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E C O L O G Y

Defaunation precipitates the extinction of 
evolutionarily distinct interactions in the Anthropocene
Carine Emer1*, Mauro Galetti1, Marco A. Pizo2, Pedro Jordano3, Miguel Verdú4

Species on Earth are interconnected with each other through ecological interactions. Defaunation can erode those 
connections, yet we lack evolutionary predictions about the consequences of losing interactions in human-modified 
ecosystems. We quantified the fate of the evolutionary history of avian–seed dispersal interactions across tropical 
forest fragments by combining the evolutionary distinctness of the pairwise-partner species, a proxy to their 
unique functional features. Both large-seeded plant and large-bodied bird species showed the highest evolutionary 
distinctness. We estimate a loss of 3.5 to 4.7 × 104 million years of cumulative evolutionary history of interactions 
due to defaunation. Bird-driven local extinctions mainly erode the most evolutionarily distinct interactions. However, 
the persistence of less evolutionarily distinct bird species in defaunated areas exerts a phylogenetic rescue effect 
through seed dispersal of evolutionarily distinct plant species.

INTRODUCTION
Biotic interactions form the backbone of biological diversity while 
delivering the unique ecological functions essential for human and 
nonhuman well-being (1, 2). Their fate is defined by both the con-
temporary ecological correlates and the evolutionary trajectories of 
the interacting species (3, 4). Thus, human activities known to affect 
species interactions within ecological time frames may likewise 
affect the evolutionary history of the interaction partners. Among 
them, defaunation, the worldwide pervasive human-induced extinction 
of animal populations or entire species, substantially affects large-bodied 
organisms that often perform interactions whose ecological function 
cannot be easily replaced by smaller-sized species (5). If these species 
are highly evolutionarily distinct (e.g., unique lineages in the Tree of 
Life and those with fewer extant relatives and a longer evolutionary 
history), then they may harbor greater amounts of evolutionary 
information than expected by species number alone (6, 7). Aimed at 
measuring this importance, “evolutionary distinctness” (hereafter ED) 
estimates the contribution of a given species to the total evolutionary 
history of its clade while measuring its isolation in the phylogenetic 
tree (8, 9). We propose to expand this concept by characterizing eco-
logical interactions according to their ED, i.e., how species with dif-
ferent ED values interact with each other (Fig. 1). Thus, we can 
assess how the contemporary fast-paced defaunation has eroded the 
evolutionary history embedded in these interactions. Here, we coin 
the term “evolutionary distinctness of the interaction” (EDi) to refer to 
the combined ED that both interacting partner species convey to a 
given interaction, irrespective of how long they have been interacting 
with one another.

Species interactions entail millions of years of reciprocal effects 
and a vast amount of the genetic and ecological information that 
characterize their unique and irreplaceable contribution to support 
the Earth’s biodiversity (10, 11). Mutualism rarely evolves as a process 

in which partners have joint, reciprocal evolutionary trajectories 
involving cospeciation with congruent phylogenetic branching (12, 13). 
Instead, species with rather different evolutionary trajectories tend 
to interact in contemporary habitats, showing a marked asymmetry 
of ED (e.g., the pollination of a basal clade angiosperm species by an 
insect from a recent clade). For example, the ages of nectar-feeding and 
fruit-eating bird and mammal families and their core plant families 
are consistently skewed toward older plant taxa, evidencing that 
most animal families are younger than their partner plant families 
(11). In the specific case of tropical forests, avian seed dispersal is 
mediated by multiple species, with generalized interactions established 
by the consumption of fruits that do not necessarily require specialized 
traits (11, 12). Yet, generalist partner species hold distinct evolutionary 
histories that meet in contemporary time, forming interactions that 
combine all the evolutionary information that the interacting actors 
carry.

