) = e
− t

tmax,I

∫ t

0
e

t1
tmax,I u(t1)dt1

S2(t) = e
− t

tmax,I (1 − e
t

tmax,I )S1

I(t) = e−ket(−1 + eket)U(t)
keVI
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(a) (b) (c)

Figure 8: Insulin absorption on the first compartment S1 (a), insulin absorption on the second
compartment S2 (b) and plasma insulin concentration (c)

Insulin effect subsystem study

Lastly we solve the system for the insulin effect and got the solutions for each compartment.

x1(t) = e−ka1t(−1 + eka1t)I(t)kb1
ka1

x2(t) = e−ka2t(−1 + eka2t)I(t)kb2
ka2

x3(t) = e−ka3t(−1 + eka3t)I(t)kb3
ka3

(a) (b) (c)

Figure 9: Insulin effect on glucose distribution and transport x1 (a), insulin effect on glucose
disposal x2 (b) and insulin effect on endogenous glucose production x3 (c)
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3.4 Fractional Derivative

Numerical values of the parameters

We use the numerical values of the parameters presented in [14], [15].

Parameter Numerical Value
gb [mg/dL] 81
p1 [1/min] 0.0337
p2 [1/min] 0.0209
p3 [L/(mU · min2)] 7.51 · 10−6

n [1/min] 0.214
τ [1/L] 1/12
xb [mU/mL] 5.4 · 10−6

tmax[min] 40
Dg[g] 60
Ag 0.8

Table 5: Numerical values of the parameters from the fraction derivative system.

Selection of functions m(t) , u(t)

Functions m(t) , u(t) are selected, where m(t) is from [14] and u(t) is purposed by the authors.

m(t) = DgAgte−t/tmax

t2
max

Where tmax is the time when the absorption is at its peak value, Dg are the carbohydrates in the
meal and Ag is the fraction of absorbed glucose.

u(t) = k1tek2t

Where k1 [mU/min], k2 [1/min] are adjusting parameters. Function u(t) only applies for t when
g(t) ̸= gb.

Solution for small deviations

The solution is for small deviations in the basal value, thus we work with the Mittag-Leffler
functions truncated to the first member.

E(0)
α,α((γ)(t − s)α) ≈ 1

Γ(α) − γ

Γ(2α)(t − s)α

The solution of the system with all previous specifications is shown in the following equation.

i(t) = k1τ
∫ t

0(t − s)αek2(t−s)[ 1
Γ(α) − n

Γ(2α)(t − s)α]ds

x(t) = k1
τp3

Γ(2α)
∫ t

0(t − s)2αek2(t−s)ds

g(t) = DgAg

t2
max

∫ t
0(t − s)αe[−(t−s)/tmax][ 1

Γ(α) − p1+xb
Γ(2α) (t − s)α]ds

−k1
gbp3τ
Γ(2α) [An + Bp2 + C(p1 + xb)]

∫ t
0(t − s)2αek2(t−s)ds
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Graphical representation

Finally we can plot the solution of the glucose, which is the most representative function, and find
the differences in the control of glucose peaks for different α-orders of the fractional derivative.

Figure 10: Plot of the dynamics of the glucose function g(t) ∈ [81, 300][mg/dL] , t ∈ [0, 80]min
for an array of α -orders.

4 Conclusions

For the Bergman model satisfactorily results are shown for several ingest functions. Nevertheless,
this control has its limitation points. It does not take into account the delays provoked by the
subcutaneous in the real insulin pump. This effect is taken into account in the Hovorka model.
For the Hovorka model a solution for the system is achieved and a consistent with the reality
graphical representation was shown. It is possible to see an improvement from the Bergman
model but the added complexity of this model is seen also in the computational costs when
solved.
The objective of the fractional model is to improve the results of the Bergman model. It takes into
consideration the subcutaneous delays using an array of α-orders. This simplifies the complexity
of adding auxiliary equations as in the Hovorka model.
A methodology for solving the system has been shown and a solution for general input functions
of glucose and insulin has been obtained. The effect of the α-order in the fractional derivative is
shown in the numerical results for inputs of simple functions.
Future work that can be made is an introduction of a PID control for the Hovorka and fractional
models in order to obtain results for more complex and real functions.
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[12] Antón Lombardero Ozores, Fractional Calculus and newtonian dynamics., Revista de
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1 Introduction

