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Abstract
Co-occurrence network analysis based on amplicon sequences is increasingly used 
to study microbial communities. Patterns of co-existence or mutual exclusion be-
tween pairs of taxa are often interpreted as reflecting positive or negative biologi-
cal interactions. However, other assembly processes can underlie these patterns, 
including species failure to reach distant areas (dispersal limitation) and tolerate local 
environmental conditions (habitat filtering). We provide a tool to quantify the rela-
tive contribution of community assembly processes to microbial co-occurrence pat-
terns, which we applied to explore soil bacterial communities in two dry ecosystems. 
First, we sequenced a bacterial phylogenetic marker in soils collected across multiple 
plots. Second, we inferred co-occurrence networks to identify pairs of significantly 
associated taxa, either co-existing more (aggregated) or less often (segregated) than 
expected at random. Third, we assigned assembly processes to each pair: patterns 
explained based on spatial or environmental distance were ascribed to dispersal 
limitation (2%–4%) or habitat filtering (55%–77%), and the remaining to biological 
interactions. Finally, we calculated the phylogenetic distance between taxon pairs to 
test theoretical expectations on the linkages between phylogenetic patterns and as-
sembly processes. Aggregated pairs were more closely related than segregated pairs. 
Furthermore, habitat-filtered aggregated pairs were closer relatives than those as-
signed to positive interactions, consistent with phylogenetic niche conservatism and 
cooperativism among distantly related taxa. Negative interactions resulted in equivo-
cal phylogenetic signatures, probably because different competitive processes leave 
opposing signals. We show that microbial co-occurrence networks mainly reflect 
environmental tolerances and propose that incorporating measures of phylogenetic 
relatedness to networks might help elucidate ecologically meaningful patterns.
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1  | INTRODUC TION

Ecological communities are assembled by a plethora of processes that 
operate at a wide range of scales (HilleRisLambers, Adler, Harpole, 
Levine, & Mayfield, 2012). The composition of local communities is 
constrained by the evolutionary history of the global species pool. 
Community composition is further influenced by stochastic pro-
cesses such as dispersal and demographic events, as well as niche-
based processes including species interactions between them and 
with their abiotic environment (HilleRisLambers et al., 2012). Since 
Diamond first used the patterns of species co-occurrence to infer 
biological interactions between pairs of species (Diamond, 1975), 
the study of assembly mechanisms rapidly incorporated the need 
to discard random species associations (Connor & Simberloff, 1979). 
Nowadays, most studies identify those species pairs that are signifi-
cantly associated, either aggregated (i.e. copresent or co-absent) or 
segregated (i.e. mutually excluding each other) across multiple as-
semblages. Species aggregation is often assigned to positive biolog-
ical interactions (e.g. mutualism and commensalism) and segregation 
to negative biological interactions (e.g. competition and predation) 
(Freilich, Wieters, Broitman, Marquet, & Navarrete, 2018). This ap-
proach disregards that co-occurrence patterns may be substantially 
determined by the failure of certain species to reach an available site 
(dispersal limitation) and by their shared (or unshared) tolerances to 
the local set of abiotic conditions (habitat filtering) (Freilich et al., 
2018). An unambiguous interpretation of the mechanisms that struc-
ture ecological communities, therefore, requires adding spatial and 
environmental information to traditional co-occurrence analyses 
(Blois et al., 2014; D'Amen, Mod, Gotelli, & Guisan, 2018).

Microbial communities are extremely diverse, adding further 
complexity to the challenge of understanding the processes that 
structure ecological communities. Dispersal has been traditionally 
assumed not to be limiting for terrestrial microorganisms, with their 
minute size, enormous population numbers and high dispersal rates 
underlying the cosmopolitan distribution of many taxa (Finlay, 2002; 
Ramette & Tiedje, 2007). However, spatial features such as latitude 
or geographic distance (even at the metre scale) impact the struc-
ture and diversity of soil bacterial communities (Horner-Devine, 
Lage, Hughes, & Bohannan, 2004; Martiny et al., 2006; Meyer et 
al., 2018). Such spatial patterns, in which neighbouring communities 
resemble each other more than distant communities, might be at-
tributed to dispersal intensity decaying with distance (Bahn, Krohn, 
& O'Connor, 2008). Environmental characteristics, including salin-
ity, acidity, humidity or fertility, have been repeatedly reported as 
relevant factors, leading to the general conception that habitat fil-
ters play a key role in shaping microbial communities (Fierer, 2017; 
Martiny et al., 2006; Schimel, Balser, & Wallenstein, 2007). Biological 
interactions have received less attention, probably due to the diffi-
culty of demonstrating their effect at the community level (but see 
e.g. Goldfarb et al., 2011). However, multiple biological interactions 
among bacteria have been documented in the laboratory. Evidence 
for positive interactions includes cell–cell communication, division 
of labour in biofilms, exchange of electron donors and metabolites, 

sharing of public goods or coordinated motility (Jousset, Eisenhauer, 
Materne, & Scheu, 2013; Morris, Lenski, & Zinser, 2012; Zengler & 
Zaramela, 2018), among others. Main negative interactions include 
competition by interference (e.g. through toxins, antibiotics or di-
rect lysis using nanoneedles) and resource exploitation (e.g. phos-
phorous sequestration or iron scavenging), predation, disruption 
of communication or social cheating by the capitalization of public 
goods (Hibbing, Fuqua, Parsek, & Peterson, 2010; Russell, Peterson, 
& Mougous, 2014).