Because large-bodied animals and large-seeded plants tend to be 
evolutionarily distinct species owing to both their old age and isolation 
in the Tree of Life (14, 15), their interactions involve high values of 
EDi while accounting for the largest amounts of evolutionary history. 
Therefore, defaunation, by reducing the populations of large-bodied 
bird species (5) and, consequently, the probability of interactions 
with large-seeded plant species, would likely extirpate the most 
evolutionarily distinct interactions. In contrast, lower EDi values are 
expected for interactions involving small-bodied bird and small-seeded 
plant species, which conform to be the persisting interactions in 
fragmented landscapes (16). Thus, both locally extinct and persisting 
interactions would be characterized by relatively symmetric EDi 
(i.e., high-ED animal–high-ED plant species for locally extinct and 
low-ED animal–low-ED plant species for persistent interactions). 
Otherwise, when the interacting partners have highly divergent ED 
(e.g., low-ED animal–high-ED plant species), an asymmetric EDi 
emerges, with unexplored outcomes on the eco-evolutionary func-
tions that support current ecosystems (10). Therefore, defaunation, by 
selectively pruning species from the Tree of Life (17, 18), is causing 
the extirpation of interactions with distinct combinations of evolu-
tionary history, with consequences that may go well beyond the 
current ecological time (19, 20).

We quantify the signature of defaunation in the ED of plant-frugivore 
interactions in fragmented tropical forests by combining field and 
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phylogenetic data of the plant and bird species involved in seed dispersal. 
Here, we take a step forward by considering the effects of defaunation 
not only on species but also on the current distribution of the EDi 
of bird–seed dispersal interactions. We compiled 21 studies on seed 
dispersal by birds in which defaunation was estimated as the difference 
between the sum of all bird body masses at the regional landscape 
scale and the summed body masses of the birds that occur at the 
local, within-fragment scale. As shown in table S1, the studies were 
carried out in the Atlantic Forest of South America (21), a biodiversity 
hot spot (22) that has been drastically reduced to ~12% of its original 
cover in the past few centuries (23). The studied sites vary from 
small fragments of 0.66 ha to large forest remnants up to 42,000 ha 
along a disturbance gradient from semipristine-protected areas to 
secondary forests and restored plantations.

RESULTS
We found that defaunation caused the loss of interactions involving 
unique lineages of bird and plant species that have faced millions of 
years of hazards but may not be able to survive human disturbance 
in the Anthropocene (figs. S1 and S2). The loss of bird clades tends 
to concentrate on larger-bodied species, which are also the most 
evolutionarily distinct (r = 0.21, t = 2.78, P = 0.007; fig. S3 and table 
S2). These include large- and medium-bodied birds, such as guans 
[e.g., Pipile jacutinga (Cracidae): mean weight, 1250 g; mean ED, 
28.99 million years (Ma)] and motmots [e.g., Baryphthengus ruficapillus 
(Momotidae): mean weight, 142 g; mean ED, 71.54 Ma] that are 

essential to the dispersal of large-seeded plant species with the highest 
ED, such as palms [e.g., Euterpe edulis (Arecaceae): mean seed diameter, 
12 mm; mean ED, 98.70 Ma] and nutmegs [e.g., Virola bicuhyba 
(Myristicaceae): mean seed diameter, 16 mm; mean ED, 36.26 Ma] 
mostly found in less disturbed forests and rarely on disturbed sites. 
Likewise, the ED of plant species is associated with a larger seed 
diameter (r = 0.38, t = 5.84, P = 0.001; fig. S3 and table S3). These 
two effects in combination indicate that interactions involving 
plant and animal lineages with high ED are selectively lost in more 
disturbed sites (figs. S1 and S2 and table S4).

Seed dispersal interactions in the Atlantic Forest show signifi-
cantly asymmetric EDi values, mostly skewed toward plant species 
although bird-skewed interactions are also present (Fig. 2A and table S4). 
Bird-plant associations present in a higher number of fragments 
followed the same trend (Fig. 2B), indicating that most of the persist-
ing interactions involve less evolutionarily distinct bird species 
dispersing more evolutionarily distinct plants. In contrast, bird-
skewed asymmetries, i.e., bird species with a higher ED that disperse 
plant species with lower ED, often occur in a single or very few 
fragments (Fig. 2B), revealing their inability to persist in defaunated 
landscapes.