In this article we present a summary of some of the main mathematical principles on which con-
volutional neural networks in graphs are based, followed by an application to a chemical database.
In the first part, we make a concise and general introduction to convolutions in learning theory
and to graph neural networks (GNN). In the second part, we present the mathematical framework
in which convolutions are extended from the classical domain to the graph domain, making first
the distinction between spatial and spectral approaches and focusing on the latter approach. In
the third part, we end up relying on the theoretically robust nature of the spectral properties of
a graph, based on the eigen-decomposition of its Laplacian matrix, and we deal with its main
practical limitations, such as sensitivity to scalability or lack of locality, through a polynomial
approximation of the convolutional filter. Nowadays, finding a reliable and easy to handle ap-
proximation of such a filter is the key for the efficiency of spectral GNN methods. We provide a
powerful candidate based on Chebychev polynomials, as an alternative to a broad range of differ-
ent approximation schemes. In [6], they experiment with spectral non-parametric and parametric
filters, the latter built with cubic splines. In [3], they construct a model through Lanczos algo-
rithm. Another example is [1], where they consider Cayley polynomials in the Laplacian, using
more general parametric methods through rational complex functions. Once set up our general
setting, we finally design a spectral GNN method using several convolutional layers and the afore-
mentioned Chebychev polynomial approximation for the classification of chemical elements in a
database of near 1 billion molecules. This article can be of interest to researchers in the fields of
Graph Theory, Signal Processing, Machine Learning, Organic Chemistry and Bioinformatics.

2 Main results

After the exposition and distinction of spatial and spectral approaches, we apply the following
model of convolutions with intermediate ReLU nonlinearities and a final softmax activation func-
tion, given an initial features matrix X as input:

Z1 = X,
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Z2 = ReLU(ÂZ1W (1)) + Z1,

Z3 = ReLU(ÂZ2W (2)) + Z2,

Z4 = softmax(ÂZ3W (3)). (1)

As we see, we add in each layer the embedding information from previous layer, not only through
Â, but also by direct summation. The reason of including such a variant from the proposed model
is that we want to take into account residual connections between layers.
In (1), W (i), for i ∈ {1, 2, 3}, are weights matrices to train, and the final nonlinearity is

softmax(xj) = 1
Z

exp(xj), (Z =
N∑

i=1
exp(xi)), j ∈ {1, . . . , N}, (2)

applied row by row. In turn, intermediate nonlinearities are applied component-wise, recalling
that ReLu(x) = xH(x), for H the Heaviside function.
The philosophy of this statistical learning method is semi-supervised, what means that, to penalize
misclassfied labels, we use the cross-entropy loss function in the following way:

L = −
∑
l∈Yl

F∑
f=1

Ylf log(Zlf ), (3)

where Yl is the subset of nodes with known label or feature.
The way we train such matrices W (i) is through gradient descendent, using a stochastic opti-
mization procedure called Adam [7]. For such a phase, we use the entire training dataset in each
training iteration, obtained from a pre-processing part of our code that gives us training, testing
and validation samples. With a sparse representation of A, necessary memory will be O(|E|).

3 Numerical experiments

With the general method clarified, we apply it to the dataset QM7, a database of nearly 1
billion stable and synthetically accessible organic molecules, composed of all molecules of up to
23 atoms (including 7 heavy atoms C, N, O, and S), totalling 7165 types of molecules, each of
them considered as a simple and undirected graph (see http://quantum-machine.org/datasets/
for more detail). Our objective is to predict which chemical element is located in each of the
unlabelled nodes of the graph, after some pre-processing work with the Coulomb matrix (see [8]).
Moreover, we present some plots that elucidate how competitive is the proposed GCN model.

4 Conclusions

1. Our model presents sensitivity to imbalanced classes. We see that the chemical element S
presents an accuracy score of nearly 1, although its scarce presence in the dataset. It is
partially due to the presence of previous layer embeddings Zl in the propagation to the next
layer Zl+1.

2. In general terms, this reference dataset yields an idea of a precise method in semi-supervised
prediction.

3. Computational complexity is limited to linear dependencies on |E|, given the sparse condi-
tion of the adjacency matrix. Notice that we are dealing with 7165 graphs, with 232 nodes
each one, and a time computation of around 17 minutes.
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Figure 1: Class accuracy score histogram of the semi-supervised proposed Graph CNN model for
QM7.

Figure 2: Confusion chart for the semi-supervised proposed Graph CNN model for QM7.
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Figure 3: Evolution of accuracy error and loss function (cross-entropy) for QM7 dataset, 1500
epochs of training with gradient descendent, learning rate 0.01, accuracy score of 0.900419.

4. Moreover, the arbitrariness of the selected graph suggests that this model is powerful against
arbitrary simple and undirected graphs.