Network analysis based on amplicon sequences is increasingly 
used to study co-occurrence patterns in complex microbial com-
munities (Barberán, Bates, Casamayor, & Fierer, 2012; Faust & 
Raes, 2012). Networks can provide relevant insights into biolog-
ical interactions, particularly within well-known microbial guilds 
(e.g. Ho et al., 2016). However, as several authors note (Brisson, 
Schmidt, Northen, Vogel, & Gaudin, 2019; Faust & Raes, 2012; 
Pérez-Valera et al., 2017), significant associations between pairs 
of microbial taxa might respond to stochastic or niche-based 
processes other than biological interactions. We propose incor-
porating spatial and environmental information to soil bacterial 
co-occurrence networks to quantify the relative contribution of 
assembly mechanisms including dispersal limitation, habitat fil-
tering and biological interactions. Barner, Coblentz, Hacker, and 
Menge (2018), in their recent criticism on the application of co-
occurrence methods to predict nontrophic species interactions, 
highlight the necessity to associate the results at the commu-
nity level (i.e. number of interacting species, number of inter-
actions and proportion of positive and negative interactions) to 
functions or mechanisms. In a step forward, with the aim to link 
the observed co-occurrence patterns with their putative driving 
mechanisms, we propose to study the phylogenetic signal left 
by each of these processes. Previous approaches have used the 
phylogenetic composition of the whole community to elucidate 
the relative contribution of stochastic and niche-based assembly 
processes (Stegen, Lin, Konopka, & Fredrickson, 2012). Instead of 
calculating the phylogenetic distance across all possible pairwise 
comparisons or between each taxon and its closest relative in the 
community (Stegen et al., 2012), we compute the phylogenetic dis-
tance between pairs of significantly associated taxa that emerge 
from co-occurrence network analysis. A series of expectations can 
be drawn, based on the ecological theory, to link the resulting phy-
logenetic patterns to their ecological assembly processes. The fol-
lowing expectations assume that evolutionarily related taxa tend 
to be ecologically more similar than distant taxa, a scenario that 
has been found to be widespread in bacterial lineages (Goberna 
& Verdú, 2016; Martiny, Treseder, & Pusch, 2013; Stegen et al., 
2012). First, habitat filtering favours the co-existence of closely 
related species based on their shared niche preferences (Webb, 
Ackerley, McPeek, & Donoghue, 2002). Second, competition, 
the most widespread negative interaction, limits the similarity of 
co-existing lineages and favours the co-existence of distantly re-
lated taxa (Webb et al., 2002). This pattern can be not so straight-
forward when traits conferring fitness to competing species are 
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highly conserved. In this case, particularly superior lineages with 
high relative fitness can outcompete entire clades, resulting in the 
co-existence of closely related taxa (Goberna, García, & Verdú, 
2014; Goberna, Navarro-Cano, Valiente-Banuet, García, & Verdú, 
2014; Mayfield & Levine, 2010). Finally, positive biological interac-
tions can be reasonably thought to occur between organisms that 
are distant enough not to compete with each other and therefore 
promote the co-existence of functionally (and phylogenetically) 
different species (Valiente-Banuet & Verdú, 2013).

In order to show that microbial co-occurrence patterns based 
on network analysis should not be uncritically assigned to biologi-
cal interactions, we: (a) computed microbial co-occurrence networks 
across multiple assemblages, (b) used spatial and environmental 
data to ascribe co-occurrence patterns to assembly processes and 
(c) calculated phylogenetic distances between pairs of co-occurring 
taxa and analysed them under the light of the expectations above. 
In search for generalizable patterns, we applied this analysis in two 
ecosystems located in different continents and with contrasting 
conditions regarding lithology, soil properties and plant commu-
nity composition. Both sites share, however, a common feature: 
they are water-limited environments, in which facilitation between 
plant species structures plant communities in multispecific patches 
(hereafter ‘patches’) surrounded by low-cover areas or open spaces 
(hereafter ‘gaps’) (Aguiar & Sala, 1999). The patchy structure of the 
vegetation strongly determines the assembly of soil bacterial com-
munities (Goberna, Navarro-Cano, et al., 2014; Hortal et al., 2013; 
Roy et al., 2013). Soil bacteria living in gaps cope with intense radi-
ation, high temperatures, desiccation and low levels of resources, 
resulting in the overrepresentation of bacterial functional traits 
conferring tolerance to abiotic stress (Goberna, Navarro-Cano, et 
al., 2014; Goberna, Pascual, García, & Sánchez, 2007). Plant patches 
relieve abiotic stress by reducing temperature and radiation, while 
fostering the accumulation of water and resources (Navarro-Cano, 
Verdú, García, & Goberna, 2015). Underneath plant patches, soil mi-
crobial communities are denser, more active and withstand higher 
competitive stress, as reflected by their larger respiration-to-bio-
mass ratios and the overrepresentation of competition-related 
traits (Goberna, Navarro-Cano, et al., 2014; Goberna et al., 2007). 
Therefore, abiotically stressful ecosystems generate a spatial mo-
saic of low-productive habitats comparatively dominated by abiotic 
filtering interspersed with high-productive habitats with magnified 
biotic interactions. Such a mosaic brings an excellent opportunity to 
tease out the abiotic and biotic processes determining the phyloge-
netic patterns of the community assembly of soil bacteria. We show, 
in both study systems, that soil bacterial co-occurrence networks 
mainly reflect (un)shared environmental preferences and discuss 
their limitations for detecting biological interactions when analysing 
extremely complex communities. We provide a tool to the following: 
(a) quantify the relative contribution of ecological mechanisms—in-
cluding dispersal limitation, habitat filtering, positive and negative 
biological interactions—that underlie co-occurrence patterns in mi-
crobial communities and (b) estimate the phylogenetic signature of 
each assembly mechanism.