We observed that the cumulative EDi (i.e., the total EDi per fragment) 
decreases with increasing defaunation (slope, −5.44 ± 2.09, t = −2. 63, 
P = 0.02; Fig. 3) even when fragment area (fig. S4) and interaction 
richness (fig. S5) are controlled for. Seed dispersal interactions 
vanishing in the Anthropocene represent a loss of evolutionary history 
that can be estimated by the cumulative EDi lost along the gradient 
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Fig. 1. The EDi is a combination of the ED of the interacting species that can be used to characterize the evolutionary history of the seed dispersal interactions. 
The ED of each species, calculated by equally dividing the phylogenetic distance of a branch among its daughter branches, is shown at the tips of the phylogenies. The 
size of the bird and plant fruit silhouettes is proportional to their ED. The ED magnitude of a bird–seed dispersal interaction ranges from very high when distinct plants 
are dispersed by distinct birds to very low when the opposite is true. The asymmetry can be bird-skewed, when a bird disperses a plant with lower distinctness than its 
own (orange circles), or plant-skewed otherwise (green circles). Defaunation is expected to have stronger impacts on interactions that involve bird species with a high ED 
(dashed line, highlighted bird silhouette).
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of defaunation, i.e., 3.5 to 4.7 × 104 Ma of cumulative evolutionary 
time (Fig. 3). The magnitude of EDi lost in the defaunated fragments 
of the Atlantic Forest is similar to the marked loss of avian and bees’ 
evolutionary history devastated by agricultural practices worldwide 
(24, 25), and it is intensified in very small fragments. Furthermore, 
we identified that the most pristine and less defaunated forests, 
which are located within State Parks, harbor more cumulative EDi 
than expected from their interaction richness (fig. S5). On the other 
hand, all other fragments but two are currently supporting less EDi 
than expected by the local pool of species performing seed dispersal 
interactions. These findings show that, while the less defaunated sites 
within protected areas harbor interactions with irreplaceable evolu-
tionary information and unique ecological functions, defaunation 
pervasively vanishes evolutionary history from forest fragments.

Although overall seed dispersal interactions are drastically lost 
with small increases in defaunation, the different combinations of 
bird and plant species’ ED respond differently to this scenario (Fig. 4 
and fig. S6). Interactions with bird-skewed ED values (i.e., higher 
ED of the avian partner, yellow lines in Fig. 4) are the first to vanish, 
resulting in the loss of more than 50% of interactions, with increases 
as small as 6% in the defaunation index. This reduction of EDi is 
more severe when both interacting partners are highly evolutionarily 
distinct (EDi from 32 to 381 Ma).

DISCUSSION
Our findings show that the extirpated bird–seed dispersal interac-
tions tend to include unique species that contain an irreplaceable set 
of genetic information that may not survive the challenges imposed 
by contemporary human-driven disturbances. The impoverishment 
of EDi in the remnants of the Atlantic Forest translates into non-

random local extinctions of ecosystem functions related to seed 
dispersal by birds, such as the dispersal of large-seeded plant species. 
The loss of ecological functions due to reduced phylogenetic diversity 
in mutualistic systems has also been reported recently for agricul-
tural landscapes in which pollination service and crop production are 
highly affected by the loss of highly evolutionarily distinct bee species 
(25). Furthermore, because the Atlantic Forest biome is mostly composed 
of highly defaunated small fragments (23) and because higher EDi 
values are restricted to a few relatively pristine and large areas, the 
restoration of evolutionary history would be extremely difficult with 
the current rates of local extinction (26). However, the reintroduc-
tion of species with higher ED can be a way forward to recover the 
EDi of lost interactions (27). Four of our study sites, for example, are 
composed of restored forests (table S1) that, similar to the highly 
defaunated fragments, hold low EDi values (Fig. 3), because large-
seeded plant species are poorly represented in the pool of species 
used for restoration (28). Thus, including highly evolutionarily 
distinct plant species in active restoration initiatives would maxi-
mize the potential for the restoration of EDi at local and regional levels.

