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1.  Introduction

This paper deals with a complex problem of task scheduling and resource assignments that come up 
in the daily management of company Service Centres (SC). SC usually deals with the requests reported 
by either external customers/citizens or internal users of an organization/company. Internal as well as 
external services must be provided with a given level of service. A call from a customer or a vendor 
requesting information about products or orders, or placing a claim or asking for technical support, is an 
event which requires specialised attention from the organisation. 

Tools have been developed to automate and rationalise the daily activity of SC's. These tools can be 
termed Service Centre Management Tools (SCMT). In particular, once an event is identified by an 
SCMT, it is classified according to a pre-defined hierarchical structure, which contains all events that 
can occur within the system. The database stores the hierarchical structure of possible events and the 
information required for their resolution. It also stores all information relative to the specific resolution 
of past events. We are aware of proposed SCMT's that can automate most of the operations of an SC. 
However, there are two important areas that have not been dealt with, automatic task scheduling and 
automatic management of human resources. SCMTs usually include so-called scheduling tools to help 
managers to dynamically make allocation and scheduling decisions at certain decision points. With the 
information provided by these tools, managers apply their own set of rules to give responses to the 
requests of new services that have arisen. This is a case of pure reactive scheduling (Herroelen and Leus, 
2005). This simple approach is aimed at a quick generation of a feasible plan. This approach might and 
frequently does lead to infeasible scenarios that are usually resolved by recurring to extra time or 
unfulfilling the agreed response times.

The SC workforce can be basically divided into three levels. Level 1 or Call Centre made up of 
telephonists who follow previously established procedures. Level 2 or Work Desk made up of 
multidisciplinary specialists able to resolve the various problems that were unresolved at level 1. Level 3 
made up of Management.

The Level 1 workforce is homogeneous. Everyone is capable of doing the same tasks after receiving 
a basic training course, with the help of a knowledge database and established procedures. The Level 2 
workforce is heterogeneous. It is generally scarce, highly qualified, and expensive. Each specialist is able 
to solve some, but not all events. Some members of this workforce tend to specialise in certain tasks 
and/or acquire greater experience with certain clients. These members should then be preferentially 
selected to resolve appropriate events. 
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This paper is focused on the second level of the SC (SC-Level2). Once an SC event enters the SC-
Level2, it gives place to one or several tasks to be performed by the SC-Level2 workforce. In the case of 
several tasks maximal and minimal generalized precedence relationships (GPR) between the tasks that 
reflect technological constraints might exist. If this is the case we say that the event gives place to a 
multi-task. If not we simply say that the event gives place to several tasks. A standard average service 
time is associated with each task. Tasks and multi-tasks are associated with a client-company service 
level agreement (SLA) that establishes maximum response times, taken into account from the time the 
events that give place to them enter the SC, for the beginning and the end of tasks with penalties for 
delays.

When an event occurs at a given time it gives place to a task (multi-task). If the event occurs again, it 
gives place to another task (multi-task), which is a copy of the previous task (multi-task). Tasks (multi-
tasks) originated by the occurrence of the same event have the same characteristics and we will say that 
they belong to the same type of task (multi-task). 

The service level agreed for each client, project, and task (multi-task) is a fundamental aspect of the 
operation of an SC. The service level agreements are negotiated during the contractual phase, before the 
SC services are provided. In practice, the maximum response times are established for categories of 
events not for each task (multi-task) individually. A task (multi-task) inherits its maximum response 
times from the category to which the event that gives place to it belongs to. 

The SC-Level2 workforce is made up of specialists, with specialisations in one or more areas of 
knowledge. A knowledge area describes a set of tasks a specialist with specialisation in this area can 
handle. For each area, the efficiency level of a specialist describes how well he or she can handle the 
tasks in that area and can be quantified by the average service time. Higher (lower) levels of efficiency 
indicate that the person is one of the most (least) suitable for the area and implies a reduction (increase) 
of the average service time. Pre-emption is not allowed. To process a task just one specialist specialised
in the area to which the task belongs is required. To ease the notation, we will consider that all workers 
(specialists) are available at any time instant. We will also say that the workers that can handle the same 
types of tasks (multi-task) with the same efficiency levels belong to the same type of worker.

In general terms, the main objective for an SC-Level2 scheduling system is to obtain, in real time, a 
feasible plan of action (a task schedule and an assignment of workers to tasks) which satisfies the
technological constraints, which does not use more specialists than are available in each time period and 
which satisfy the service level agreements. Plans are made or remade at certain points in time. During 
execution, however, continuously new events are incorporated into the system and resolved events are 
dropped from the system. The events arrive at uncertain times and their service times are also uncertain. 
Due to the full recording capability of SCMT's, we can realistically assume that some advance 
knowledge about the probability distributions of both types of times is available. In this type of rapidly 
changing environment, planning becomes a continuous online process. Therefore, the system can be 
qualified as dynamic, stochastic, online, resource constrained and multimode. 

This paper proposes the use of project scheduling technology in the design of a system management 
model and the corresponding solution methodology to deal, in real time, with the SC-Level2 allocation 
and scheduling problem.

The management model we propose in this paper can be described as follows: The system maintains 
a workable baseline schedule at any time. At a given time t, a deterministic and static algorithm (a 
predictive procedure) generates a predictive schedule S(t), taking into consideration the unfinished tasks 
already in the system and assuming the average service times as their deterministic durations. During 
execution, tasks may take longer or shorter than initially expected, causing deviations between the 
actually realized and planned completion times. Each time such a deviation occurs, a fast reactive 
procedure is applied to repair the predictive schedule while maintaining resource allocation. The 
problem is considered static during react units of time: tasks arriving between times t and t+react are 
ignored until time t+react when the predictive procedure is called again. The predictive procedure 
maintains the current resource allocation only for the tasks in process at time t+react and not necessarily 
for the tasks previously scheduled but not started yet. This concatenation of procedures is periodically 
applied at subsequent times with time intervals of length react (rescheduling times). The actual schedule 
that is obtained after these modifications is called the realized schedule.

It is interesting to note that the problem of testing whether there is a feasible schedule for a given 
instance of PS|temp|Cmax is NP-complete due to the existence of GPRs with minimal and maximal 
time-lags between the tasks [27]. For this reason, we have not considered the use of scheduling policies 
that would generate a schedule by deciding at certain decision points the starting time of a set of tasks 
not scheduled yet ([25] and [26]). The tasks of a multi-task are linked by GPRs therefore scheduling 
these tasks one by one would lead almost certainly to infeasibilities. 
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The rest of the paper is organised as follows: In Section 2 we will formally introduce the project 
scheduling approach. Section 3 briefly reviews the main literature on the project scheduling topics 
related to the models dealt with in this paper. In Section 4 we will describe the predictive-reactive 
procedure. Section 5 describes the instance generator and the selection of test instance sets. The 
computational results and configuration selection are shown in Section 6. The final section is reserved 
for conclusions and future work.

2. A project scheduling approach

The static and deterministic problem

At each re-scheduling time, the predictive procedure generates a predictive schedule by solving a static 
and deterministic project-scheduling problem that can be described as follows:

The project consists of a set T of tasks and a set MT of multi-tasks, where each task has to be 
processed without pre-emption to complete the project. A multi-task is composed of a set of tasks linked 
by GPRs. If Tmt denotes the set of tasks that belongs to a multi-task then Tmt  T. The dummy tasks 1 and 
n represent the beginning and end of the project. 

The specialists (workers) are the resources required to process the tasks. Each task j has associated a 
standard average service time (duration), dj, and should be processed by just one worker that can handle 
the task. For each type of task j, the efficiency level of a specialist i describes how well he or she can 
handle the tasks that belong to that type of task and can be quantified by the average duration. The 
efficiency level is represented as an integer value, eji. In this paper, we will consider six efficiency 
values: eji = -1, 1, 2, 3, 4 and 5. The value eji = -1 means that specialist i cannot handle the tasks of type j. 
The value eji = 1 (2) means that the average duration, dji, of a task of type j when processed by specialist i 
decreases an α % (β %) with respect to the standard average duration dj.  The value eji = 4 (5) means that 
the average duration dji increases a γ% (δ %) with respect to the standard average duration dj. The value 
eji = 3 means that the average duration dji is equal to the standard average duration dj. The number of 
different efficiency values and the associated increase/reduction percentages values will depend on the 
actual application. In this paper, we will consider α = δ = 25 and β = γ =13. We will also say that the 
workers that can handle the same types of tasks with the same efficiency levels belong to the same type 
of worker. TW will denote the set of types of workers.