We imply 1500 epochs for the gradient descendent training procedure, and we compute two entities
that yield information of carried out predictions: accuracy score and confusion chart. This practice
is posible because, as we saw, the proposed method is semi-supervised.
The former is computed with known-label samples from a subset of the dataset employed for
validation. Using the cross-entropy loss function from (3), we can obtain a final error value over
the forementioned subset of samples. According to the latter entity, we give a matrix with the
number of correctly and incorrectly predicted labels over the subset of validation samples. This
is called confusion chart.
In the presented graphics, we show the following:

1. In figure 3, we represent accuracy score and loss function values in each epoch of the training
phase.

2. In figure 2, we represent the confusion chart. On the right and below the matrix, we see
a summary of the percentages of correctly and incorrectly predicted labels, per chemical
element (observe that, in the matrix, diagonal elements are correctly predicted, and non-
diagonal elements are uncorrectly predicted).

3. In figure 1, we represent, through an histogram, the value of the accuracy score for each
chemical element that constitute the studied molecules.
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1 Introduction

With the ever increasing amount of information stored online, it is critical to securely maintain
sensitive data. Mathematics has played a central role in ensuring that this information cannot be
accessed by unwanted third parties. In this work we introduce how algebra rudiments, hand in
hand with computation, can help us encode data and restrict readability of such data to only those
provided with specific insight into the mathematical model. Among some of the most studied are
the discrete logarithm problem, Elliptic Curve Cryptography (ECC), the Rivest–Shamir–Adleman
public-key cryptosystem (RSA), and hash functions. In this article we introduce these algorithms
as well as the cryptoanalysis of RSA.

2 Discrete logarithm problem

The discrete logarithm problem arises in an cyclic subgroup of an abelian group where we do not
know the integer to which we must raise a certain element of the group to get to another one. The
elements of the group encode messages, their discrete logarithms are the key to decipher them.

Supouse we have a group G, an element g ∈ G such to o(g) = n ∈ N, we have another element
h ∈ G and we want find a number m ∈ Z such to gm = h. Since the problem of finding this
number is sufficiently difficult, messages are encrypted in such a way that to decrypt them it must
be solved.

A particular case of the discrete logarithm problem is when the working group is an elliptic curve,
which is a subset of the product of a field with itself, to which is added an infinite point on the
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vertical axis, and has defined on it a summation operation, for which this infinite point is the
nuetre.

The elliptic courve is E = {(x, y) ∈ Fq : y2 = x3 +ax+b}∪{O} where Fq = Zp/ < f(x) >, being p
a prime number, q = pm, m ∈ Z and f(x) = xq −x ∈ Zp[x]. E = {(x, y) : y2 = x3 +ax+ b}∪{O}.
An additive law is defined and the discrete logarithm problem over E is posed.

3 Hash Functions

Regarding internet’s security, password management is one of the most important topics. In the
olden days, websites that requiered user authentication would store every user’s password in their
database. However, time proved that such thing was not a good idea and that is were hash
functions come in handy.

Hash functions are nothing else but maps that that take an arbitrary size binary array into
a fixed size binary array. There are many different hash functions and they satisfy different
properties depending on what they are meant to be used for. Anyway, we are only interested
in the so called cryptographic hash functions. Every cryptographic hash function must satisfy
three properties: Denote by {0, 1}∗ = ∪n∈N{0, 1}n the set or arbitrary long binary arrays. So, let
h : {0, 1}∗ −→ {0, 1}M be a hash function. Then we say that it is a cryptographic hash function
if:

• It is preimage resistant, i.e., if given a y ∈ {0, 1}N it is hard to find a x ∈ {0, 1}∗ such that
h(x) = y.

• It is second preimage resistant, i.e., if given a x1 ∈ {0, 1}∗ and y = h (x1) it is hard to find
another x2 ∈ {0, 1}∗ such that y = h (x2).

• It is collision resistance, i.e., if it is hard to find any two x1, x2 ∈ {0, 1}∗ such that h (x1) =
h (x2).

Any good hash function should be fast to compute, safe and, of course, deterministic. How ever,
in real life problems, fastness is usually preferred over safety. In that sense, hash functions are
usually asked to verify what is know as the avalanche effect: if only one bit in an input is changed,
each output bit will have 50% chance of changing.

Among the many hash functions that have been published, perhaps SHA-1 [4] has a special place
in history. Although its use is not recommended today, it is predecessor to SHA-256 [5] and
SHA-512, which are still in use today.

Another widely use of hash functions is that of digital signatures, a procedure to ensure the
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authenticity of a document. Typical implementations come from an extension of RSA cryptosys-
tem [7].

