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The phylogenetic roots of human lethal violence
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The psychological, sociological and evolutionary roots of 
conspecific violence in humans are still debated, despite attracting 
the attention of intellectuals for over two millennia1–11. Here we 
propose a conceptual approach towards understanding these roots 
based on the assumption that aggression in mammals, including 
humans, has a significant phylogenetic component. By compiling 
sources of mortality from a comprehensive sample of mammals, 
we assessed the percentage of deaths due to conspecifics and, 
using phylogenetic comparative tools, predicted this value for 
humans. The proportion of human deaths phylogenetically 
predicted to be caused by interpersonal violence stood at 2%. 
This value was similar to the one phylogenetically inferred for 
the evolutionary ancestor of primates and apes, indicating that a 
certain level of lethal violence arises owing to our position within 
the phylogeny of mammals. It was also similar to the percentage 
seen in prehistoric bands and tribes, indicating that we were as 
lethally violent then as common mammalian evolutionary history 
would predict. However, the level of lethal violence has changed 
through human history and can be associated with changes in 
the socio-political organization of human populations. Our study 
provides a detailed phylogenetic and historical context against 
which to compare levels of lethal violence observed throughout 
our history.

Debate on the nature of human violence has been ongoing since 
before the publication of Leviathan by Thomas Hobbes in 1651. 
Lethal violence is considered by some to be mostly a cultural trait5,6,12; 
 however, aggression in mammals, including humans13,14, also has a 
genetic component with high heritability. Consequently, it is widely 
acknowledged that evolution has also shaped human violence2–4. 
From this perspective, violence can be seen as an adaptive strategy, 
 favouring the perpetrator’s reproductive success in terms of mates, 
 status or resources15,16. Yet this does not mean that violence is  invariant 
or even adaptive in all situations15. In fact, given that the conditions 
under which violence benefits evolutionary fitness depend on the 
 ecological and cultural context, levels of violence tend to vary among 
human  populations12,13,15,16. Disentangling the relative  importance 
of cultural and non-cultural components of human violence is 
 challenging3,5 owing to the complex interactions between ecological, 
social,  behavioural and genetic factors.

Conspecific violence is not exclusive to humans. Many primates 
exhibit high levels of intergroup aggression and infanticide4,10. Social 
carnivores sometimes kill members of other groups and commit 
infanticide when supplanting older members of the same group17,18. 
Even seemingly peaceful mammals such as hamsters and horses 
sometimes kill individuals of their own species19,20. The prevalence 
of  aggression throughout Mammalia raises the question of the extent 
to which  levels of lethal violence observed in humans are as expected, 
given our position in the phylogenetic tree of mammals. In this study,  
we quantified the level of lethal violence in 1,024 mammalian species 
from 137 families (Supplementary Information section 9a) and in over 

600 human populations, ranging from the Palaeolithic era to the  present 
(Supplementary Information section 9c). The level of lethal  violence 
was defined as the probability of dying from intraspecific  violence 
compared to all other causes. More specifically, we calculated the level 
of lethal violence as the percentage, with respect to all  documented 
sources of mortality, of total deaths due to conspecifics (these  
were infanticide, cannibalism, inter-group aggression and any other 
type of intraspecific killings in non-human mammals; war, homicide, 
infanticide, execution, and any other kind of intentional conspecific 
killing in humans).

Lethal violence is reported for almost 40% of the studied mammal 
species (Supplementary Information section 9a). This is probably 
an underestimation, because information is not available for many 
species. Overall, including species with and without lethal violence, 
we found that the percentage of deaths due to conspecifics was 
0.30 ±  0.19% of all deaths (phylogenetically corrected mean ±  s.e.m). 
This level was not affected by the number of individuals sampled 
per species (Supplementary Information section 1). These findings  
suggest that lethal violence, although infrequent, is widespread among 
mammals19–21.

We determined whether related species tended to have similar  levels 
of lethal violence by calculating the phylogenetic signal. We used the 
most recently updated mammalian phylogenies,  including 5,020 
extant mammals22 and 5,747 extant and recently extinct  mammals23. 
We found a significant phylogenetic signal for lethal  violence, even 
after  combining disparate causes of intraspecific  killings (λ >  0.60, 
P <  0.0001; Supplementary Information section 2). While lethal 
 violence was uncommon in certain clades such as bats, whales and 
lagomorphs, it was frequent in others, such as primates (Fig. 1). The 
phylogenetic signal was also significantly lower than one (P <  0.0001), 
indicating that lethal violence exhibits certain  evolutionary flex-
ibility (Fig. 1). For example, the level of lethal violence strongly  
differs between chimpanzees (Pan troglodytes) and bonobos  
(Pan paniscus)10,17,20. This outcome suggests that additional factors 
may subsequently modify the level of lethal violence in related species. 
Territoriality and social  behaviour mediate conspecific aggression in 
mammals20,24. We scored these two traits for every mammal in our 
study and statistically related them to the level of lethal violence using 
phylogenetic generalized linear models. Using this method, we found 
that the level of lethal violence was higher in social and territorial 
species than in solitary and non- territorial species (Fig. 2; Extended 
Data Table 1).