The tasks in the system at any re-scheduling time t can be classified into two groups: the tasks 
already in the system but not started yet (Tns) and the tasks in process (Tip). The tasks in Tns are included 
in T. If task j  Tip it means that a worker i is processing j.  Then, j defines a task j’ in T for which both 
the starting time sj’ = t and the assignment of worker i are fixed and which average duration d’ji is 
calculated as follows: d’ji = sj + dji - t if t < sj+ dji and d’ji = 1 if t > sj + dji where sj is the starting time of 
task j. The arrival time of a task (multi-task) j into the system will be denoted as arr(j). 

The client-company service level agreement establishes for each task (multi-task) j a maximum 
starting time, msj, and a maximum finishing time, mfj. Both dates can be exceeded, however some costs 
are incurred. We define scj (fcj) as the cost associated to the delay of one unit in the starting (finishing) 
time of task (multi-task) j. 

The dummy tasks 1 and n require no resources, do not have associated any maximum starting and 
finishing dates and their durations are null. We will say that tasks that have the same characteristics 
belong to the same type of task. TT will denote the set of types of tasks.

Durations, costs, and maximum dates are assumed to be non-negative integers. If the calculated 
average duration is not an integer then we round it up to the nearest integer.

The model considers generalised precedence relationships (GPRs) between the tasks, i.e. minimal 
and maximal time lags between tasks starting times. A minimal (maximal) time lag indicates that a task 
cannot start earlier (later) than certain time units after the start of another task. Time lags are considered 
to be positive, negative or zero integers. Only minimal relationships will be considered in the model 
without any loss of generality, negative/positive maximal time lags will be replaced by equivalent 
positive/negative minimal time lags of opposite direction. Therefore, a GPR between tasks i and j will 
always be expressed as: sj - si ≥ lij. The tasks and the GPRs can be represented by a weighted directed 
graph G = (V, E), where V = {1, 2,..., n} is the set of tasks, E is the set of GPRs and the weight of an arc 
(i,j)  E is lij. For the sake of simplicity we have not explicitly considered the other three types of GPRs: 
start-finish, finish-start and finish-finish. However, it is easy to see that their consideration would not 
have changed the contents of the paper as it would have unnecessarily complicated its writing. Notice, 
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also, that in this setting it is not true that the four different time lag types can be converted into one 
another.

A schedule S is represented by two vectors S = (s , w) where the vector s = (s1, s2, ..., sn) of non 
negative integers, indicates for each task j its starting time sj and w = (w(1), w(2), ..., w(n)) assigns to 
each task i a worker w(i) which can handle the task, w(1) = w(n) is a dummy worker. The finishing time 
of a task j is calculated as fj = sj +djw(j). Given the inherent complexity of the problem we are dealing 
with, the goal of the scheduling system is to obtain a feasible solution satisfying all the previous 
constraints. Nevertheless, a feasible solution may not exist for certain instances of the problem and even 
the problem of knowing if it exists a feasible solution is a NP-complete problem. Therefore, the solution 
methodology should be prepared to handle infeasible solutions. Nevertheless, the procedures we have 
developed deal with resource-feasible schedules which do not use more specialists than are available in 
each time period.  Therefore, we will consider two kinds of possible infeasibilities: GPR infeasibility and 
TARDCOST infeasibility.

Given a schedule S, the following function measures the first type of infeasibility: 




Eji

jiviolSGPR
),(
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where: sj = min{si: task i belongs to multitask j} and fj = max{fi: task i belongs to multitask j} for 
jMT. Obviously, TARDCOST(S) = 0 iff the schedule S satisfies all SLAs.

The objective of the static and deterministic scheduling problem is to find a resource-feasible 
schedule that minimizes the functions GPR(S) and TARDCOST(S) in lexicographical order. Therefore, 
we are dealing with a bi-objective scheduling problem where the evaluation of a sequence S is given by 
eval (S) = (GPR (S), TARDCOST (S)) and  eval(S)<eval(S') if “GPR(S)<GPR(S')” or “GPR(S) = 
GPR(S') and TARDCOST(S) <TARDCOST (S')”.

The dynamic and stochastic problem

At every point in time t, the predictive schedule S(t) predicts how the scheduling system expects the 
tasks to be processed given the information available at that time. During execution, tasks may take 
longer or shorter than initially expected causing deviations between the actually realized and planned 
starting, and finishing, times. Also, continuously new events are incorporated into the system and 
resolved events are dropped from the system. When new information becomes available the predictive 
schedule is repaired (reactive scheduling between re-scheduling times) or partially recomputed 
(predictive scheduling at rescheduling times). Therefore, the predictive schedule evolves with time, since 
the beginning of the scheduling effort at time t = 0. The actual realization of the scheduling of a task j is 
only fully known at its completion. Since this time onwards the staring time and duration of task j are 
fixed in the predictive schedule. Gradually, the predictive schedule becomes the realized schedule. The 
realized schedule at time t, S*(t), is the sub-schedule of S(t) relative to the completed tasks. The goal of 
the scheduling system is to obtain a feasible realized schedule at every time t. In this paper, we present a 
predictive-reactive procedure where elements can be implemented in different ways giving place to 
different versions of the procedure. The merits of these versions will be evaluated using simulation as 
will be apparent in Section 6.

3. Literature review

In this section we briefly review the main literature on the classical resource constraint project 
scheduling problem (RCPSP) and some of its generalizations that are related with the models this paper 
deals with.

3.1 RCPSP and some generalizations

Research efforts in RCPSP have been extensive and numerous generalizations of it have been described. 
An extensive study of the problem RCPSP can be found in [13]. One of the most important 
generalizations, named RCPSP/max, is to consider generalized precedence relations of minimum and 
maximum types (GPR), see [27]. In the project-scheduling field it has been considered the problem of 
delivery dates assigned to each task. One of the first papers was [36], in which resources are not
considered and penalties for late or early finishing are given. In [37] the same problem with resource 
constraints is considered. [31] studies the RCPSP with due dates.
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Another modality is the Multimode RCPSP (MRCPSP) where each task can be processed using different 
combinations of resources; different processing modes may result in different task durations. Papers 
related to this problem are [10], [18], [19] and [20]. We model the static SC-Level2 problem as a 
MRCPSP considering GPRs and delivery dates, as we will see in the next subsections.
There are models that consider dynamic and stochastic variations of the project-scheduling problem. 
Artigues and Roubellat, [3], studied the problem of, given a feasible schedule for MRCPSP with due and 
delivery dates, inserting a new task minimizing the maximum delay. The Dynamic RCPSP is solved (if 
possible) in [14] by using “conflict-based repair” techniques. The problem of dynamic sequencing is 
widely studied in the context of real-time systems; Manimaran, [23] and [24], show the design of 
architectures and algorithms to sequence the tasks efficiently in real time.
There are several approaches to the project scheduling problem where actual activity durations may be 
different from expected. One approach considers that durations are known before scheduling although
they can be modified by perturbations during the realization of the schedule. One of the most popular
procedures within this approach is the one proposed by Goldratt [15] but it has been widely discussed 
(see [22]). Van den Vorder, [33] and [34], proposes alternative methods to Goldratt and considers the 
trade-off between the project duration and stability.
Another modality considers time durations defined as probability distributions, it is called stochastic
RCPSP (SRCPSP). Scheduling policies is a methodology widely used in SRCPSP; a scheduling policy
 proposes "actions" at each decision time point. With “action” it is understood the assignment of a 
starting time for a given activity. Decision time points are those time points at which activities finish and 
the initial time point. A full characterization of scheduling policies can be found in [26] and [27]. We do 
not consider that scheduling policies are a viable option for the SC-Level2 problem due to the existence 
of GPRs. 
Research in dynamic environments that consider the possibility of perturbations in task durations is 
scarce. Alvarez and Diaz, [2], examined the case of task sequencing in a factory where the lengths of 
durations can vary, new tasks can arrive, and there are breakdowns. An analysis of combinatorial 
stochastic online problems where special emphasis is given to the dynamic stochastic scheduling 
problem can be found in [35]. None of the two papers considers generalized precedence relations. Two 
recommended references about scheduling with uncertainty are [21] and [8].