2  | MATERIAL S AND METHODS

We developed a four-step workflow to quantify the relative contri-
bution of the main assembly mechanisms of soil bacterial communi-
ties: (a) sampling soils across plots (i.e. plant patches and gaps) and 
constructing a bacterial OTU (operational taxonomic unit) per plot 
abundance matrix; (b) identifying pairs of bacterial OTUs that are 
significantly associated across plots through co-occurrence network 
analysis and calculating their (pairwise) phylogenetic distances; (c) 
assigning community assembly processes to pairs of significantly as-
sociated OTUs by adding spatial and environmental information to 
co-occurrence patterns; and (d) testing for statistical differences in 
the phylogenetic distance of OTU pairs assembled through different 
ecological mechanisms. This workflow is schematized in Figure 1 and 
subsequently described. All analyses were performed separately for 
each study site, as our purpose was not to compare both ecosystems 
but to apply our analytical tool and seek for generalizable patterns.

2.1 | Study sites and soil sampling

We studied two dry ecosystems in Spain and Mexico. The study site 
in Crevillent Mountain Range (SE Spain; 38°16′N, 0°50’W) has a 
mean annual rainfall of 240 mm, an average temperature of 20°C and 
is located at 350 m a.s.l. Soils are loamey–clayey, calcaric and saline 
have neutral pH and developed from gypsum outcrops, with 25% 
plant cover of a shrubland dominated by Ononis tridentata (Goberna 
et al., 2007; Navarro-Cano et al., 2014; Supplementary Information 
S1). The Valley of Zapotitlán (18°19′45.44″N; 97°27′20.95″W), a 
local basin of the Tehuacán-Cuicatlán Valley in Mexico, has an an-
nual average rainfall of 380 mm, an annual mean temperature of 
21°C and is located at 1,500 m a.s.l. Soils are loamey–clayey, cal-
caric and nonsaline, have neutral to basic pH and developed from 
lutites, with 55% plant cover of a shrubland dominated by Mimosa lu‐
isana (Valiente-Banuet et al., 2000; Valiente-Banuet & Verdú, 2007; 
Supplementary Information S1).

In both sites, plant communities are characterized by individ-
uals of multiple species that are spatially associated forming dis-
crete vegetation clumps (Supplementary Information S2). Plant 
patches range from 1 to 5 m2. Gaps, that is the open space be-
tween patches located at least 1 m beyond the vertical projection 
of the canopy of the patch, were defined with an area and geo-
metric shape that corresponded to that of the adjacent patch. We 
selected patches and adjacent gaps in a paired design, making a 
total of 28 plots (i.e. patches and gaps) in Spain and 64 in Mexico. 
We recorded the spatial coordinates of all plots, which were dis-
tributed in a total area of 0.2 and 1 ha. in Spain and Mexico, re-
spectively. We collected one surface soil sample (0–2 cm) per plot, 
making 92 soil samples. Each sample was composed by five subsa-
mples (ca. 100 g) that were randomly taken from the area of each 
patch (or gap), transported to the laboratory on ice and sieved 
through a <2 mm mesh. We measured physical and chemical soil 
parameters using standard protocols (Supplementary Information 
S3). To test for spatial autocorrelation in soil physical and chemical 
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parameters, we performed Mantel tests to correlate geographic 
and environmental distance matrices, based on Euclidean dis-
tances, in the vegan package for r v 3.5.1 (Oksanen et al., 2018; R 
Core Team, 2018).

2.2 | Constructing bacterial OTU × plot 
abundance matrices

We extracted total DNA from each soil sample, PCR amplified and 
sequenced a phylogenetic marker using primers specific for bacte-
ria. Procedures used for the Spanish site were described in Goberna, 
Navarro-Cano, et al. (2014), and similar methods were used in 
Mexico as follows:

We extracted soil DNA with the PowerSoil® DNA isolation kit 
(MO BIO Laboratories) and amplified the 16S rRNA gene with the uni-
versal bacterial primers 27Fmod (5′-AGRGTTTGATCMTGGCTCAG; 
Kuske, Barns, Grow, Merrill, & Dunbar, 2006) and 519Rmod (5′-
GTNTTACNGCGGCKGCTG; Frank, Rogers, Olins, Vidoudez, & 
Girguis, 2013). We sequenced amplicons with the Roche 454 FLX 
titanium technology. After denoising, and removal of short (<200 
base pairs), low-quality (average quality score <25, including Ns or 
homopolymers >6 base pairs) and chimeric sequences with QIIME 
(Caporaso, Kuczynski, et al., 2010), we delimited OTUs at 97% 
similarity and removed singleton OTUs (details in Supplementary 
Information S3). This process yielded a total 3,290 bacterial OTUs 
in Spain and 5,689 in Mexico. For each site, we constructed a matrix 
including the number of sequences for every OTU in each plot. To 
account for the differential sampling depth across plots, we trans-
formed the number of sequences into relative abundances by di-
viding the number of sequences of each OTU in each plot by the 
total number of sequences in the same plot. Finally, we corrected 
the relative abundance of each OTU by the number of estimated 16S 
rRNA gene copies using the procedure by Kembel, Wu, Eisen, and 
Green (2012). To describe overall patterns in bacterial community 
variation, we calculated metrics of alpha diversity (Shannon index) 
in the vegan package (Oksanen et al., 2018) and beta diversity with 
the beta.multi.abund function in the betapart package for r based on 
Bray–Curtis multiple-site dissimilarity (Baselga, Orme, Villeger, De 
Bortoli, & Leprieur, 2018). We used this function to compute the 
nestedness and turnover components of beta diversity, in order to 
examine whether poorer communities contain a subset of the spe-
cies present in richer communities or whether there is spatial species 
replacement across plots (Baselga, 2010).