The occurrence of a phylogenetic signal for lethal violence in 
 mammals enables the phylogenetic inference of lethal violence in 
humans. We used ancestral-state estimation methods that infer the 
value of a trait in any extant species according to its position in the 
 phylogenetic tree25. The level of human lethal violence was  estimated 
both with and without considering the territoriality and sociability of 
mammals. Because phylogenetic inferences are much more  accurate 
and reliable when including information from close relatives26 

1Estación Experimental de Zonas Áridas (EEZA-CSIC), E-04120 Almería, Spain. 2Dpto de Ecología, Universidad de Granada, E-18071 Granada, Spain. 3Centro de Investigaciones sobre 
Desertificación (CSIC-UV-GV), E-46113 Valencia, Spain. 4Dpto de Zoología, Universidad de Granada, E-18071 Granada, Spain. 5Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, 
E-28933 Madrid, Spain.

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

http://www.nature.com/doifinder/10.1038/nature19758


2 3 4  |  N A t U r e  |  V O L  5 3 8  |  1 3  O c t O b e r  2 0 1 6

LetterreSeArCH

and  fossils23, information on Homo neanderthalensis was included 
when estimating the level of human lethal violence (Supplementary 
Information section 9b). In addition, because the level of  violence 
 varies among populations of the same species10,20,21, all models 
include intraspecific variation in the level of mammalian lethal   
violence. The phylogenetically inferred level of lethal violence,  averaging 

across all models, was 2.0 ±  0.02% of all deaths (Fig. 3a). These  estimates 
seem to be robust to many potential biases, such as phylogenetic 
uncertainty, phylogenetic depth, sampling effort, and  phylogeny size 
(Supplementary Information sections 3–6). Territoriality and sociability 
affect the phylogenetic inference of the level of lethal violence, as it was 
1.9 ±  0.01% in the models without these two variables but 2.1 ±  0.02% 

Figure 1 | Evolution of lethal aggression in non-human mammals. 
Tree showing the phylogenetic estimation of the level of lethal  
aggression in mammals (n =  1,024 species) using stochastic mapping. 
Lethal aggression increases with the intensity of the colour, from 
yellow to dark red. Light grey indicates the absence of lethal aggression. 
Mammalian ancestral nodes compared with human lethal violence are 
shown in red, whereas main placental lineages are marked with black 
nodes. The red triangle indicates the phylogenetic position of humans. 
The silhouettes of representative mammals (downloaded from  

http://www.phylopic.org) illustrate the main mammalian clades.  
They are licenced for use in the Public Domain without copyright,  
except for the silhouettes of Murinae (D. Liao), Jaculus (M. Karaka), 
Philander (S. Werning), Rattus (R. Groom), Molossus (Zimices), 
Balaenoptera (C. Hoh), Rousettus (O. Peles), Connochaetes, Redunca,  
and Kobus (J. A. Venter, H. H. T. Prins, D. A. Balfour and R. Slotow),  
that are licenced under a Creative Commons 3.0 license  
(http://creativecommons.org/licenses/by/3.0).
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in the models including them (Fig. 3a). This is a consequence of  
H. sapiens being both social and territorial, two characteristics 
 associated with a stronger tendency towards lethal violence in 
 mammals (Fig. 2).

We subsequently explored how the level of lethal violence has 
changed during our evolutionary history by comparing it with the 
phylogenetically inferred level of lethal violence in relevant ancestral 
nodes that describe the course of human evolution (Fig. 1). The level of 
lethal violence was low in the most basal nodes, increasing to 2.3 ±  0.1% 
of all deaths in the two nodes closely related with the origin of primates 
and slightly decreasing to 1.8 ±  0.1% of all deaths in the ancestral ape 
(Fig. 3b). These results suggest that lethal violence is deeply rooted in 
the primate lineage.

We then compared whether the phylogenetically inferred level of 
lethal violence differed from the level empirically observed in human 
populations. The samples were categorized according to their age, using 
the standard periods from the New and Old World  chronologies27. 
These data must be interpreted cautiously, because there was  extensive 
intra-period variation in lethal violence. Nevertheless, a clear  temporal 
pattern emerged (Fig. 3c). The level of lethal violence during human 
prehistory did not differ from the phylogenetic predictions (Fig. 3c).  
This result contrasts with some previous observations9,11,  probably 

because we have included more populations in our study and weighted 
all the analyses by the number of individuals per sample. The level 
of lethal violence during most historic periods was higher than the 
phylogenetic predictions for both humans (Fig. 3c and Supplementary 
Information section 7) and the ancestral Hominoidea (Fig. 3b). 
However, on entering the Modern and Contemporary ages (defined 
in Methods), the level of lethal violence decreased markedly, as  
previously reported11 (Fig. 3c). Several potential biases may affect these 
results. The level of lethal violence inferred from skeletal remains could 
be underestimated because many deadly injuries do not damage the 
bones8. Nevertheless, no underestimation was detected for the periods 
in which both skeletal remains and statistical yearbooks are available  
(Supplementary Information section 7). Similarly, the presence of 
battlefields may artificially overestimate the level of lethal violence. 
However, the periods with highest level of lethal violence were not 
those with more organized intergroup conflicts (Supplementary 
Information section 8). Thus, the temporal pattern in the level of 
lethal violence seems to hold even after considering these potential 
biases. Concomitant changes in the cultural and ecological human 
 environment may have caused this pattern. Notably, population  density, 
a  common ecological driver of lethal aggression in mammals18,21, was 
lower in periods with high levels of lethal violence than in the less 
violent Modern and Contemporary ages. High population density is 
therefore probably a consequence of successful pacification, rather than 
a cause of strife7.