However, one should keep in mind that the use of cryptographic hash functions does not only
apply to the previously specified scenarios. For example, they are the grounding stone to Bitcoin
and Ethereum and the block-chain technology by extension.

4 The RSA algorithm

Before introducing the RSA algorithm it is important to understand the concept of public key
cryptosystems. Such a cryptosystem can be described by a 5-tuple (P, C, K, E , D) where P is the
set of plaintexts, C is the set of ciphertexts produced by an encription function E ∈ E , K is the
set of keys, and D is the set of decryption functions. (P, C, K, E , D) must also verify that for each
K ∈ K∃EK ∈ E , DK ∈ D : DK(EK(P )) = P, ∀P ∈ P.

The RSA algorithm was first introduced by Rivest, Shamir, and Adleman in 1977 and then
described in detail in their 1978 paper [7]. The algorithm can be summarized as follows: Let
d, e, n ∈ Z+ be positive integers such that n = pq where p and q are large primes. We have
P = C = Zn, the integers modulo n. Then the keyspace is defined as follows:

K :− {(n, p, q, e, d) : ed ≡ 1( mod ϕ(n))}

where ϕ is Euler’s totent function, ϕ(n) = (p − 1)(q − 1).

The security of the RSA algorithm depends on the level of difficulty of the RSA problem. This
problem consists in computing the plaintext given only the public key and ciphertext. Solving
this problem is equivalent in difficulty to inverting the RSA function. Currently, there exist no
efficient algorithms to invert the RSA function. Determining how difficult it is to invert is an
open problem. There have been many algorithms proposed but none have achieved a total break
if n is large enough and the algorithm is correctly implemented [3].

RSA is a very popular algorithm, but data analysis has showed that ECC outperforms RSA in
both implementation time, storage requirements, and security [1, 2]. This makes ECC a great
way to encrypt data on devices with low computational power or for businesses that process
large amounts of customer data [8, 9]. In its 2020 report the National Institute of Standards and
Technology (NIST) has warned that when quantum computing becomes a practical consideration,
the security-strength estimates for RSA and ECC algorithms will be significantly affected [6].
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5 Conclusion

With the great computational advance the cryptosystems currently used have also greatly gained
in complexity. We have reviewed the mathematical structure of a few popular cryptosystems
(RSA,ECC,SHA) and how they are used in everyday life. We also documented the security
features of RSA and ECC. We concluded that both RSA and ECC are extremely hard to break
without the decryption key but RSA needs larger key sizes than ECC to achieve the same security
level. It is important to remark that the emergence of quantum computing the security of these
cryptosystems will be greatly compromised.
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1 Introduction

The digital world has brought with it many different kinds of data of increasing size and com-
plexity. Indeed, modern devices allow us to easily obtain images of higher resolution, as well as
to collect data on internet searches, healthcare analytics, social networks, geographic information
systems, business informatics, etc. Consequently, the study and treatment of these big data sets
is of great interest and value. In this respect, weighted discrete graphs provide a natural and
flexible workspace in which to represent the data. In this context, a vertex represents a data
point and each edge is weighted according to an appropriately chosen measure of “similarity” be-
tween the corresponding vertices. Historically, the main tools for the study of graphs came from
combinatorial graph theory. However, following the implementation of the graph Laplacian in the
development of spectral clustering in the seventies, the theory of partial differential equations on
graphs has obtained important results in this field. This has prompted a big surge in the research
of partial differential equations on graphs. Moreover, interest has been further bolstered by the
study of problems in image processing. In this area of research, pixels are taken as the vertices
and the “similarity” between pixels as the weights. The way in which these weights are defined
depends on the problem at hand.

On another note, let J : RN → R be a nonnegative, radially symmetric and continuous function
with

∫
RN J(z)dz = 1. Nonlocal evolution equations of the form

ut(x, t) =
∫
RN

J(y − x)u(y, t)dy − u(x, t) (1)

and variations of it, have naturally arisen in various scientific fields as a means of modelling
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a wide range of diffusion processes. An intuitive reasoning for the wide applicability of this
model comes from thinking of u(x, t) as the density of a “population” at a point x at time t
and of J(y − x) as the probability distribution of moving from y to x in one “jump”. Then,∫
RN J(y − x)u(y, t)dy is the rate at which “individuals” are arriving at x from anywhere else and

−u(x, t) = −
∫
RN J(y − x)u(y, t)dy is the rate at which they are leaving location x. Therefore, in

the absence of external or internal sources, we are lead to equation 1 as a model for the evolution
of the population density over time. In the previous two paragraphs, we have brought forward
two instances in which there is great interest in the study of partial differential equations in a
nonlocal (or discrete) setting. Further interest has arisen following the analysis of the peridynamic
formulation of the continuous mechanic, the study of Markov jump processes and other nonlocal
models.