Overall, the loss of bird–seed dispersal interactions with plant-
skewed EDi is smaller than that of bird-skewed interactions, which 
are the first to vanish with defaunation (Fig. 3). The fact that many 
plant species can be dispersed by bird species with a lower ED, 
which are often habitat and diet generalists (16, 29), allows them to 
persist longer in the defaunated areas. In this scenario, plant-skewed 
interactions involving small-bodied, low-ED bird species dispersing 
large-seeded, high-ED plant species may occur only occasionally. 
Thus, rare events of propagule movement are important to maintain 
viable populations across the fragmented landscape (30). Yet, 
persisting interactions with plant-skewed EDi values such as the 
common seed dispersal of Schinus terebinthifolia (ED, 24.5 Ma) by 

Fig. 2. Asymmetries in the ED of seed dispersal by birds in the Atlantic Forest. (A) A density plot showing asymmetries in ED between bird and plant species partners 
in seed dispersal interactions. Each dot represents a single-interaction event, and the intensity of the gray-shaded areas increases with the concentration of the most 
common asymmetries. Bird-skewed interactions (orange dots) occur when more evolutionarily distinct bird species disperse less evolutionarily distinct plant species; 
plant-skewed interactions (green dots) occur when more evolutionarily distinct plant species are dispersed by less evolutionarily distinct bird species. Plant-skewed in-
teractions are twice the number of bird-skewed interactions (bird-skewed, 871; plant-skewed, 1797; P < 0.001, binomial test). (B) The frequency of the ED asymmetries 
of seed dispersal interactions in different forest fragments. Results from a generalized linear model indicate that plant-skewed asymmetries occur in a larger number of 
fragments (slope, − 0.09 ± 0.04, z = −2.46; P = 0.01) and thus are significantly more persistent in the fragmented landscape. The colors of the dots follow the description 
for plant- and bird-skewed asymmetries, as in (A).
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Turdus rufiventris (ED, 6.2 Ma) or of Trema micrantha (ED, 41.2 
Ma) by Dacnis cayana (ED, 7.1 Ma) may be more stable in the envi-
ronmental changes seen in the Anthropocene (31).

Our results suggest that the loss of evolutionary history of plant 
species in the Atlantic Forest is minimized by the rescuing effect 
performed by bird species with limited ED dispersing unique plant 
species. The rescuer bird species represent clades of small-bodied, 
generalist bird species able to thrive in human-modified environ-
ments, which functionally “help” some plant species to persist. The 
functional role of rescuer species includes the dispersal of plant 
species whose primary seed dispersers have been already lost (20) or 
functionally extinct because of overhunting, for instance (32). The 
large seeds of a keystone, highly evolutionarily distinct tropical palm, 
E. edulis, have rapidly evolved toward smaller sizes in populations 
in which its main large-bodied, evolutionarily distinct seed disperser, 
P. jacutinga, has been locally extinct (33). The response of E. edulis 
to defaunation may increase its probability of being phylogenetically 
rescued by less distinct, small-bodied bird species.

Yet, rescue effects cannot functionally replace lost interactions. 
The phenotypic and microevolutionary changes observed in plants 
that lost their primary large-bodied seed dispersers (33, 34) also 
indicate that, although small birds can still disperse the smaller 

seeds, they do not functionally replace the effectiveness of the seed 
dispersal service provided by the vanished large-bodied frugivores. 
Therefore, the rescue effect cannot recover the extinction of the 
unique evolutionary histories of the interactions affected by defau-
nation. Moreover, the predominance of plant-skewed asymmetries 
in the Atlantic Forest may be a reflection of the extinction debt of 
interactions [sensu (19)]. Such a debt means that plants, which have 
longer life spans than birds, may persist for decades after the inter-
action has disappeared.