3.2 Service Centre Problem
The static and deterministic problem (see section 2) has been formulated as a multiobjective project 
scheduling problem. The books by Bagchi [4] and T'Kindt and Billaut [30] may be considered as 
reference books for researchers in the field of multi-criteria scheduling problems. Another interesting 
work is [6] which considers the problem of generating schedules for a multi-skilled workforce; Viana 
and Sousa [38] applied multi-objective versions of the simulated annealing and tabu search in RCPSP. 
The insertion of new tasks within a given sequence is a recent problem in project scheduling, see [3]. 
However, given that the fitness function in the SC problem is different, we opted to use traditional (and 
low computational) methods of insertion, the insertion can be improved by means of local search 
procedures afterwards. The static problem considers expected durations. The static SC problem can be 
found in the literature, without multitasking, in [32].

4.  Predictive-reactive algorithms

In this section we present the main algorithmic elements of the scheduling system we propose. At every 
point in time t, a schedule S(t) is maintained. At every re-scheduling time t, a predictive procedure is 
applied to S(t). The predictive procedure performs two main actions. First, an Insertion algorithm inserts 
the tasks arrived to the system since the last re-scheduling time into S(t). Second, Local Search 
algorithms are applied to the enlarged S(t) with the aim of eliminating, or reducing infeasibilities, giving 
place to the predictive schedule S(t). During execution, tasks may take longer or shorter than initially 
expected causing deviations between the actually realized and planned starting, and finishing, times. 
Each time this happens, a Reactive algorithm repairs the schedule S(t). The algorithms applied in the 
predictive phase take into consideration the workload assigned to the workers by the current S(t) to make 
decisions. 

4.1 Workloads

Given a re-scheduling time t, the current S(t), the set T of tasks in the system at time t, a worker i and a 
worker type tw, we define:

  



)(

,max)(
iASSIGNj

jj
stiworkload f where  ijwTjiASSIGN  )()( , and
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where fT = max{fj:jT} and |tw|  denotes the number of workers of type tw available. Notice that 0 ≤ 
workload(tw) ≤ 1. 

4.2 Insertion algorithm

At every re-scheduling time t, the Insertion algorithm extends the current S(t) by scheduling the tasks 
arrived to the system since the last re-scheduling time. The Insertion algorithm schedules the tasks which 
have arrived but not yet scheduled, in increasing order of maximum starting time. It works as follows:

Let j denotes the next task to be scheduled and W(j) the set of workers that can handle task j. For a 
given worker i we define ltask(i) as the task j’ ASSIGN(i) such that fj’ = max{fh: hASSIGN(i)}. The 
Insertion algorithm selects a worker i  W(j) and schedules task j starting at ti = max{t, fltask(i)}. Different 
selection rules provide different versions of the algorithm. For example, select the worker i such that 
fltask(i) is minimum (version IEST) or select the worker i such that ti + dj,i is minimum (version IEFT). In 
both cases, the minimum worker workload is used as a time breaking rule.

IEST and IEFT are very fast versions of the Insertion algorithm that do not take into account the 
GPRs present in the multi-tasks, a fact which could lead to great infeasibilities which could be difficult 
to repair. It seems, therefore, convenient to consider more elaborate versions of the Insertion algorithm, 
which are more time consuming but still fast and that schedule the tasks of a multitask as a whole. We 
have used the hybrid genetic algorithm, GA, described in [32] to generate a schedule for a given 
multitask considered as a project in itself.  Times ti are considered as availability dates in the workers 
calendars. Therefore, we have considered two other versions of the Insertion algorithm, IESTGA and 
IEFTGA, which schedule the tasks in a multi-task using GA and schedule the tasks using IEST and IEFT, 
respectively. 

4.3 Generating S(0)

To generate the initial schedule S(0) we can use any of the versions of the Insertion algorithm to 
schedule the tasks already in the system at time t = 0 in increasing order of the maximum finishing time. 
This gives four methods to generate the initial schedule: InEST, InFST, InESTGA and InEFTGA. 

4.4 Local Search algorithms

The four Local Search (LS) algorithms we have developed aim at reducing the infeasibility of S(t) at 
every re-scheduling time t. A pair of these LS algorithms aim at decreasing the value of GPR(S(t)) and 
the other pair, the value of  TARDCOST(S(t)).  In each pair, an algorithm is based on the Interchange 
operator and the other, on the Insertion operator. Given a worker i, LIST(i) will denote the set ASSIGN(i) 
with the tasks ordered in increasing order of the starting time. The Interchange operator consists of 
selecting two tasks assigned to two different workers and exchanging their positions in the ordered lists 
of tasks assigned to the workers. The Insertion operator selects a task assigned to a worker and inserts it 
into the ordered list of tasks assigned to another worker. It is not difficult to see why we have called 
them IntGPR, InsGPR, IntTARD and InsTARD, respectively.

The four LS algorithms share a similar but not identical structure and make use of the upper limits 
maxtasks = maxtasks’ = perc*|T| and maxworkers = perc*|workers|, where |workers| denotes the number 
of workers available and the rational value perc  [0,1] is an input parameter. 

4.4.1 Algorithm IntGPR
Given a task j, we define the contribution of task j to GPR(S(t)) as 





E)i,j(E)j,i(

)i,j(viol)j,i(viol)j(GPR . The algorithm IntGPR seeks to decrease GPR(S(t)) by re-

scheduling tasks j for which GPR(j) > 0. In this context, re-scheduling a task j means to find an 
appropriate task j’ with w(j’)  w(j), interchange the workers assigned to them and  re-define the starting 
times of tasks j and j’ appropriately.  Next, we present an outline of the algorithm.
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Algorithm IntGPR
1. Make nw = nt = R = 0
2. Generate the list TASKLIST = {jT: GPR(j) > 0} in decreasing order of GPR(j) 
3. While (nt < maxtasks and TASKLIST  ):

3.1 Select the first task j in TASKLIST
3.2 Make nt = nt + 1
3.3 Obtain R = INTERCHANGE(j)
3.4 Eliminate task j from TASKLIST

4. If (R = 0) then STOP
5. Go to 1

INTERCHANGE(j)
1. Determine the searching interval [a, b]
2. If (a = b) then go to 5
3. Generate the list WORKERLIST = {i: iW(j) and i  w(j)} in increasing order of workload(i)
4. While (nw < maxworkers and WORKERLIST  ):

4.1 Select the first worker i in WORKERLIST
4.2 Make nw = nw + 1
4.3 Generate the set SET = {j’ ASSIGN(i): sj’ [a, b]} 
4.4 Order SET either in increasing order of starting time if b = sj - 1 or in decreasing 

order of starting time if a = sj + 1
4.5 If (jTmt) then SET = SET\{j’: j and j’ belongs to the same multitask}
4.6 While (SET ):
          4.6.1 Select the first task j’ SET
          4.6.2 Construct S’(t) from S(t) by interchanging tasks j and j’
          4.6.3 If (GPR(S’(t)) < GPR(S(t))) then R = 1, S(t) = S’(t) and go to 5
          4.6.4 Make SET = SET\{j’}

5. Return R

To fully describe algorithm IntGPR we need to explain how the searching interval is constructed and 
how tasks j and j’ are interchanged. Given a task j the searching interval for j is a time interval [a, b] 
such that if we only change the starting time of task j in such a way that the new value s’j belongs to this 
interval then GPR(j) decreases with certainty. The searching interval for j is constructed in the following 
way. 

On what follows we restrict our attention to the GPRs between j and another task and vice versa. 
These GPRs can be classified as violated (they contribute to GPR(j)) or non-violated (their contribution 
to GPR(j) is null). 

For a given non violated GPR there is a time instant t’ of maximal (minimal) value such that if  the 
starting time of only task j is changed to a new value s’j  t’ (s’j  t’) then the non-violated GPR remains 
non-violated. Let b1 (a1) be the minimum (maximum) of these values over all non-violated GPRs. 
Notice that b1  sj and a1  sj. 

For certain violated GPRs there is a time instant t’ of minimal (maximal) value such that if the 
starting time of only task j is changed to a new value s’j  t’ (sj  t’) then the violated GPR becomes non-
violated. Let b2 (a2) be the minimum (maximum) of these values over those violated GPRs. We can 
compute the number ninc (ndec) of violated GPRs that would not be violated any longer if sj would be 
increased (decreased) as much as necessary. Notice that b2  sj and a2  sj and that ninc + ndec is the 
number of violated GPRs.