2.3 | Identifying significantly associated OTU pairs

Co-occurrence network analysis was used to detect significant asso-
ciations between pairs of OTUs across plots including the following: 
(a) aggregated pairs, that is to say, pairs of OTUs that co-occur more 
frequently than expected at random, and thus share a positive or 

copresence link and (b) segregated pairs, that is pairs of OTUs that 
co-occur less frequently than expected by chance, and thus share a 
negative or mutual exclusion link. We performed network analysis 
using CoNet 1.0b6 (Faust & Raes, 2012, 2016; Faust et al., 2012). 
One network was reconstructed per study system with the script 
available at http://psbwe b05.psb.ugent.be/conet/ cmdli ne.php, as 
detailed in Pérez-Valera et al. (2017). Prior to network construction, 
low-abundance OTUs were removed to reduce artefactual associa-
tions (Faust et al., 2012). Specifically, our original matrices contained 
the relative abundance of 3,290 OTUs in 28 plots (Spain) and 5,689 
OTUs in 64 plots (Mexico). First, we removed those OTUs showing 
less than 0.05% relative abundance on average across plots, leav-
ing 441 and 370 OTUs in the filtered matrices in Spain and Mexico, 
respectively. We further excluded those OTUs that were present 
in less than 1/3 of the plots, making a total of 229 (Spain) and 298 
OTUs (Mexico) in the final filtered matrices. The sum of the fil-
tered OTUs was kept to preserve taxon proportions. Network links 
were identified including two measures of correlation (Pearson and 
Spearman) and dissimilarity (Bray–Curtis and Kullback–Leibler) to 
increase the robustness of the analysis (Faust & Raes, 2016). Links 
were considered as undirected, and their sign was used to distin-
guish between copresence (positive) and mutual exclusion (negative) 
links. Statistical significance was tested by obtaining the link- and 
measure-specific p-value as the mean of the permutation distribu-
tion under the bootstrap distribution, with 1,000 iterations each. 
Probability values of different correlation/dissimilarity measures 
supporting the same link were merged using Brown's method and 
corrected for multiple testing using Benjamini–Hochberg's pro-
cedure, which helps controlling the number of false-positive asso-
ciations (Faust & Raes, 2012). To reduce the detection of spurious 
associations, only those links supported by at least two measures 
of correlation/dissimilarity and having an adjusted merged p-value 
below .05 were included in downstream analyses.

2.4 | Calculating phylogenetic distances between 
OTU pairs

To calculate the phylogenetic distance between all pairs of aggre-
gated or segregated OTUs, we aligned sequences representative 
of each OTU using PyNAST (Caporaso, Bittinger, et al., 2010) and 
manually curated the alignments. The reconstruction and calibra-
tion of bacterial phylogenetic trees in the Spanish site were per-
formed in Goberna and Verdú (2018). We used the same procedure 
to reconstruct phylogenies in the Mexican site using RAxML 8.2.4 
(Stamatakis, 2014; details in Supplementary Information S3). Then, 
we calibrated the tree so that branch lengths represent evolution-
ary time (in Myr) instead of nucleotidic changes to facilitate com-
parisons of the results derived from both study sites. We calibrated 
the trees by using eight dated nodes based on a penalized likelihood 
approach with treePL (Sanderson, 2002; Smith & O'Meara, 2012; 

F I G U R E  1   Methodological framework used to calculate the relative contribution of dispersal limitation, habitat filtering and biological 
interactions in the assembly of soil bacterial communities [Colour figure can be viewed at wileyonlinelibrary.com]

http://psbweb05.psb.ugent.be/conet/cmdline.php
www.wileyonlinelibrary.com
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Supplementary Information S3). We finally calculated the phyloge-
netic distance in calibrated trees for all pairs of aggregated or seg-
regated OTUs with the cophenetic function in the ape package for r 
(Paradis & Schliep, 2018).

2.5 | Assigning community assembly processes to 
OTU pairs

To infer which assembly process underlies the association be-
tween each OTU pair, we adapted the methodological framework 
by Blois et al. (2014). To do so, we first transformed the OTU × Plot 
relative abundance matrices into incidence matrices by assigning 
1 to present (relative abundance >0) and 0 to absent OTUs. Then, 
for every pair of significantly associated OTUs, we registered the 
state (present/absent) of each OTU across plots: (a) for aggregated 
pairs, we recorded whether both OTUs were copresent (state 11) 
or co-absent (state 00) in each plot; (b) for segregated pairs, we 
recorded whether one (state 10) or the other OTU (state 01) was 
present in each plot.

In order to detect whether the spatial and/or environmental 
distance across plots significantly explains the co-occurrence pat-
terns of significantly associated OTU pairs, we performed a series 
of one-way multivariate analysis of variance (MANOVA) as follows 
(Figure 1). First, we tested whether there is a relationship between 
spatial distance and OTU state for every OTU pair. The dependent 
variable in each MANOVA was a two-element vector including the X 
and Y spatial coordinates of each plot. The independent variable was 
the OTU state across plots, that is 11 versus 00 states for aggregated 
pairs and 10 versus 01 for segregated pairs. In these MANOVAs, the 
rejection of the null hypothesis—that is the detection of significant 
differences in the geographic distance between plots with different 
OTU states—can be interpreted as an indication of dispersal limita-
tion (Blois et al., 2014). That is to say, if plots where two aggregated 
OTUs are copresent are spatially distant from plots where the same 
OTUs are co-absent, this association might be based on limitations 
to reach distant plots. Similarly, if the presence (or absence) of each 
OTU conforming a segregated pair can be explained based on the 
spatial distance across plots, then dispersal limitation might underlie 
this pattern.