The aim of this article is to unify into a broad framework the study of many of the previously
mentioned problems. In order to do so, we note that there is a strong relation between some of
these problems and probability theory, and it is in this field in which we find the appropriate spaces
in which to develop this unifying study. Let (X, B) be a measurable space and P : X ×B −→ [0, 1],
a transition probability kernel on X. Then, a Markovian transition function can be defined as
follows: for any x ∈ X, B ∈ B, let

Pt(x, B) := e−t
∞∑

n=0

tn

n!P
n(x, B), t > 0,

where P n denotes the n-step transition probability kernel.

In this setting, particular choices of the measurable space (X, B) and of P will lead to some of
thepreviousproblems. Forexample,ifX = RN and P (x, dy) = J(y − x)dy,we will recover equation
1. Moreover, taking X to be the set of vertices of a weighted discrete graph and appropriately
defining the transition probability function in terms of the weights we are also able to recover the
heat equation on graphs.

The previous remarks suggest that the appropriate setting in which to fulfill our goals of unifying
a wide variety of nonlocal models into broad framework is provided by random walk spaces. These
spaces are constituted by a measurable space (X, B) and a transition probability kernel P on X
which encodes the jumps of a Markov process. We will adopt the notation mx = P (x, ·) ∈ P(X, B)
for each x ∈ X (here P(X, B) denotes the space of probability measures on (X, B)). Additionally,
we will require a kind of stability property to hold for these spaces, that is, the existence of an
invariant measure ν. Then, we will say that [X, B, m, ν] is a random walk space. Owing to the
generality of these spaces, the results that we obtain will have a wide range of applicability to a
large spectrum of evolution problems arising in a variety of scientific fields. Unfortunately, this
framework does not cover problems related with the fractional kernel due to its singular nature.

During the last years and with the aforementioned goal in mind, we have studied some gradient
flows in the general framework of a random walk space. In particular, we have studied the heat
flow, the total variation flow and the ROF Model. Specifically, together with the existence and
uniqueness of solutions to these problems and the asymptotic behavior of its solutions, a wide
variety of their properties have been studied, as well as the nonlocal diffusion operators involved
in them.
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1.1 Structure of the article

Let us shortly describe the contents of the article. To start with, in Section 1, we introduce the
general framework of a random walk space. We relate it to classical notions in Markov chain
theory and provide a list of results which we hope aid the reader in getting a good idea about the
properties which these spaces enjoy. After introducing a stability property for random walk spaces,
called m-connectedness, we continue exploring the characteristics enjoyed by this notion and we
relate it to known concepts of ergodicity. We then provide a list of examples of random walk
spaces of particular interest, as those that were mentioned at the beginning of the introduction.
The rest of the section is dedicated to introducing the nonlocal counterparts of classical notions
like those of gradient, divergence, boundary, perimeter, mean curvature and Ricci curvature, as
well as of the Laplace operator. In doing so, we obtain results which mimic classic results in the
local case and, moreover, obtain further characterizations of the m-connectedness of a random
walk space. We also spend some time in finding sufficient conditions for Poincaré type inequalities
to hold and relate them both to the gap of the Laplace operator and to isoperimetric inequalities.

Section 2 focuses on the study of the heat flow in random walk spaces. In our context, associated
with the random walk m = {mx}x∈X , the Laplace operator ∆m is defined as

∆mf(x) =
∫

X
(f(y) − f(x)) dmx(y).

Assuming that the invariant measure ν satisfies a reversibility condition with respect to the
random walk, the operator −∆m generates in L2(X, ν) a Markovian semigroup

{
et∆m

}
t≥0

called
the heat flow in the random walk space. Moreover, we are able to characterise the infinite speed
of propagation of the heat flow in terms of the m-connectedness of the random walk space. In
addition, in Subsection 2.4, we study the asymptotic behaviour of the semigroup

{
et∆m

}
t≥0

and

with the help of a Poincaré inequality we obtain rates of convergence of
{

et∆m

}
t≥0

as t → ∞.

In Section 3 we study the total variation flow. For this purpose, we introduce the 1- Laplacian
operator associated with a random walk space and obtain various characterizations of it. We then
proceed to prove existence and uniqueness of solutions of the total variation flow in random walk
spaces and to study its asymptotic behaviour with the help of some Poincaré type inequalities.