Then, we define:
- a = sj +1 and b = min{b1, b2} if ninc > ndec
- a = max{a1, a2, t}  and b = sj -1 if ninc < ndec
- a = b = sj if ninc = ndec
Notice that ninc > ndec (ninc < ndec) implies that we only consider the possibility of delaying 

(advancing) task j.
Let us focus now on how to construct the schedule S’(t) generated by interchanging tasks j and j’. 

Given a task k we define beforek (afterk) as the task placed before (after) k in the list LIST(w(k)) if task k
is not the first (last) task in the list. To construct S’(t) the worker assignments and the starting times are 
maintained fixed for all tasks other than j and j’. To determine the new schedule for j and j’ we proceed 
as follows: We investigate if a minimal (maximal) time instant t’ in the interval [max(a,fbeforej’), min(b, 
safterj’)] such that t’ +djw(j’)  safterj’ in the case ninc < ndec (ninc > ndec) exists. We also investigate if 
there exists a minimal time instant t’’ in the interval [fbeforej, safterj] such that t’’+dj’w(j)  safterj. If any of 
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these time instants do not exist, the interchange is not produced and S’(t) = S(t). In other case, we define 
s’(j) = t’, w’(j) = w(j’), s’(j’) = t’’ and w’(j’) = w(j). For the case in which j is the first (last) task in the 
list we define fbeforej = t (safterj = ∞). Similarly for task j’.

4.4.2 Algorithm InsGPR
The algorithm InsGPR seeks to decrease GPR(S(t)) by re-scheduling tasks j for which GPR(j) > 0. In 

this context, re-scheduling a task j means to find an appropriate worker i  w(j), assign task j to worker i
and  re-define the starting time of task j.  The general outline of algorithm InsGPR is the same as that of 
algorithm IntGPR except that line 3.3 should now read: Obtain R = INSERT(j). The outline of the 
procedure INSERT(j) is the following:

INSERT(j)
1. Determine the searching interval [a, b]
2. If (a = b) then go to 5
3. Generate S’(t) = RightJustify(S(t),a)
4. Generate the list WORKERLIST = {i: iW(j) and  i  w(j)} in increasing order of workload(i)
5. While (nw < maxworkers and WORKERLIST  ):

5.1 Select the first worker i in WORKERLIST
5.2 Make nw = nw + 1
5.3 Construct S’’(t)  from S’(t) by inserting task j in i
5.4 If (GPR’’(j) < GPR’(j)) then R = 1, S’(t) = S’’(t) and go to 6
5.5 Make WORKERLIST = WORKERLIST\{i}

6. Generate S(t) = LeftJustify(S’(t))
7. Return R

where GPR’’(t) (GPR’(t)) denotes the value of GPR(j) with respect to S’’(t) (S’(t)).

To fully describe algorithm INSERT(j) we need to explain how the functions  RightJustify(S(t),a) and
LeftJustify(S’(t)) operate and how task j is inserted in i.

The schedule S’(t) = RightJustify(S(t),a) is generated from S(t) by delaying as much as possible all tasks 
whose finishing times are greater or equal than a in decreasing order of their starting times while their 
contributions to GPR(S(t)) are not increased. The schedule S(t) = LeftJustify(S’(t)) is generated from S’(t) 
by advancing as much as possible all tasks in increasing order of their starting times while their 
contributions to GPR(S(t)) are not increased.

Let us explain now the procedure to construct the schedule S’’(t)  from S’(t) by inserting task j in i. 
The schedule S’’(t) can differ from S’(t) only in the worker assigned to j and the starting time of j. The 
procedure aims at scheduling task j between two consecutive tasks in LIST(i) in such a way that s’’(t) 
[a, b]. More specifically, we consider two cases: A) ninc < ndec and B) ninc > ndec. 

Case A. Let k be the first task assigned to i that starts at time a or later, if such a task exists. If k does 
not exist two cases are considered. If dji  b - a, then s’’(j) = a and w’’(j) = i. If dji > b – a, we define 
S’’(t) = S’(t).

If k does exist two cases are considered. If dji  s’k – a, then we define s’’(j) = a and w’’(j) = i. If dji

> s’k – a, we re-define a as a = fk and repeat the procedure until a > b. At that instant, we define S’’(t) = 
S’(t).

Case B. The procedure in this case is similar to that of case A but now the interval [a, b] is scanned 
from b to a.

4.4.3 Algorithm IntTARD
The algorithm IntTARD seeks to decrease TARDCOST(S(t)) without increasing GPR(S(t)) by 

performing interchanges of selected tasks. The general outline of algorithm IntTARD is the same as that 
of algorithm IntGPR except that now the set TASKLIST is generated differently. Now, TASKLIST = 
{jT: late(j) = sj – msj > 0} and two different orderings are considered: in decreasing value of late(j) or 
in decreasing msj.  These two orderings give place to two different versions of the algorithm: 
IntTARD_late and IntTARD_ms.  The outline of the procedure INTERCHANGE(j) is now the following:
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INTERCHANGE(j)
1. Make nt’ = 0
2. Generate the list SET formed by all tasks ordered in increasing order of late(j) or msj as 

appropriated.
3. While (nt’ < maxtasks’ and SET  ):

3.1 Select the first task j’ in SET such that w(j’)  w(j)
3.2 If (jTmt) then SET = SET\{j’: j and j’ belongs to the same multitask}
3.3 Make nt’ = nt’ + 1
3.4 Construct S’(t) from S(t) by interchanging tasks j and j’
3.5 If (GPR(S’(t))  GPR(S(t)) and TARDCOST(S’(t)) < TARDCOST(S(t)) 
then R = 1, S(t) = S’(t) and go to 4
3.6 Make SET = SET\{j’}

4. Return R

To fully describe the current algorithm INTERCHANGE(j)  we need to explain how tasks j and j’ are 
interchanged. To construct S’(t) the worker assignments and the starting times remain fixed for all tasks 
other than j and j’. To determine the new schedule of j and j’ we proceed as follows. We investigate if 
there exists a minimal time instant t’ in the interval [fbeforej’, safterj’] such that t’ +djw(j’)  safterj’. We also 
investigate if there exists a minimal time instant t’’ in the interval [fbeforej, safterj] such that t’’+dj’w(j) 
safterj. If any of these time instants do not exist, the interchange is not produced and S’(t) = S(t). In other 
case, we define s’(j) = t’, w’(j) = w(i), s’(j’) = t’’ and w’(j’) = w(j). For the case in which j is the first 
(last) task in the list we define fbeforej = t (safterj = ∞). Similarly for task j’.

4.4.4 Algorithm InsTARD
The algorithm InsTARD seeks to decrease TARDCOST(S(t)) without increasing GPR(S(t)) by re-

scheduling tasks j for which delay(j) > 0. In this context, re-scheduling a task j means to find an 
appropriate worker i  w(j), assign task j to worker i and  re-define the starting time of task j.  The 
general outline of algorithm InsTARD is the same as that of algorithm IntGPR except that now the set 
TASKLIST is generated as in IntTARD. Accordingly, we consider two versions of the algorithm: 
InsTARD_late and InsTARD_ms. The outline of the procedure INSERT(j) is now the following:

INSERT(j)
1. Determine the inserting limit a
2. If (a = sj) then go to 7
3. Generate S’(t) = RightJustify(S(t),a)
4. Generate the list WORKERLIST = {i: iW(j) and  i  w(j)} in increasing order of 

workload(i)
5. While (nw < maxworkers and WORKERLIST  ):

5.1 Select the first worker i in WORKERLIST
5.2 Make nw = nw + 1
5.3 Construct S’’(t)  from S’(t) by inserting task j in i
5.4 If (GPR’’(j) < GPR’(j) and TARDCOST(S’(t)) < TARDCOST(S(t))  then R
= 1, S’(t) = S’’(t) and go to 6
5.5 Make WORKERLIST = WORKERLIST\{i}

6. Generate S(t) = LeftJustify(S’(t))
7. Return R

To fully describe algorithm INSERT(j) we need to explain how to determine the inserting limit a and 
how task j is inserted in i. The inserting limit a is defined as the minimum time at which task j can start 
without increasing the value of GPR(j). To insert task j in i we define b = sj – dji and use the procedure of 
Case A in algorithm InsGPR. 