Second, we tested whether there is a relationship between en-
vironmental distance, in terms of soil abiotic conditions, and OTU 
state for every OTU pair. To reduce the dimensionality of soil abi-
otic parameters we used principal component (PC) analysis, with 
the prcomp function in r based on a correlation matrix. The depen-
dent variable in each MANOVA was a two-element vector includ-
ing the scores of the first two PCs, and the independent variable 
was the OTU state across plots as above. In these MANOVAs, the 
rejection of the null hypothesis—that is the detection of significant 
differences in the environmental distance between plots with dif-
ferent OTU states—can be interpreted as an indication of habitat 
filtering (Blois et al., 2014). That is, if plots where two aggregated 
OTUs are copresent tend to be similar in their abiotic conditions 
and significantly different from plots where the same OTUs are 

co-absent, this association might be based on their shared abi-
otic tolerances. A similar argumentative line can be applied to 
the mutual exclusion of two OTUs based on their differential abi-
otic requirements. When both the spatial and the environmental 
distances across plots are significantly different between OTU 
states, both dispersal limitation and habitat filtering might be op-
erating (Figure 1). Note that the spatial autocorrelation of abiotic 
parameters could also lead to an ambiguous ascription to dispersal 
limitation or habitat filtering.

Following the rationale by Blois et al. (2014), only significant as-
sociations between pairs of taxa that are neither based on spatial 
distance nor on environmental factors can be interpreted as putative 
biological interactions (Figure 1). We ascribed pairs of aggregated 
OTUs meeting such conditions to positive biological interactions and 
those of segregated OTUs to negative interactions. Since the varia-
tion that cannot be accounted for by space or environment might not 
be exclusively capturing biological interactions, we introduced a final 
validation step in our workflow. We analysed the phylogenetic signal 
left by each assembly mechanism to verify whether they match the 
expectations based on the ecological theory (as elaborated above).

2.6 | Phylogenetic distance of OTU pairs assembled 
through different mechanisms

We tested whether the phylogenetic distance among OTU pairs dif-
fers significantly depending on the underlying assembly mechanism 
by using permutation one-way ANOVA. Since dispersal limitation 
was negligible in our study systems (see Results section), we per-
formed this analysis to compare phylogenetic distances between 
pairs of OTUs assembled through habitat filtering and putative bio-
logical interactions. Specifically, the dependent variable was the 
phylogenetic distance for all significantly associated OTU pairs and 
the independent variable was a categorical factor coding the assem-
bly mechanism with four levels: habitat filtering for aggregated pairs, 
positive biological interactions, habitat filtering for segregated pairs 
and negative biological interactions. Post hoc comparisons to deter-
mine significant differences between assembly mechanisms were 
run through pairwise permutation t tests corrected by false discov-
ery rates. We ran 999 permutations to obtain model significance 
and post hoc tests in the rvaideMeMoire package for r (Hervé, 2018). 
Appendix 1 contains a r script and example data (from the Spanish 
site) to allow reproducing the assignment of assembly processes 
to OTU pairs and testing for differences in phylogenetic distances 
among OTU pairs assembled through different processes.

3  | RESULTS

Soil physical and chemical parameters did not show spatial auto-
correlation in the Spanish site for any of the 11 variables meas-
ured (Mantel r ≈ 0, p > .05). Only three out of fifteen parameters 
measured in Mexico were significantly correlated with spatial 
distance, namely, total organic carbon (Mantel r = .13, p < .01), 
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pyrophosphate extractable carbon (Mantel r = .61, p < .01) and am-
monium nitrogen (Mantel r = .17, p < .01). Soil bacterial communi-
ties in Spain and Mexico were highly dominated by Proteobacteria 
and Actinobacteria, which accounted for 51%–80% of the commu-
nity both underneath plant patches and gaps, but included up to 
11–15 other phyla at detectable levels (Supplementary Information 
S4). Both sites showed (mean ± SE) 430 ± 24 (Spain) and 544 ± 16 
(Mexico) OTUs per plot (i.e. averaging patches and gaps). Alpha-
diversity values averaged 5.70 ± 0.08 and 5.98 ± 0.03 and beta 
diversity 0.949 and 0.973 in Spain and Mexico, respectively. In 
both cases, beta diversity mostly originated from a high turnover 
across plots (≥99.98% of beta-diversity values), while nestedness 
was negligible.

We used co-occurrence network analysis to identify significant 
associations between pairs of bacterial taxa, including OTUs that 
co-occur more (aggregated pairs) and less (segregated pairs) fre-
quently than expected at random (Supplementary Information S5–
S8). Aggregated pairs were more abundant than segregated pairs in 
Spain (4,691 vs. 1,866) and Mexico (787 vs. 201). We used the spa-
tial and environmental distance across plots to quantify the relative 
contribution of dispersal limitation, habitat filtering and biological 
interactions in determining the observed co-occurrence patterns. 
Habitat filtering was the main assembly mechanism explaining sig-
nificant species associations in both sites: up to 71% of the aggre-
gated and 76% of segregated pairs of bacterial OTUs in Spain and 
57% and 66% in Mexico responded to abiotic conditions (Figure 2). 
Dispersal limitation explained less than 2% and 4% of all significant 
pairs in Spain and Mexico, respectively (Figure 2). Ambiguous assig-
nation to dispersal limitation or habitat filtering occurred on average 
for 4.3% pairs in Spain and 8.5% in Mexico (Figure 2). We interpret 
that the higher proportion of associations with an ambiguous ascrip-
tion in Mexico could be caused by the existence of abiotic variables 
showing spatial autocorrelation. Positive biological interactions rep-
resented 21% of the aggregated pairs in Spain and 31% in Mexico, 

while negative interactions occurred, respectively, in 20% and 23% 
of segregated pairs (Figure 2).