Section 4 is dedicated to the study of the (BV ,Lp)-decomposition, p = 1 and p = 2, of functions in
random walk spaces. This is done by studying the Rudin-Osher-Fatemi model both with L2 and
with L1 fidelity terms. We obtain the Euler-Lagrange equations of these minimization problems
and proceed to obtain a wide range of results on the properties enjoyed by the minimizers.

2 Main Results

The main results that appear in the work are the following.
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2.1 The heat Flow

First result is an adaptation of a well know formula to the theory of random walk spaces. It will
be helpful several times along the work.

Proposition 1. (Integration by parts formula) Let [X, B, m, ν] be a reversible random walk space.
Then, ∫

X
f(x)∆mg(x)dν(x) = −1

2

∫
X×X

∇f(x, y)∇g(x, y)d(ν ⊗ mx)(x, y) (2)

for f, g ∈ L1(X, ν) ∩ L2(X, ν).

Next characterization is also important for further results.

Theorem 1. Let [X, B, m, ν] be a random walk space and suppose that ν is a probability measure.
Then,

[X, B, m, ν] is m-connected ⇔ ∆m is ergodic

To see some examples of random walk spaces we recommend the reader to visit chapter 2 of [13].

The first important result concerning the heat flow is the following. In this result we claim that
the closed symmetric form that we define before is a Dirichlet form.

Theorem 2. Let [X, B, m, ν] be a reversible random walk space. Then, −∆m is a non-negative
self-adjoint operator in L2(X, ν) with associated closed symmetric form Em. In fact, Em is Marko-
vian and, therefore, a Dirichlet form.

As a consequence of an important result in semigroup theory we know that et∆mu0 is the unique
solution of the heat equation. In the next Theorem we introduce a form of representing this
solution by means of power series.

Theorem 3. Let [X, B, m, ν] be a reversible random walk space. Let u0 ∈ L1(X, ν) ∩ L2(X, ν).
Then,

et∆mu0(x) = e−t
+∞∑
n=0

∫
X

u0(y)dm∗n
x (y) tn

n! for every x ∈ X and t > 0. (3)

In particular, for D ∈ B with ν(D) < +∞, we have

et∆m χ
D(x) = e−t

+∞∑
n=0

m∗n
x (D) tn

n! for every x ∈ X and t > 0.

Starting from the solution of the heat equation, we can characterize the m-connected random
walk spaces. This is known as the infinite propagation speed.
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Theorem 4. Let [X, B, m, ν] be a reversible random walk space. [X, B, m, ν] is m-connected if,
and only if, for any non-ν-null 0 ≤ u0 ∈ L1(X, ν) ∩ L2(X, ν), we have that et∆mu0 > 0 for ν-a.e.
x ∈ X and all t > 0.

As for the last important result, we study the asymptotic behaviour of the semigroup
{

et∆mu0
}

t≥0
.

Proposition 2. Let [X, B, m, ν] be a reversible random walk space. For every f ∈ L2(X, ν),

lim
t→∞

et∆mf = f∞ ∈ {u ∈ L2(X, ν) : ∆mu = 0}.

Suppose that [X, B, m, ν] is m-connected, then,

(i) if ν(X) = +∞, f∞ = 0 ν-a.e.

(ii) if ν is a probability measure, f∞ =
∫

X
f(x)dν(x) ν-a.e.

2.2 Total Variation Flow

Since its introduction as a means of solving the denoising problem in the seminal work by Rudin,
Osher and Fatemi ( [12]), the total variation flow has remained one of the most popular tools
in Image Processing. Furthermore, the use of neighbourhood filters by Buades, Coll and Morel
in [5] has led to an extensive literature in nonlocal models in image processing. Consequently,
there is great interest in studying the total variation flow in the nonlocal context. Moreover, a
different line of research considers an image as a weighted discrete graph, where the pixels are
taken as the vertices and the “similarity” between pixels as the weights. Therefore, the study
of the 1-Laplacian operator and the total variation flow in random walk spaces has a potentially
broad scope of application. The main results from this section will be, essentially, auxiliary to
prove theorems from section 4:

Theorem 5 (Coarea formula). Let [X, B, m, ν] be a random walk space. For any u ∈ L1(X, ν),
let Et(u) := {x ∈ X : u(x) > t}. Then,

TVm(u) =
∫ +∞

−∞
Pm(Et(u)) dt. (4)

Theorem 6. Let [X, B, m, ν] be a reversible random walk space. Let u ∈ L2(X, ν) and v ∈
L2(X, ν). The following assertions are equivalent:

(i) v ∈ ∂Fm(u);

(ii) there exists z ∈ X2
m(X, ν) with ∥ z ∥L∞(X×X,ν⊗mx) ≤ 1 such that

v = −divm z (5)
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and ∫
X

u(x)v(x)dν(x) = Fm(u); (6)

(iii) there exists z ∈ X2
m(X, ν) with ∥ z ∥L∞(X×X,ν⊗mx) ≤ 1 such that (5) holds and

1
2

∫
X×X

∇u(x, y) z(x, y)d(ν ⊗ mx)(x, y) = Fm(u); (7)

(iv) there exists g ∈ L∞(X × X, ν ⊗ mx) antisymmetric with ∥g∥L∞(X×X,ν⊗mx) ≤ 1 such that

v(x) = −
∫

X
g(x, y)dmx(y) for ν-a.e x ∈ X, (8)

and
−
∫

X

∫
X

g(x, y)dmx(y) u(x)dν(x) = Fm(u). (9)

(v) there exists g ∈ L∞(X × X, ν ⊗ mx) antisymmetric, satisfying (8) and

g(x, y) ∈ sign(u(y) − u(x)) for (ν ⊗ mx)-a.e. (x, y) ∈ X × X. (10)

2.3 The ROF-model

Let us recall the classic problem in image restoration. Given a corrupted image f : Ω → R on, for
example, a rectangle Ω in R2, the aim is to remove the noise or corruption in order to obtain the
desired “clean” image u : Ω → R, which is related to the original one by

f = u + n,

when n is the additive noise. Unfortunately, the problem of recovering u from f is ill-posed.
To handle this problem, Rudin, Osher and Fatemi (see [12]) proposed to solve the following
constrained minimization problem over BV (Ω):

Minimize
∫

Ω
|Du| subject to

∫
Ω

u =
∫

Ω
f and

∫
Ω

|u − f |2 = σ2. (11)

The first constraint corresponds to the assumption that the noise has zero mean, and the second
that its standard deviation is σ. Problem (11) is naturally linked to the following unconstrained
problem (called the ROF-model):

min
{∫

Ω
|Du| + λ

2 ∥u − f∥2
2 : u ∈ BV (Ω)

}
, (12)

for some Lagrange multiplier λ > 0. It has been proved an existence and uniqueness result for
(11), as well as the link between (11) and (12). The constant λ in (12) plays the role of a “scale
parameter”. By tweaking λ, we can select the level of detail desired in the reconstructed image.
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The use of neighborhood filters by Buades, Coll and Morel in [5] has led to an extensive literature
of nonlocal models in image processing. This nonlocal ROF-model, in a simplified version, has
the form

min
{∫

Ω×Ω
J(x − y)|u(x) − u(y)|dxdy + λ

2 ∥u − f∥2
2 : u ∈ L2(Ω)

}
. (13)

On the other hand, an image can be seen as a weighted graph where the pixels are taken as
the vertices, and the weights are related to the similarity between pixels. The ROF-model in a
weighted graph G = (V (G), E(G)) reads as follows:

min

1
2

∑
x∈V (G)

∑
y∈V (G)

|u(y) − u(x)|wxy + λ

2
∑

x∈V (G)
|u(x) − f(x)|2

∑
y∼x

wxy : u ∈ L2(G, νG)

 .

(14)

Problems (13) and (14) are particular cases of the following ROF-model in a random walk space
[X, B, m, ν]:

min
{1

2

∫
X

∫
X

|u(y) − u(x)|dmx(y)dν(x) + λ

2

∫
X

|u(x) − f(x)|2dν(x) : u ∈ L2(X, ν)
}

, (15)

which is one of the motivations for this chapter and we call the m-ROF-model.

Another problem in which we are interested is the (BV, L1)-decomposition in a random walk space
[X, B, m, ν], that reads as

min
{1

2

∫
X

∫
X

|u(y) − u(x)|dmx(y)dν(x) + λ

∫
X

|u(x) − f(x)|dν(x) : u ∈ L1(X, ν)
}

, (16)

which has as a particular case the (BV, L1)-decomposition in graphs.