4.5 Reactive procedures

Given that the scheduling system has to operate in real time and that the reactive procedure is usually 
applied very often, we have designed a low computational cost reactive procedure. It works as follows:

Each time a task j finishes at a time t* different from the time fj predicted by the predictive schedule 
a reactive algorithm is applied to repair the schedule S(t*). If task j finishes before predicted then the 
procedure advances the starting time of the next task in LIST(w(j)) as much as possible without 
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increasing GPR(S(t)) and without exceeding t*. If task j finishes after predicted but the starting time of 
the next task in LIST(w(j)) is greater or equal than fj then the previous procedure is also applied.

If task j finishes after predicted and the starting time of the next task in LIST(w(j)) is less than fj then 
we propose two alternative reactive procedures that maintain the worker assignments and that we call R1 
and R2, respectively. Procedure R1 simply delays the tasks that follow task j in LIST(w(j)) with the 
objective of eliminating overlaps between tasks. R1 does not take into account possible variations of 
GPR(S(t))) or of TARDCOST(S(t)). 

On the contrary, R2 is a recursive procedure that repairs S(t*) by delaying some tasks and taking into 
account the GPRs. Before delaying any task, the contribution of each generalized precedence 
relationship to GPR(S(t*)) is computed and called the initial contribution of this GPR. The procedure R2 
considers first task afterj. If task afterj has already been started then the procedure stops. If not, the 
starting time of afterj is delayed up to time t*. If a task is delayed then it is immediately explored. To 
explore a task means to consider in turn all the GPRs with origin in this task and end in a non started 
task. If the current contribution of the considered GPR is greater than its initial contribution then the start 
of the final task of this GPR is delayed until the initial contribution is restored. This procedure is 
recursively applied to all delayed tasks. Once all successors of a delayed task k have been explored the 
procedure examines the task afterk. If safterk < fk then task afterk is delayed up to time fk. R2 stops when 
all delayed tasks have been explored. The procedure R2 is finite because each time a final task of a GPR 
is delayed the contribution of this GPR decreases and also because the number of tasks is finite.

5. Instance Generator and test instance sets

In the previous section we have presented an algorithmic structure whose components need to be 
instantiated and properly tuned in order to yield a fully functioning algorithm. The instantiation of such 
an algorithmic structure requires to choose among a set of different possible components and to assign 
specific values to all free parameters. We will refer to such an instantiation as a configuration.

To find a good configuration researches typically configure their algorithms in an iterative process on 
the basis of a sufficiently large number of runs of different configurations that are felt as promising on a 
sufficiently large set of instances. Usually, such a process is heavily based on personal experience. 
However, to the best of our knowledge the SC problem has not been previously considered and, 
consequently, no benchmark instances are available in the literature. Therefore, in order to be able of 
analysing the performance of the algorithms proposed in this paper we need first to generate a set of test 
instances. 

In order to allow a systematic evaluation of the performance of the algorithms, characteristics of the 
SC problem have to be identified. The characteristics can then serve as the input parameters for the 
systematic generation of instances. The variation of the levels of these problem parameters in a full 
factorial design study allows producing a set of well-balanced instances. In this section we describe an 
instance generator for the SC problem and propose several benchmark instance sets generated by using 
the proposed generator that will be used as test instances in the computational experiments dealt with in 
the next section. The methodology applied for finding a good configuration through statistically guided 
experimental evaluations and the results obtained in these experiments constitute the content of section 
5.

5.1 Instance generator

In this sub-section we give a brief summary of the selected characteristics of SC instances, that is, the 
input parameters of the instance generator and present the parameter settings used for generating the 
benchmark instances. A detailed description of the parameters and their realization can be found in [17]. 

We group the input parameters into three classes: First, variable parameters associated to the SC 
problem characteristics that we consider most relevant, which levels are systematically varied; second, 
the secondary parameters whose actual levels have to be randomly selected in the ranges determined by 
the selected variable parameters levels, and, third, the fixed parameters which levels have to be selected 
in ranges fixed for all instances. 

We next provide a short description of the variable parameters followed by the set of their possible 
values. The other parameters will be introduced when the description of the instance generation process 
requires it.

num_area _types   = number of knowledge areas, {3, 5, 10}.
num_task _types    = number of task types per knowledge area, {1, 5, 10}.
num_mtask _types = number of multitask types, {0, 1}.
max_mtask_size     = maximum number of tasks in a multitask, {5, 10, 15}.
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num_worker_types = number of worker types, {3, 5, 10}.
dur_arrival             = determines the ranges in which the average activity durations and the inter-

arrival times between tasks can be chosen, {1, 2, 3}.
cross_training   = indicates the degree of worker cross training {0.25, 0.50, 0.75}. 
restrictiveness        = denotes the parameter “Thesen's estimator for the restrictiveness [29]”, RT, 

used in ProGen/max, {0.25, 0.50, 0.75}.
redundancy             = denotes the parameter “degree of redundancy”, ρ, used in ProGen/max, {0.25, 

0.50, 0.75}.
CST                          = denotes the parameter “cycle structure tightness”, CST, used in ProGen/max, 

{0.25, 0.50, 0.75}.

We have generated two sets of test instances, SET_MT and SET_NMT. SET_MT contains one type of 
multitasks (num_mtask _types = 1) whereas SET_NMT does not contain any multitask (num_mtask 
_types = 0). Utilizing a full factorial design of the variable parameters other than num_mtask _types with 
5 replications per cell we have generated a total of 39*5 = 19683*5=98415 benchmark instances for set 
SET_MT. Utilizing a full factorial design of the variable parameters not related to the generation of 
multitasks with 5 replications per cell we have generated a total of 35*5 = 243*5=1215 benchmark 
instances for set SET_NMT.

Given a setting of parameters, the generator proceeds in several steps for generating an SC instance. 
In what follows the expression ‘name:= rand[a, b]’ means that the value of parameter name is generated 
as a random integer number in the interval [a, b]. 

Step 1.  The number of task types included in a given knowledge area is generated as a random 
integer number in the interval [1, num_task_types]. 

Step 2. Determination of a task type. 
Given a task type i the generator simulates that several tasks which are ‘copies’ of the task type arrive 

into the system at different time instants.  It is assumed that the probability distribution of (type i) task 
arrivals is a Poisson distribution for which the mean number of task arrivals per unit of time is 
1/interarri. It is also assumed that the processing time of a (type i) task performed by a worker j follows 
an exponential distribution with mean dji, calculated from the standard average duration di and the 
efficiency level eji. 

If dur_arrival = 1, then di := rand[10, 15] and interarri := rand[1, 5]
If dur_arrival = 2, then di := rand[5, 10] and interarri := rand[5, 10]
If dur_arrival = 3, then di := rand[1, 5] and interarri := rand[10, 15]
In all cases: sci := rand[1, 5], fci := rand[1, 5], mfi := rand[di+di*1.6, di+ di*1.62], msi := rand[di /2, mfi

– di].
Step 3. Determination of a multitask type
Given a multitask i the number of tasks in the multitask, num_tasks, is such that num_tasks := rand[5,

max_mtask_size]. Each task is randomly assigned to a type of task and inherits all the parameters 
associated to it. 

We generate the network structure of the multitask type by applying the Algorithm 2 (Direct method) 
of Progen\max in [28]. The number of sources and sinks are random integer numbers in the interval [1, 
0.2*num_tasks]. The rest of the parameter settings are the following:  = 0.5; slack factor (SF) is set to 
0.5; the number of cycles is rand[max{1, 0.25 num_tasks },min{5, 0.5 num_tasks }];  MTLmin = 0.2; 
MTLmax = 0.5; nc

min = 0.2 num_tasks; and  nc
max = 0.5 num_tasks.  

Also: sci := rand[1, 5], fci := rand[1, 5], mfi := rand[LPL+LPL*1.6, LPL+ LPL*1.62], msi := 
rand[LPL/2, mfi – LPL], where LPL denotes the length of a longest path in the multitask network.