Habitat filtering in both study sites responded to different soil 
abiotic variables. In Spain, the two main axes extracted from a PCA 
on abiotic variables explained 82% of the total variance. PC1 mark-
edly segregated plant patches and gaps based on their differential 
fertility and pH, patches showing higher contents in all oxidizable 
forms of carbon and nitrogen as well as soil moisture, and lower pH 
values (Supplementary Information S9). PC2 captured the variation 
across patches in the mineral forms of nitrogen (nitrate and ammo-
nium) and water-soluble carbohydrates (Supplementary Information 
S9). In Mexico, both PCs explained 40% of the variance. As in Spain, 
PC1 discriminated patches and gaps mainly along a gradient of soil 
fertility and pH. PC2, however, recorded the across-plot variability 
(both for patches and gaps) in the forms of mineral nitrogen and 
granulometric fractions (clay, silt and sand).

Bacterial OTUs from aggregated pairs were evolutionarily 
more related than segregated pairs in the Spanish (3,744 ± 35 vs. 
4,417 ± 51 My; F1, 6555 = 109.2; p < .001) and Mexican communities 
(5,001 ± 65 vs. 5,971 ± 44 My; F1, 986 = 55.6; p < .001). The phy-
logenetic distance of associated OTU pairs was significantly differ-
ent depending on the mechanism involved in their assembly both in 
Spain (F3, 6004 = 42.5; p < .001) and Mexico (F3, 851 = 18.9; p < .001) 
as follows. In the two study systems, OTUs aggregated due to hab-
itat filtering were phylogenetically closer than OTUs segregated by 
the same process (left and right panels, Figure 3). Aggregated OTUs 
co-existing due to habitat filtering were phylogenetically closer than 
those co-existing through positive interactions (left panel, Figure 3). 
OTUs living segregated due to habitat filtering had a phylogenetic 
distance that did not differ statistically from OTUs mutually exclud-
ing each other due to negative interactions (right panel, Figure 3). 
The phylogenetic patterns described held despite the fact that the 
taxa involved in aggregated and segregated pairs differed between 
study sites (Supplementary Information S10 and S11).

F I G U R E  2   Frequency distribution of assembly mechanisms explaining aggregated and segregated bacterial OTU pairs in two dry 
ecosystems in Spain and Mexico
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4  | DISCUSSION

An essential question in understanding co-occurrence patterns is 
identifying the ecological mechanisms that underlie species co-ex-
istence and mutual exclusion. Microbial co-occurrence networks, 
mainly reconstructed from amplicon sequencing data, are being 
increasingly used to infer significant associations between pairs of 
co-occurring taxa and often ascribed to biological interactions (Faust 
& Raes, 2012; Fuhrman, Cram, & Needham, 2015; Ho et al., 2016; 
Pérez-Valera et al., 2017). Critical voices, however, call for caution 
when analysing and interpreting co-occurrence networks in order 
to avoid the description of ecologically meaningless interactions 
(Barner et al., 2018; Connor, Barberán, & Clauset, 2017; Freilich et 
al., 2018). Here, we use co-occurrence networks to identify asso-
ciations between pairs of bacterial taxa across multiple assemblages 
and test their significance against a null model. We complement this 
classical approach with statistical tests on the spatial distribution 
and environmental features of plots occupied by pairs of associated 
taxa in order to discern their assembly mechanism, either dispersal 
limitation, habitat filtering, positive or negative biological interac-
tions (Blois et al., 2014). By computing the phylogenetic distance 
between pairs of taxa involved in each significant association, we 
intend to validate the ecological significance of our results based on 
theoretical expectations that link phylogenetic patterns to assembly 
processes (Figure 1). We applied this framework in two contrasting 

water-limited sites (in terms of plant communities, lithology and soil 
properties) that are located in different continents, thousands of 
kilometres apart, and found consistent patterns in the relative con-
tribution of assembly processes and their phylogenetic signatures.

The number of significant nonrandom associations that we de-
tected between pairs of bacterial taxa represented, taking both data 
sets together, 11% of the potential number of pairwise associations 
(7,545 significant out of 70,359 potential associations). Other authors 
who analysed soil bacterial co-occurrence networks across different 
biomes and land uses systematically detected that a small portion of 
OTUs shows significant associations with other community members 
(Lupatini et al., 2014). In our case, this result was not unexpected since 
we used stringent methodological settings for network reconstruction 
in order to reduce the detection of artefactual associations following 
the recommendations by Faust et al. (2012) and Faust and Raes (2012). 
Our conservative approach substantially restricts the proportion of 
taxa that are included in the analysis, but avoids falsely attributing 
biological mechanisms to spurious patterns as strongly suggested by 
Knight et al. (2018). Beyond methodological considerations, these 
data support a high contribution of stochasticity to the assembly of 
soil bacterial communities, a pattern that has been globally attributed 
to soils with pH values close to neutrality given their low niche-based 
lineage exclusion (Tripathi et al., 2018). In addition, the low propor-
tion of significantly associated pairs is coherent with the high levels 
of beta diversity in both study sites, which mostly originate from a 
large species turnover across plots. This finding is common in studies 
across a set of local communities (Soininen, Heino, & Wang, 2018). 
Contrary to nestedness, which indicates an orderly species loss in 
poorer compared with richer communities, spatial turnover reflects 
species replacement theoretically due to spatial constraints or envi-
ronmental controls (Baselga, 2010). Dispersal limitation was negligible 
in our study areas, as in only 2%–4% of all cases did the spatial dis-
tance across plots significantly differ between states for each OTU 
pair (e.g. plots where two aggregated OTUs are copresent are spa-
tially distant from those plots where the same OTUs are co-absent). 
Such a low effect of dispersal limitation is typical for organisms with 
large populations, small body size and high rates of passive dispersal, 
particularly in local sampling areas (Finlay, 2002; Martiny et al., 2006; 
Ramette & Tiedje, 2007). However, in heterogeneous ecosystems (as 
is the case of our patchy landscapes) microbial communities, in spite of 
their efficient dispersal abilities, can show a high turnover across plots 
due to local environmental filtering (Soininen et al., 2018).