Let [X, B, m, ν] be a reversible random walk space, f ∈ L2(X, ν) and λ > 0. Our aim in this
section is to study the m-ROF-model:

min
{

TVm(u) + λ

2

∫
X

|u(x) − f(x)|2dν(x) : u ∈ L2(X, ν)
}

. (17)

We will start by proving existence and uniqueness of the minimizer of problem (17) as well as a
characterization of this minimizer.
Theorem 7. Let [X, B, m, ν] be a reversible random walk space and assume that ν is a probability
measure. For any f ∈ L2(X, ν) and λ > 0, there exists a unique minimizer uλ of problem (17).
Moreover, uλ is the unique solution of the problem

λ(u − f) ∈ ∆m
1 (u). (18)

Consequently, uλ ∈ L2(X, ν) is the solution of problem (17) if, and only if, there exists g ∈
L∞(X × X, ν ⊗ mx) antisymmetric such that

λ(uλ − f) = divm g (19)

and
g(x, y) ∈ sign(uλ(y) − uλ(x)) for (ν ⊗ mx)-a.e. (x, y) ∈ X × X.
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In [12], to solve problem (11), the gradient descent method was used, which required to solve
numerically the parabolic problem

ut = div
(

Du
|Du|

)
− λ(u − f) in (0, ∞) × Ω,

Du
|Du|η = 0 on (0, ∞) × ∂Ω,

u(0, x) = v0(x) in x ∈ Ω.

(20)

Then, the denoised version of f is approached by the solution of (20) as t increases. The concept
of solution for which this problem is well-possed was given in [1]. We will see here that a non-local
version of (20) can be used to approach the solutions of the ROF-model in the workspace of metric
random walk spaces.

As in [12], we can see that problem (17) is well-posed by using the gradient descent method. For
this, one needs to solve the Cauchy problem

vt ∈ ∆m
1 v(t) − λ(v(t) − f) in (0, T ) × X,

v(0, x) = v0(x) in x ∈ X,
(21)

with v0 satisfying ∫
Ω

v0 =
∫

Ω
f.

Now, problem (21) can be rewritten as the following abstract Cauchy problem in L2(X, ν):

v′(t) + ∂Gm(v(t), f, λ) ∋ 0, v(0) = v0. (22)

Then, since Gm(·, f, λ) is convex and lower semi-continuous, by the theory of maximal monotone
operators ( [3]), we have that, for any initial data v0 ∈ L2(X, ν), problem (22) has a unique strong
solution. Therefore, if we define a solution of problem (21) as a function v ∈ C(0, T ; L2(X, ν)) ∩
W 1,1

loc (0, T ; L2(X, ν)) such that v(0, x) = v0(x) for ν-a.e. x ∈ X and satisfying

λ(v(t) − f) + vt(t) ∈ ∆m
1 (v(t)) for a.e. t ∈ (0, T ),

we have the following existence and uniqueness result.

Theorem 8. Let [X, B, m, ν] be a reversible random walk space and assume that ν is a probability
measure. For every v0 ∈ L2(X, ν) there exists a unique strong solution of the Cauchy problem (21)
in (0, T ) for any T > 0. Moreover, we have the following contraction and maximum principles in
any Lq(X, ν)–space, 1 ≤ q ≤ ∞:

∥(v(t) − w(t))+∥Lq(X,ν) ≤ ∥(v0 − w0)+∥Lq(X,ν) ∀ 0 < t < T, (23)

for any pair of solutions v, w of problem (21) with initial data v0, w0 ∈ L2(X, ν) and noisy images
f , f̂ ∈ L2(X, ν), with f ≤ f̂ , respectively.

Finally, we will study the m-ROF-model with L1-fidelity term, that is, given f ∈ L1(X, ν) and
λ > 0, we will study the minimization, over L1(X, ν), of the energy given by the sum of the total
variation and the L1-fidelity term:

min
{

TVm(u) + λ

∫
X

|u − f |dν : u ∈ L1(X, ν)
}

. (24)
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In the next result we characterise the minimizers of (24):

Theorem 9. Let [X, B, m, ν] be a reversible random walk space and assume that ν is a probability
measure. Let f ∈ L2(X, ν), λ > 0 and uλ ∈ L2(X, ν). Then, uλ ∈ M(f, λ) if, and only if, there
exists ξ ∈ sign(uλ − f) such that

λξ ∈ ∆m
1 (uλ).

3 Conclusions

The article has introduced a new framework who unifies different branches of PDE and let us to
study this equations in a new general way. Moreover, specifically, the main conclusions are the
following.

• The random walk sapces allow us to study the heat flow in nonlocal models associated to a
nonginular kernel in RN .

• The m-connexion of the random walk sapace is caracterized by the infinity propagation
speed.

• If a Poincaré inequality is satisfied, we can determine the convergence of the heat flow.

• We have introduced the Euler-Lagrange equations associated to the ROF minimization
problems for p = 1, 2

• We have seen the importance of the correct election of λ.
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