Step 4. Assignment of worker types to knowledge areas
Let us suppose that num_worker_types = m1 and num_area _types = m2. We consider three cases:
1) m1= m2.
We randomly assign the worker types to the knowledge areas.
2) m1 < m2.
We randomly assign the m1 worker types to m1 knowledge areas. If m2-m1  m1, then we randomly 

assign the m2-m1 non assigned areas to m2-m1 worker types. If m2-m1  m1, then we randomly assign the 
m1 worker types to m1 non assigned areas. We repeat the procedure until the set of non assigned areas is 
empty. 

3) m1 > m2.
We proceed as in case 2 by interchanging the roles of the worker types and knowledge areas.
At this point in time, we have selected a set of worker-type/knowledge-area assignments in which 

each worker type is assigned to at least a knowledge area and each knowledge area has at least a worker 
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type assigned to it. Now we try to enlarge this set according to the level of the parameter cross_training. 
We consider all non selected worker-type/knowledge-area assignments one by one. Given a such 
assignment we calculate r := [0, 1]. If r < cross_training, then the assignment is added to the set. If not, 
it is discarded. For each assignment of a worker type i to a knowledge area j we calculate eji: = rand[1, 
5].

Step 5. Arrival of tasks and multitasks to the system
We have to specify the tasks and multitasks that arrive to the system. For each (multitask) task of 

type i we follow the procedure described in Figure 1 to generate the (multitasks) tasks of type i that 
arrive to the system. 

We have considered a time horizon of 200 units. We have also considered that the first type i
(multitask) task arrives to the system at time -mfi + di to avoid the situation in which there are no tasks in 
the system during the first periods of the planning horizon. Ti denotes the set of (multitasks) tasks of type 
i that have arrived to the system. 

5.2 Test instance sets.

The cardinality of set SET_MT is so huge (98415) that makes computationally impracticable to use it as 
a basis for choosing the best configuration of the procedure proposed in this paper. Therefore, we have 
devised a strategy to reduce the number of test instances, which we think it reflects a compromise 
between computational effort on one hand and diversity and problem hardiness on the other hand. 

A configuration is defined by specifying: the insertion algorithm, the method to generate the initial 
solution, the reactive procedure, the local search procedure, the value of react and the value of perc. 
Among all possible configurations we have selected the configuration SR = (IEST, InEST, R2, 
IntTARD&InsTARD, 5, 0.30) and applied the algorithm defined by it to all instances in SET_MT using 
a personal computer Pentium Dual Core 3.20Ghz. We have also considered a subset of the variable 
parameters: PARAM = {num_area_types, num_task_types, max_mtask_size, num_worker_types, 
dur_arrival, cross_training}. Then, we have defined the following four test sets:

GPR_A (TARD_A). For each combination of the possible levels of the parameters in PARAM we 
consider the subset of instances from SET_MT characterized by this combination. The instance in this 
subset for which the value of GPR(Sfinal) (TARDCOST(Sfinal)) obtained with SR is maximum is selected 
to be in GPR_A (TARD_A). It makes a total of 729 instances in GPR_A (TARD_A).

GPR_B (TARD_B).  For each combination of the possible levels of the parameters in PARAM we 
consider the subset of instances from SET_MT characterized by this combination and by a SR 
computation time of less than 10 seconds. The instance in this subset for which the value of GPR(Sfinal) 
(TARDCOST(Sfinal)) obtained with SR is maximum is selected to be in GPR_B (TARD_B). As none of 
those subsets are empty there are a total of 729 instances in GPR_B (TARD_B).  

6.  Computational Results.

In this section we show the computational analysis developed with the aim of choosing the optimal 
predictive-reactive configuration among the set of all possible configurations CONF. Before starting 
computational studies to compare configurations, statistical analyses were necessary in order to identify 
the correct way to develop computational experiments with a minimum cost.

First we studied which types of statistical tests were more appropriate, parametric or non-parametric 
tests. We randomly selected 10 instances from the set GPR_B. We performed 1000 runs of SR on each 
instance obtaining 10 sets of GPR(Sfinal) values and 10 sets of TARDCOST(Sfinal) values. The 
Kolmogorov-Smirnov test, [9], has not rejected the hypothesis that the GPR(Sfinal) values are normally 
distributed, however it has rejected this hypothesis for the TARDCOST(Sfinal) values. Non-parametric 
tests are therefore a better option.

Secondly we checked how many runs per configuration/instance were needed. The strategy of 
performing only one run per configuration is supported by the following experiment. We performed 10 
runs of SR on the instance set GPR_B obtaining 10 sets of GPR(Sfinal) values.  The non-parametric 
Friedman test, [7], did not detect differences between runs. 
After those preliminary experiments we carried out the configuration selection in two phases. At Phase 1 
we defined some experiments to reduce |CONF|. In Phase 2 we used a heuristic method known as FRace 
to remove those less promising configurations. In Phases 1 and 2, GPR_A, GPR_B, TARD_A and 
TARD_B were used. Finally we compared the results of the final selected configuration with those 
obtained with SR in the entire set of instances SET_MT and SET_NMT.
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6.1 PHASE 1: First Selection.

Using configuration SR in GPR_A, GPR_B. TARD_A and TARD_B, we conducted experiments to 
discard less promising configurations:
Exp1: Varying react values in {1,..., 10} computational results show that for GPR(Sfinal), the extreme 

values {1,2,8,9,10} result in worse computational results. Therefore we restricted the settings values 
react to {3,...,7}. Considering the computational cost, small values of react generate a total greater 
computational cost, but a lower average cost every time local search and insertion algorithms are 
used.

Exp2: Comparing the two reactive policies, computational results show that R2 is significantly better 
than R1. We discard R1.

Exp3: When considering Insertion Algorithms, it is needed to consider genetic algorithms to insert multi-
tasks in the system. Consequently we discard IEFT and IEST.

Exp4: With regard to the algorithms to generate initial solution, algorithms not using Genetic Algorithms 
to insert multi-tasks are discarded again.

6.2 PHASE 2: FRace.

The process to determine the best configuration is one of the most important parts in the implementation 
of metaheuristic algorithms, but it is also the part with the highest computational cost. To reduce the 
computational cost, several methods have been developed such as heuristic CALIBRA, [1], FRace, [5],
and A-B-Domain, [16]. In this work, and following the results from the preliminary statistical analysis 
we should use non-parametric tests to compare between configurations. Therefore, we have decided to 
apply the FRace methodology for choosing between the set of configurations CONF.

5.2.1 FRace
The FRace is a heuristic method that allows us to discard configurations as soon as there is statistical 
evidence against them. The process starts with an initial set of configurations, CONF and a set of 
instances, INST. In the first step all configurations solve a set of randomly selected instances 
INST_SINST. Se define INSTd=.

FRace uses a block design (see [11]) where the values obtained for each instance in INST_SINSTd are 
considered independent. Each block corresponds to the computational results for each instance on each 
configuration. In each block i (related to each instance) quantities eval(Sfinal) are sorted from lowest to 
highest; the position in the list is the rank, and this rank is assigned to the configuration related. In case 
of equally evaluated configurations they are positioned consecutively in the list at random. These 
configurations are assigned the same rank: the average of their positions. If the test rejects the null 
hypothesis, it is considered that there are differences between configurations. In this case confb denotes 
the configuration with the best rank value and pairwise comparisons are computed for every individual a
 CONF against confb, if a comparison is significant then a is discarded. At the end of the iteration 

INSTd=INSTdINST_S, INST=INST\INST_S. The process is repeated until only one configuration 

remains or until INST=.
Given the stochastic and heuristic nature of FRace we have considered it necessary to design a procedure 
that provides greater confidence in the discarding decision. We have designed a FRace-based process 
named Discard-B-A that works in two steps as follows: 
STEP1: The first step considers GPR_B as the set of instances, and CONF as the set of configurations. 
At each FRace iteration, 25 instances are randomly selected from GPR_B. A maximum number of 300 
instances are used. This process is run 5 times.  We found that the original pairwise test to discriminate 
between two configurations was too restrictive. Therefore we defined the following pairwise comparison 
test, Racepor (see Figure 2). The idea is to check if A is better pperc % of times than B, where A is 
confb. The use of pperc allows us to vary the degree of discrimination between configurations. For the 
experiments we used pperc = 0.6.
Discard-B-A runs FRace over GPR_B five times. CONFfi denotes the set of configurations not 

discarded for the experiment i, where i = 1,...,5. We compute CONFf = CONFf1…CONFf5.
STEP 2: The set of configurations is CONFf and the set of instances is GPR_A. At each FRace iteration, 
25 instances are randomly selected from GPR_A. Due to the increase in the computational cost, a 
maximum of 200 instances are used.
FRace is run 5 times thus obtaining 5 final sets whose intersection defines the final set of the step, named 
CONFF.