Habitat filtering was the key mechanism behind the co-occur-
rence patterns of soil bacterial communities in both ecosystems. 
Soil abiotic factors are main drivers of bacterial community struc-
ture and composition (Fierer, 2017; Martiny et al., 2006; Meyer 
et al., 2018) and topological features of co-occurrence networks 
at wide biogeographic scales (Ma et al., 2016). At a local scale, 
we could explain 57%–77% of all nonrandom pairwise associ-
ations based on the environmental distance (i.e. dissimilarity in 
soil abiotic conditions) between plots bearing different states for 
each OTU pair. That is, plots where two aggregated OTUs were 
copresent were environmentally different from plots where the 

F I G U R E  3   Phylogenetic distance, in million years, between the 
bacterial OTUs involved in pairs assembled through habitat filtering 
and (positive or negative) biological interactions. Left panels refer 
to aggregated pairs and right panels refer to segregated pairs 
in Spain (top plots) and Mexico (bottom plots). Different letters 
denote significant differences according to permutation one-way 
ANOVA (p < .05) within each study site
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same OTUs were co-absent. Similarly, the presence (or absence) 
across plots of each OTU conforming a segregated pair could be 
explained based on local environmental features. Therefore, our 
results indicate that both copresence and mutual exclusion pat-
terns mainly reflect shared or differential niche requirements of 
spatially associated taxa. This evidence, showing an essential role 
of environmental tolerances in determining the distribution of 
soil bacteria across space, adds up to recent criticism on equat-
ing co-occurrences with biological interactions (Barner et al., 
2018; Freilich et al., 2018). Our methodological framework, based 
on Blois et al. (2014), helped us identify which soil parameters 
constitute the abiotic filter in the study systems. In both cases, 
soil fertility (several forms of oxidizable C and total N), electri-
cal conductivity, moisture and pH were the main abiotic factors 
that underlay environmental variability across plots, mostly due 
to differences between plant patches and gaps. Variation within 
patches and gaps, which further helped explain the bacterial co-
occurrence patterns, mainly responded to the levels of mineral N 
(ammonium and nitrate) and, in the case of the Mexican site, to 
the distribution of granulometric fractions (clay, silt and sand). It 
is essential to notice that this methodological approach requires 
previous knowledge on the abiotic parameters that underlie the 
environmental heterogeneity relevant to the structure and com-
position of the microbial communities. Otherwise, high levels of 
unexplained variation could be falsely attributed to biological 
interactions. In our case, we selected an assortment of 11–13 
soil abiotic parameters that show variability at the metre scale 
in the study sites according to our previous studies (Goberna, 
Navarro-Cano, et al., 2014; Goberna et al., 2007; Navarro-Cano 
et al., 2014, 2015; Sortibrán, Verdú, & Valiente-Banuet, 2014). 
Admittedly, however, other unmeasured abiotic factors, such as 
the partial pressure of oxygen or the content in certain micro-
nutrients, might be relevant at the microscale level (reviewed in 
Fierer, 2017). Considering a larger set of abiotic parameters would 
most probably reinforce the message that environmental prefer-
ences are the main determinants of soil bacterial co-occurrence 
networks.

Biological interactions were the second assembly force in-
fluencing the co-occurrence patterns in our study systems. 
Microorganisms in extremely complex communities establish in-
tricate networks of positive and negative biological interactions 
(Hibbing et al., 2010; Morris et al., 2012; Zengler & Zaramela, 
2018). Based on Darwin's ideas, competition for space and re-
sources has been classically considered as the key interaction 
between co-occurring species. Foster and Bell (2012) experimen-
tally demonstrated this hypothesis for culturable bacteria. Using 
co-occurrence networks, however, we detected a larger number 
of positive than negative interactions (1,240 aggregated vs. 420 
segregated pairs), confirming a pattern that has been reported be-
fore for other organisms (Freilich et al., 2018). These authors de-
fend that nontrophic positive interactions, and particularly those 
involving habitat engineers, might leave a more detectable signal 
because they expand the niche for second (beneficiary) species. 

This argument could well apply to Cyanobacteria, Planctomycetes 
or Chloroflexi which take part in biofilms (Bengtsson & Øvreås, 
2010; Kushumi et al., 2013), and we detected as sharing positive 
interactions. On the other hand, mutual exclusion patterns based 
on competitive interactions are difficult to detect, particularly for 
organisms with high dispersal rates, since dispersal by competing 
species between habitat patches tends to erase checkerboard pat-
terns (Dallas, Melbourne, & Hastings, 2019). In addition, the study 
of complex networks based on pairwise associations can mask the 
effect of higher order interactions leading to misinterpretations of 
the interaction sign. As an illustration, nontransitive competition 
networks between three species can lead to the co-existence (thus 
to aggregated spatial patterns) of competing organisms. An exam-
ple of this type of interaction involves a toxin-producing species, 
which outcompetes a sensitive species that can further outcom-
pete a third resistant species since it does not incur in the cost of 
resistance. In turn, the resistant species closes the loop by outcom-
peting the toxin-producing species since it does not incur in the 
cost of toxin production (Hibbing et al., 2010). Despite these and 
other limitations that need to be taken into account when analysing 
co-occurrence patterns (Connor et al., 2017; Freilich et al., 2018), 
we detected a phylogenetic imprint that depended on the assembly 
mechanism and was consistent across sites.