Given the scenario of increasing defaunation in human-altered 
fragmented landscapes, a marked reshaping of the Tree of Life may 
be occurring in the Anthropocene. Large-bodied frugivores have 
been hypothesized to reduce speciation rates of large-fruited plants 
as a consequence of high gene flow associated with long-distance 
dispersal ranges, while small-fruited plants tend to speciate more 
owing to restricted dispersal by small-bodied frugivores (35). 
Therefore, the phylogenetic rescue effect promoted by the persistence 
of plant-skewed, low-ED interactions would favor higher rates of 
speciation in small-seeded plant species, which could affect the 
functioning of tropical forests. Furthermore, local assemblages facing 
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Fig. 3. The EDi promoted by bird-mediated seed dispersal decreases sharply 
along a gradient of defaunation. The cumulative EDi that a fragment carries 
corresponds to the sum of the EDi values of all interactions recorded in that frag-
ment, here, the sum of the EDi values of all seed dispersal interactions by birds. The 
most pristine area is the top-left circle (1), which is the largest remnant of the Atlantic 
Forest and also the least defaunated fragment, used here as the baseline to illustrate 
the position of a “pristine” forest. The top-shaded facet of the graph represents the 
amount of cumulative EDi lost from the most pristine area to the second least 
disturbed fragment (2), while the bottom-shaded facet indicates the amount of 
cumulative EDi lost from the pristine area to the most disturbed fragment (16). 
Areas (identified by numbers within circles) are presented in a decreasing order of 
fragment area, according to a detailed description of each site in table S1. Larger 
fragments tend to be less disturbed, therefore harboring forests closer to the most 
pristine, best-preserved extreme.

Fig. 4. Defaunation leads to an impoverishment of seed dispersal interactions 
and their associated asymmetries in the EDi. The proportion of interactions 
remaining in each fragment significantly decreases with defaunation, and this 
pattern is maintained when controlling for fragment area (fig. S5). The four types of 
bird–seed dispersal interaction asymmetries showed a similar trend in losing ED, 
but the loss was faster for bird-skewed interactions while plant-skewed interactions 
persisted longer in the gradient of defaunation. The 50th percentile was used as 
the threshold to define low and high EDi values. The defaunation index is scaled ac-
cording to the lowest value among all fragments, which corresponds to the larg-
est area and less defaunated remnant of the Atlantic Forest, used here as a baseline 
value to illustrate the position of a pristine forest. Continuous lines indicate high 
ED; dashed lines indicate low ED. The four types of asymmetry correspond to different 
combinations of EDi, as follows: Plant skewed, low ED (minimum EDi, 5.73 Ma; 
maximum EDi, 32.74 Ma); plant skewed, high ED (32.77 to 381.22 Ma); bird skewed, 
low ED (3.52 to 32.71 Ma); bird skewed, high ED (32.8 to 107.79 Ma).
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larger losses of EDi can be expected to be less resilient to disturbance 
owing to the impoverishment of the functional diversity concomi-
tantly occurring with the loss of phylogenetic history of the partner 
species (10, 36). This impoverishment is likely to change the niche 
space occupied by the local assemblage of interacting species (37). 
New empty niches may create opportunities for the establishment 
of exotic species (38) and trigger changes in biogeochemical cycles 
such as CO2 storage by large-seeded plants dispersed by large-bodied 
frugivores (39). The resultant Anthropocene landscape will most 
likely consist of a metacommunity of evolutionarily impoverished 
fragments, phylogenetically structured by the defaunation of specific 
clades (40). Our approach can be easily extended to other ecological 
systems from which similar results are expected on the basis of the 
loss of specific functional groups, such as the global decline of bee 
pollinators (6, 25). From a conservation point of view, our results 
show that we are losing unique evolutionary histories of interactions 
that cannot be replaced by contemporaneous species. However, these 
losses may be lessened by a few persisting interactions performed by 
less evolutionarily distinct bird species rescuing the more evolu-
tionarily distinct plant species from the verge of extinction.