5.2.2 The use of Discard-B-A
The set of configurations CONF includes all possible configurations of valid combinations of the 
following sets: (IEFTGA, IESTGA) (insertion algorithms) (InEFTGA, InESTGA) (initial solution), (-, 



14

use of IntGPR) (-, use of InsGPR), (-, use of IntTARD), (-, use of InsTARD) (react = 3,5,7) (perc = 
30,60,90) and (late, ms) selection function in TARDCOST() local search methods. |CONF|=1008 
because (late, ms) option is only relevant if TARDCOST() local search methods are used.
At STEP 1 of Discard-B-A(GPR_A,GPR_B), 753 configurations were discarded. At the end of STEP 2, 
|CONFF|=24. The analysis of this set allowed us to draw the following conclusions: (1) all 
configurations in CONFF use perc = 0.9, IntTARD, InsTARD and InsGPR; (2) (late) is the best option 
for TARDCOST() local search algorithms; (3) react has been chosen as the smallest possible value 3. 
From |CONFF| we selected configurations A1 and A2 because they obtained the best median and mean 
values (over all the instances used on all FRace experiments), respectively. 
Discard-B-A was used also over (TARD_B, TARD_A); from this experiment A3 and A4 configurations 
were selected (using similar selection).

Comparison between A1, A2, A3 y A4 and SR.
Table I shows the description of the four selected configurations and the base configuration SR. fts
denotes the function task selection in the TARDCOST() local search algorithms, where NA denotes that 
those algorithms are not used. 

Tables II, III and IV, compare the five configurations with respect to GPR(), TARDCOST() and 
cpu_pred_med, respectively; cpu_pred_med denotes the average computational cost of insertions and 
local search procedures every react units of time.
Results regarding GPR (Sfinal) confirm that configurations A1 and A2 obtain the best results for all sets of 
instances except TARD_B as far as the average is concerned. Besides, configurations A3 and A4 obtain 
the best results in TARD_B. These results suggest that it is desirable to increase the value of pperc in 
Discard-B-A(TARD_B,TARD_A) Phase 1, in order to not discard promising configurations.
If we consider the total average, configurations A1 and A2 get the best results, though A2 is slightly 
higher, although rank tests showed no significant differences.
Results regarding TARDCOST (Sfinal) show that A1 and A2 get the best results in all sets of instances; 
we can observe clearly the effect of local search algorithms TARDCOST(). A1 is slightly better, but 
again, rank tests show no significant differences. 
If we analyze the computational cost on the variable cpu_pred_med we see that all costs are similar 
although A3 and A4 require slightly smaller computational cost.
All configurations improve SR configuration, this was expected because they incorporate more local 
search algorithms, and also because the configuration SR was discarded in all FRace experiments.
Due to the necessity of choosing one configuration we selected A2 because it gets slightly better results 
on GPR(Sfinal), which is the main objective function, and it also has the lowest value of cpu_med_rev.

Final Experiment.
The purpose of this final experiment is to validate the results of A2 against SR over the sets of instances 
SET_T and SET_NMT.
For each one of the evaluation functions we show the results for each parameter generator. The results 
are shown in the tables V, VI and VII, where dec=(100 * (eval (SR)-eval (A2)) / eval (SR)); eval can be 
GPR() or TARDCOST().
That A2 has improved the results of SR is not remarkable because the algorithms considered in A2 
perform a more thorough search. But it is interesting to highlight the parameters for which there has been 
a greater improvement. 
First we analyse the results over SET_T. Regarding GPR () we can see that for small instances 
(considering num_area _types and num_task _types) A2 obtains a greater improvement. If we consider 
the number of tasks in a multitask, A2 improves performance by 60% in bigger instances, and the 
improvement is significantly more discreet (23% approx.) if the number of tasks is small. For the other
parameters the performance is improved around 50%, and in general A2 improves most in those 
instances where restrictions are more severe. Regarding TARDCOST () the results are similar but the 
differences between the percentages are not so pronounced, we consider that it's because TARDCOST () 
is not so closely related to the temporal relations. 
In tables V and VI the cases where the results show opposite directions of change (increasing or 

decreasing) for SR and A2 have been highlighted in grey. If we consider the quartiles, A2 and SR obtain 
similar results for quartile 25, but the difference is very pronounced for quartile 75; we believe this 
shows that A2 is able to reduce the GPR violations in instances of greater complexity.
The improvement is not as pronounced as it was in GPR_A, GPR_B, TARD_A and TARD_B, but that 
was expected because these four groups were considered the “hardest instances”. It is also interesting to 
note that the computational cost is smaller in A2.
The data obtained in SET_NMT confirm the above results. The improvements are in a margin between 
4% and 20%; much lower because those problems do not include precedence constraints. The parameter 
of interdisciplinarity itself is affected. The more interdisciplinarity there was the less improvement we 
found which again supports the previous thesis that the more restricted the instances the greater the 
improvement.
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7. Conclusions and future work.

In this paper we have considered the problem of task scheduling and resource assignments in a Service 
Centre. To solve the problem we have modelled it as a dynamic online stochastic multimode project 
scheduling problem with scarce resources and generalized precedence constraints.
To solve the problem we have designed a predictive-reactive approach that works at all times with a 
reference sequence. Reactive methods are used to update the sequence when the duration of a task is 
larger than expected. Also at any react time the newly arrived tasks are inserted and local search 
algorithms are used to reduce GPR and TARDCOST infeasibilities.
We have considered generalized precedence relationships in dynamic environments for which we have 
defined the concept of multitask. Because we do not know of any similar problems in the literature we 
have designed an instance generator.
We have refined the method considering all possible configurations and choosing between them by 
applying a heuristic method named FRace, which we have specially modified for our problem.
We have found that the predictive-reactive approach can work in dynamic environments where the 
durations of tasks are unknown. We have also created tools to analyse the occupancy levels of the 
system.
Our future aim would be to consider the problem of generating robust sequences against possible sources 
of uncertainty. It is also necessary to study the response capacity of the system against possible changes 
in the resources initially available, altered distributions of arrivals and/or durations,...
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Table I. Selected Configurations and SR.

Conf INIT_SOL INSERT IntGPR InsGPR_ IntTARD InsTARD react perc fts

A1 InEFTGA IEFTGA 0 1 1 1 3 90 late

A2 InEFTGA IESTGA 1 1 1 1 3 90 late

A3 InEFTGA IESTGA 1 1 0 0 5 30 NA

A4 InEFTGA IEFTGA 1 1 0 0 3 30 NA

SR EST EST 0 0 1 1 5 30 late

Table I



Table II. GPR(Sfinal)

GPR_A GPR_B TARD_A TARD_B Total

average mean average mean average mean average mean average

A1 563.67 423 358.72 329 420.26 283 246.39 214 397.26

A2 560.47 421 354.54 331 418.43 298 247.01 217 395.11

A3 1520.73 669 465.70 320 836.21 253 195.27 144 754.48

A4 1352.70 684 438.62 325 767.89 250 194.61 147 688.46

SR 2873.30 1324 913.99 696 1556.16 514 424.44 889 1441.97

Table II



Table III. TARDCOST(Sfinal)

GPR_A GPR_B TARD_A TARD_B Total

average mean average mean average mean average mean average

A1 25380.1 13802 13297.53 9341 43907.6 22947 25163.21 17986 26937.1

A2 25672.8 14330 13127.24 8809 44273.0 23216 24916.00 17495 26997.2

A3 464431.8 281075 218555.5 175301 607573.6 363525 308993.20 273043 399888.5

A4 466596.4 272000 214079.1 179758 605220.7 369897 301055.30 262666 396737.9

SR 71690.7 31904 40266.74 19798 143729.6 97023 92129.58 65292 86954.2

Table III



Tabla IV. cpu_pred_med.