Soil bacteria living spatially aggregated across multiple as-
semblages were evolutionarily more closely related than those 
living segregated. This general pattern was modulated by each 
particular assembly mechanism underlying species copresence 
and mutual exclusion. Specifically, taxa that co-existed based 
on habitat filtering were closer relatives than those that did not 
co-exist based on the same process. These results are consistent 
with the expectation of habitat filtering favouring the co-exis-
tence of closely related species with shared ecological tolerances 
(Webb et al., 2002). Functional traits conferring tolerance to 
environmental stress are conserved across the prokaryotic phy-
logeny, that is, evolutionarily related prokaryotes tend to have 
more similar trait values than distant taxa (Goberna & Verdú, 
2016). This is the case, for instance, of the bacterial ability (a) 
to form resistant structures, (b) tolerate desiccation and/or ra-
diation based on the formation of resistant cell walls, capsules, 
sheaths or extracellular polymers, or (c) tolerate salinity based 
on the production of salt-stress proteins or accumulation of os-
moprotective compounds (Goberna, Navarro-Cano, et al., 2014). 
For this reason, soil bacteria living in abiotically stressful environ-
ments are not only functionally but also phylogenetically similar 
(Goberna, Navarro-Cano, et al., 2014). In addition, bacteria living 
spatially aggregated based on habitat filtering were phylogeneti-
cally more closely related than those sharing a positive biological 
interaction. Positive interactions include a myriad of processes—
for example biofilm formation, quorum sensing, metabolic de-
pendencies and sharing of goods (Morris et al., 2012; Zengler & 
Zaramela, 2018)—each of them probably yielding differential phy-
logenetic signatures. Despite this variability, our results suggest 
that cooperation among soil bacteria (or at least interactions that 
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benefit one species without harming the other) tends to occur 
between phylogenetically dissimilar organisms. This observa-
tion fits well to the notion that mutualistic (or commensalistic) 
interactions predominantly occur between evolutionarily dis-
tant species (Valiente-Banuet & Verdú, 2013). There are many 
examples of convolute networks involving distant microorgan-
isms that exchange electron donors and metabolites (Zengler & 
Zaramela, 2018). This is not to say that positive interactions do 
not take place among close relatives, for example synchronized 
crosstalk-induced gene expression (Ng & Bassler, 2009). There 
is also evidence of mechanisms that set an upper threshold to 
the phylogenetic distance of bacterial cooperators. For instance, 
maintenance of cooperation via sharing of public goods is more 
stable among close cooperators, as they inhibit more efficiently 
spontaneous selfish mutants (Jousset et al., 2013).

Bacteria excluding each other owing to negative biological 
interactions had levels of phylogenetic relatedness that were 
not significantly different to those living segregated based on 
their differential environmental preferences. The phylogenetic 
outcome of negative interactions is difficult to predict because 
opposite patterns are expected depending on whether com-
petitive exclusion occurs through niche similarities or relative 
fitness differences (Mayfield & Levine, 2010). Competitive exclu-
sion through niche similarities tends to limit the functional (and 
phylogenetic) similarity of competing lineages, thus favouring 
the co-existence of distantly related taxa (Webb et al., 2002). 
In support of this idea, competition by interference among pairs 
of 148 soil Proteobacteria, Actinobacteria, Bacteroidetes and 
Firmicutes revealed that antagonism increases with phylogenetic 
proximity (Russel, Roder, Madsen, Burmolle, & Sorensen, 2017). 
In contrast, relative fitness differences associated with partic-
ular superior clades tend to outcompete entire distant lineages 
resulting in the co-existence of closely related taxa (Mayfield 
& Levine, 2010). Also this pattern has been found to be wide-
spread in soils and attributed to the high competitive abilities 
of several clades of Proteobacteria and Actinobacteria able to 
outcompete Acidobacteria, Planctomycetes or Verrucomicrobia 
(Fierer, Bradford, & Jackson, 2007; Goberna, García, et al., 2014; 
Goberna, Navarro-Cano, et al., 2014; Goldfarb et al., 2011). Niche 
and relative fitness differences indeed concurrently determine 
the outcome of competitive interactions. In laboratory commu-
nities, the success of (outcompetition by) invasion depends on 
niche differences between invader and native species, whereas 
the impact of the interaction depends on their relative fitness 
differences (Shao-peng, Tan, Yang, Ma, & Jiang, 2019). The simul-
taneous operation of negative interactions, whose phylogenetic 
signatures can cancel out, might underlie the difficulties in detect-
ing unequivocal evolutionary signals of competitive interactions 
(e.g. Foster & Bell, 2012).

In conclusion, informing co-occurrence networks with spatial 
and environmental data allows quantifying the relative contribu-
tion of community assembly processes. By doing so, we detected a 
prevailing role of environmental preferences (rather than biological 

interactions) in determining the co-existence and mutual exclusion 
patterns of soil bacteria across multiples assemblages. We propose 
that the phylogenetic signal left by each assembly process might 
help elucidate ecologically meaningful co-occurrence patterns in mi-
crobial networks.
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