MATERIALS AND METHODS
Study area
The Atlantic Forest is a tropical hot spot of biodiversity (22), highly 
threatened by human activities (such as logging, habitat conversion 
to commercial monocultures, and increasing urbanization), that has 
drastically reduced its original cover to ~12% (23). The remaining 
landscape constitutes a complex mosaic formed mainly by small 
fragments (<50 ha, ~80% of the remaining area) and clusters of 
close neighboring fragments (<200 m apart) (23). These fragments 
function as a metanetwork of interactions connected by small gen-
eralist bird species dispersing small-seeded plant species, while 
large-bodied bird species able to disperse large-seeded plant species 
are constrained to a few pristine, large area fragments (16).

Dataset
We used the Atlantic-Frugivory dataset, the largest dataset available 
for tropical plant-frugivore interactions (21), to test how much evo-
lutionary history of bird–seed dispersal interactions is being lost 
because of the contemporaneous defaunation. Bird and plant species 
present in the Atlantic-Frugivory dataset comprise our regional pool 
of species, which was used to build the correspondent phylogenies 
and to calculate the defaunation index (see details in the next 
subsections). From that regional pool, we selected 21 studies of bird–
seed dispersal interactions sampled in fragments of the Brazilian 
Atlantic Forest (table S1). The studied fragments vary from 0.66 to 
42,000 ha in a gradient of disturbance from semipristine-protected 
areas to secondary forests, degraded fragments and restored plantations. 
The studied fragments were distributed among different vegetation 
types of the biome, including Ombrophilous and Semidecidous forest, 
Araucaria Forest, rupestrian, and dry vegetation. Our dataset includes 
all studies with available information designed to collect fruit-
eating bird interactions at the community level in the Atlantic Forest 
(21); yet, they did not necessarily record effective seed dispersal. We 
carefully checked the dataset and removed any interaction that 
would not characterize seed dispersal events. Methods to record 
interactions varied among studies, including direct bird observa-
tions and fecal sampling; only community-level studies with at least 

12 months of sampling were included in the analyses. We further 
added available information to each study site based on field obser-
vations and expert knowledge about tropical avian seed dispersal.

Phylogenetic trees
Birds
Given the list of species at the regional pool (21), we obtained 
100 phylogenetic trees inferred from the BirdTree.org online database 
using the “Stage2 MayrParSho Ericson” source tree as birds’ master 
phylogeny (available at http://birdtree.org/methods/). Trees’ topology 
is resolved with a combination of genetic and taxonomic information 
and dated with a relaxed molecular clock [see (6, 41) for details]. A 
few species that were identified at genus level in the field (i.e., Elaenia 
sp., Myiarchus sp., Patagioenas sp., Penelope sp., and Turdus sp.) 
therefore could not be found in the master phylogeny. We randomly 
grafted these species in their correspondent clades using the “add.
species.to.genus” function in the phytools package version 0.6-00 
in R (42).
Plants
Given the list of plant species at the regional pool (21), we used the 
megaphylogeny of trees (43) with the “S.PhyloMaker” function (41) 
to obtain the initial plant tree. The initial tree was based on “scenario 1” 
in which missing genera and/or species are added as basal poly
tomies within their higher taxonomic level (44). Then, we simulta-
neously resolved the polytomies and adjusted the branch lengths 
using an evolutionary birth-death model with the help of “Polyto-
myResolver” function (45) and BEAST version 1.5.4 (46). Markov 
Chain Monte Carlo analyses were run for 106 iterations, and trees 
were sampled every 103 iterations. After discarding the 25% first 
trees, we randomly selected 100 trees for subsequent analyses.

ED of bird–seed dispersal interactions
The ED of a given species quantifies how isolated it is in its own 
phylogenetic tree and the amount of unique evolutionary history 
that it embodies (8, 9). Similarly, the amount of evolutionary history 
that an interaction holds can be estimated by the combination of the 
ED of the interacting partner species. Therefore, the EDi combines 
the isolation and unique evolutionary history of the partner species 
in their correspondent phylogenetic trees. We calculated EDi as 
follows.