GPR_A GPR_B TARD_A TARD_B Media

A1 1.53 0.05 1.53 0.05 0.79

A2 1.36 0.05 1.36 0.05 0.71

A3 1.78 0.04 1.47 0.03 0.83

A4 2.75 0.06 2.23 0.04 1.27

SR 1.83 0.04 1.10 0.03 0.75

Table IV



Table V. A2 vs SR, considering GPR(Sfinal) over SET_T.

SR A2 dec

Average Desv. 25 75 Average Desv. 25 75

num_area _types
3 420,19 1687,83 95 395 182,00 127,85 97,60 228,00 56,69%

5 364,04 1209,28 85 373 191,92 137,45 99,60 244,40 47,28%

10 357,5 1109,63 80 386 203,85 156,27 98,00 262,20 42,98%

num_task _types
1 418,4 1524,16 99 396 176,28 118,90 96,00 219,60 57,87%

5 386,04 1541,31 90 392 191,85 136,35 99,20 242,80 50,30%

10 341,44 968,65 74 369 209,63 163,12 100,20 272,20 38,60%

max_mtask_size
5 148,62 137,47 54 202 114,47 62,12 62,00 154,40 22,98%

10 298,79 561,66 99 379 177,78 101,76 99,80 234,40 40,50%

15 721,29 2292,28 158 736 285,52 175,28 158,80 367,40 60,42%

num_worker_types
3 345,9 1193,61 86 362 186,43 141,92 94,40 229,00 46,10%

5 360,55 1039,47 87 378 191,16 138,10 99,20 241,40 46,98%

10 433,73 1731,16 87 417 200,18 143,48 101,60 258,80 53,85%

dur_arrival
1 590,92 2134,54 145 578 292,15 173,22 166,20 376,40 50,56%

2 368,12 814,83 119 400 188,49 87,79 124,60 234,00 48,80%

3 177,9 384,81 40 196 97,14 56,05 54,80 127,60 45,40%

cross_training
0,25 377,3 1237,15 92 390 198,80 144,23 102,00 252,00 47,31%

0,5 383,16 1440,07 86 383 191,64 140,19 98,60 239,80 49,99%

0,75 378,2 1367,38 81 378 187,34 139,20 94,40 238,00 50,47%

restrictiveness        
0,25 379,56 1357,43 86 385 192,73 139,88 99,00 244,60 49,22%

0,5 377,96 1234,77 86 381 193,19 144,34 98,20 241,60 48,89%

0,75 381,15 1451,5 87 385 191,85 139,63 98,00 244,60 49,67%

redundancy             
0,25 346,42 1518,39 82 355 187,30 142,23 92,80 234,40 45,93%

0,5 377,75 973,67 86 390 193,08 142,23 98,00 245,40 48,89%

0,75 414,53 1489,25 92 410 197,38 139,24 104,40 249,20 52,39%

CST
0,25 404,47 1359,67 89 400 198,60 145,33 100,80 249,80 50,90%

0,5 379,43 1331,2 86 381 191,75 143,14 97,00 244,40 49,46%

0,75 354,75 1360,73 84 372 187,42 134,99 97,00 237,00 47,17%

Table V



Tabla VI. A2 vs SR, considering TARDCOST(Sfinal) over SET_T.

SR A2 dec

Average Desv. 25 75 Average Desv. 25 75

num_area _types
3 28603,50 67811,96 3461,00 25229.5 10566,45 12472,45 3512,40 12679,60 63,06%

5 24707,49 65353,28 4183,00 20232,00 10606,54 10880,51 4005,80 13560,20 57,07%

10 24590,20 69661,61 5279,00 21025,00 11808,92 9064,41 5115,80 16291,40 51,98%

num_task _types
1 25334,63 57037,44 3081,00 25330,00 10834,50 12888,26 3349,40 13326,80 57,23%

5 27137,67 71314,28 4307,00 20229,00 10089,57 9284,60 4111,40 12902,40 62,82%

10 25303,82 72178,51 5388,00 20808,00 12057,84 10140,10 5389,60 16306,80 52,35%

max_mtask_size
5 11360,72 16880,16 3163,00 12249.5 6310,44 4840,07 2935,60 8206,00 44,45%

10 23649,06 46548,22 4770,00 21806,00 9905,51 6970,77 4552,20 13504,20 58,11%

15 44343,24 106138,81 6368,00 38517,00 16765,95 15121,04 6562,20 21678,60 62,19%

num_worker_types
3 18739,90 40127,02 3953,00 18787,00 10798,62 10707,20 4053,20 13965,80 42,38%

5 22383,73 52584,14 4251,00 20076,00 11032,88 10720,46 4231,80 14508,40 50,71%

10 36850,11 96183,70 4857,00 27632,00 11150,40 11290,33 4340,40 14466,80 69,74%

dur_arrival
1 29006,10 83562,34 6200,00 21554,00 16167,99 14585,74 7249,40 19648,40 44,26%

2 39784,87 76270,22 8439,00 38626,00 12542,61 7839,60 7067,20 16248,60 68,47%

3 8810,53 18893,48 2364,00 7497,00 4271,31 2920,76 2441,80 5291,60 51,52%

cross_training
0,25 22535,82 46526,29 4633,00 22401,00 12441,29 11301,06 4881,20 16459,80 44,79%

0,5 25084,31 65968,18 4251.5 20993,00 10733,50 10658,21 4143,60 13913,20 57,21%

0,75 30066,52 84509,34 4081,00 21602,00 9807,11 10593,63 3749,80 12528,00 67,38%

restrictiveness        
0,25 26104,04 67702,08 4395,00 21697,00 11088,33 11139,54 4180,60 14354,60 57,52%

0,5 25914,19 68462,21 4297,00 21821,00 11068,45 10797,68 4234,20 14380,20 57,29%

0,75 25649,42 66368,81 4263,00 21522.5 10825,12 10788,23 4215,40 14188,60 57,80%

redundancy             
0,25 25874,76 64922,11 4280,00 21887,00 11268,91 11921,85 4191,60 14502,20 56,45%

0,5 25984,28 73356,07 4319,00 21491,00 10833,01 10542,74 4144,00 14100,60 58,31%

0,75 25809,20 63872,36 4341,00 21687,00 10879,98 10183,99 4258,20 14318,60 57,84%

CST
0,25 26260,81 67610,69 4308,00 21698,00 11115,78 10690,16 4213,60 14575,80 57,67%

0,5 26046,74 68863,61 4286,00 21691,00 11055,24 11541,94 4180,60 14375,80 57,56%

0,75 25360,24 66044,46 4349,00 21657,00 10810,89 10467,10 4228,20 13991,60 57,37%

Table VI



Tabla VII. A2 vs SR, considering TARDCOST(Sfinal) over SET_NMT.

SR A2

Average Desv. 25 75 Average Desv. 25 75 dec

num_area _types
3 3828,9 6012,55 608 4333 3202,25 891,80 3912,00 3499,54 16,37%

5 6147,38 11251,56 1228 5593 5026,15 1601,60 7662,40 5365,39 18,24%

10 9038,33 13828,08 2570 9739 8178,77 2634,20 10352,80 8284,59 9,51%

num_task _types
1 3227,12 6541,87 437 2745 2713,08 513,80 3181,60 3466,36 15,93%

5 6142,85 10465,53 1726 6478 5249,12 2100,00 6191,80 5524,56 14,55%

10 9644,63 13949,82 2895 9719 8444,98 3182,80 10861,40 7953,72 12,44%

num_worker_types
3 7818,39 12231,36 1721 7933 6474,72 1852,60 8769,00 6992,33 17,19%

5 6631,33 11415,49 1304 7174 5679,88 1717,40 6135,00 6622,68 14,35%

10 4564,89 9070,12 714 5225 4252,57 891,80 5192,00 5213,85 6,84%

dur_arrival
1 4924,05 5982,49 1754 6034 4333,95 2126,40 5310,40 3059,99 11,98%

2 11865,09 16658,5 2628 13928 10085,37 3741,00 14404,40 8722,48 15,00%

3 2225,46 2177,63 667 2984 1987,85 1109,80 2736,00 1381,13 10,68%

cross_training
0.25 8723,75 14482,71 1766 9369 7087,78 2176,80 8994,00 7951,33 18,75%

0.5 6116,18 10636,59 1311 6580 5306,06 1477,00 6856,40 6275,80 13,25%

0.75 4174,68 5855,66 908 5189 4013,33 1473,80 5192,00 3881,93 3,87%

Table VII