First, we calculated the ED for all plant and bird species based on 
the correspondent phylogenetic trees that we built for the regional 
pool of species of the Atlantic Forest (see above). ED was estimated 
using the equal splits metric available in the “evol.distinct” function 
in the picante package for R (47). Equal splits metric equally divides 
the phylogenetic distance represented by a branch by the number of 
lineages originating from the node directly below it (8). It gives 
higher values of ED for species placed in clades in which the path 
length is shared among a lower number of species and is considered 
a robust metric to capture phylogenetic diversity (9). Then, we 
obtained the mean ED for each bird (EDb) and plant species (EDp) 
calculated over 100 solved trees and used it as a proxy for its 
ED. Last, to quantify the EDi, we summed the ED of the interacting 
bird (EDb) and plant species (EDp) such as EDi = EDb + EDp.

Statistical analyses
To test whether more evolutionarily distinct bird and plant species 
were associated with larger body mass and seed diameter, respec-
tively, we used nonparametric Spearman correlation tests (48). 
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The extremely large sample size caused an overfit of any modeling 
attempt to assess the form of these relationships, so we resorted to 
use nonparametric Spearman correlation tests to highlight any non-
random associations between traits and ED.

Asymmetries in EDi were calculated as the difference between 
the ED values of both interacting partners. Bird-skewed asymme-
tries correspond to interactions in which the bird species has higher 
ED than the partner plant species, and plant-skewed asymmetries 
correspond to interactions in which the plant species brings more 
ED than the partner bird species. We apply a binomial test to esti-
mate which type of asymmetry (bird skewed or plant skewed) is 
significantly more predominant among the 2668 unique combina-
tions of bird and plant species interactions found in our communi-
ties. Then, we used a generalized linear mixed-effects model in the 
lme4 package (49) to test which type of EDi asymmetry is more 
persistent in the fragmented landscape. In this model, we fit the 
number of fragments in which the interaction occurs as a response 
variable against the asymmetry value of EDi as the independent 
variable. Bird species and plant species were used as random factors 
to control for pseudoreplication, given that a single species can 
perform more than one interaction. We fit the model with a Pois-
son distribution.

To understand the amount of the cumulative EDi of bird–seed 
dispersal interactions lost in the gradient of defaunation across 
tropical forest fragments, we fitted three different linear models. 
We started by quantifying the cumulative EDi in each fragment by 
summing up the EDi values of all bird–seed dispersal interactions 
recorded per fragment. Defaunation was estimated as the difference 
between the sum of all bird body masses at the regional landscape 
scale [considering all frugivore bird species present in the Atlantic-
Frugivory database (21) as a proxy for the regional pool of species] 
and the summed body masses of the birds that occur in each frag-
ment. For the first model, we simply used the cumulative EDi as the 
response variable fitted against the defaunation index to test for the 
absolute loss of EDi as defaunation increases. For the second model, 
we used the same approach while  controlling for fragment area. We 
tested for the correlation between fragment area and defaunation 
using a Pearson correlation test. Then, we used the residuals of a 
linear regression of defaunation index on fragment area as the inde-
pendent variable fitted against the cumulative EDi. Last, we used a 
null model to test whether the cumulative EDi per fragment 
was significantly different from that expected by the number of 
bird–seed dispersal interactions recorded in each community. We 
created an amn matrix in which m and n correspond to the study site 
and the bird–seed dispersal interactions, respectively. The amn ele-
ment of the matrix is filled according to the presence of an interac-
tion n in site m quantified by the corresponding EDi. Therefore, the 
marginal total of m corresponds to its observed cumulative EDi. We 
applied the “shuffle.web” method within the “nullmodel” function in 
the bipartite package (50), which relocates the amn element within 
the matrix while maintaining its dimensionality, i.e., constraining the 
number of sites and interactions while shuffling the EDi among 
them. We obtained the mean and SD of the EDi per site over 100 
simulations and calculated the corresponding z score based on the 
observed cumulative EDi. The z scores were fitted against the de-
faunation index in a linear model. Positive z scores indicate that the 
site holds more cumulative EDi than expected by the number of 
bird-plant interactions recorded in that area. On the other hand, 
negative z scores indicate that the site holds less cumulative EDi 

than expected by the number of interactions that it encompasses. 
Statistical analyses were performed in R version 3.4.3 (51).
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