Socio-political organization is a factor widely invoked to explain 
changes in violence5,7,11. To assess this effect, we classified human 
populations into four types28: bands, tribes, chiefdoms and states. 
Levels of lethal violence in prehistoric bands and tribes did not differ 
from the phylogenetic inferences (Fig. 3d). However, lethal violence is 
common in present-day bands and tribes (Fig. 3d), possibly because 
there are more detailed data on mortality from living people than from 
archaeological records. Nevertheless, some authors suggest that the 
level of lethal violence has increased in hunter–gatherers because they 
now live in denser populations in which intergroup conflicts are more 
likely3, or because they have contacted colonial societies where warfare 
or interpersonal violence is frequent29. The level of lethal violence in 
chiefdoms was also higher than the phylogenetic inferences (Fig. 3d). 
Severe violence has been frequently reported in chiefdoms30, mostly 
caused by territorial disputes, population and resource pressures, and 
competition for political status30. Finally, the level of lethal violence 
in state societies was lower than the phylogenetic inferences (Fig. 3d).  
It is widely acknowledged that monopolization of the legitimate 
use of violence by the state significantly decreases violence in state 
societies11,30.

In this study, we have explored the origin and evolution of human 
lethal violence by integrating a phylogenetic approach with an  empirical 
analysis of lethal violence in human populations. The  phylogenetic 
analysis suggests that a certain level of lethal violence in humans 
arises from the occupation of a position within a  particularly violent 
mammalian clade, in which violence seems to have been  ancestrally 
present. This means that humans have phylogenetically inherited 
their  propensity for violence. We believe that this phylogenetic effect 
entails more than a mere genetic inclination to violence. In fact, 
social  behaviour and territoriality, two behavioural traits shared with 
relatives of H. sapiens, seem to have also contributed to the level of 
lethal violence phylogenetically inherited in humans. Our  analysis of 
human lethal violence shows that lethal violence in prehistoric humans 
matches the level inferred by our phylogenetic analyses,  suggesting 
that we were, at the dawn of humankind, as violent as expected  
considering the common mammalian evolutionary history. This pre-
historic level of lethal violence has not remained invariant but has 
changed as our history has progressed, mostly associated with changes 
in the socio- political  organization of human populations. This suggests 
that culture can modulate the phylogenetically inherited lethal violence 
in humans.

Figure 2 | Social behaviour and territoriality influence lethal  
aggression in mammals. The figure shows the phylogenetically corrected 
level of lethal aggression per group (mean ±  s.e.m) and the number of 
mammalian species included in each group. We used a phylogenetic 
generalized linear model (PGLS) to test the effect of territoriality  
(yes or no) and social behaviour (social or solitary) on lethal aggression.  
The level of lethal aggression was more intense in social and territorial 
species (PGLS, P <  0.05 in all cases and mammal phylogenies; Extended 
Data Table 1), with no interaction between these two terms (Extended 
Data Table 1).
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Figure 3 | Lethal violence in humans. a–d, Box plots showing a, 
the phylogenetic inferences of human lethal violence assessed as the 
percentage of human deaths caused by conspecifics. These estimates were 
achieved through phylogenetic generalized linear models and correspond 
to the ancestral node of the tree rooted at the node separating H. sapiens 
from the rest of the mammals. All models were performed after logit-
transforming the dependent variable and considering the intraspecific 
variation in mammal lethal aggression. Phylogenetic uncertainty was 
incorporated by using the tree provided by Fritz et al.22 (grey colour) and 
a set of 100 randomly sampled trees from Faurby and Svenning23 (white 
colour). b, The lethal aggression inferred for six important ancestral 
nodes of human evolution (apes, primates, Euarchonta, Euarchontoglires, 
placental mammals, and all mammals). c, Human lethal violence during 

different temporal periods of human history, according to the Old World 
and New World chronologies27. d, Human lethal violence in different 
socio-political organizations28. In all cases the boxplots show median 
values, 50th percentile values (box outline), 95th percentile values 
(whiskers), and outlier values (circles). We tested whether the level of 
lethal violence observed in each ancestral node, human period and human 
socio-political organization differed significantly from the phylogenetic 
inferences in a. Colour indicates whether the observed lethal violence 
was statistically similar (white), higher (red), or lower (blue) than the 
phylogenetic inferences (Extended Data Tables 2, 3). In a and b, n indicates 
the number of iterations and in c and d it indicates the number of human 
populations (see Supplementary Information sections 7, 9c for the number 
of deaths).
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MethOdS
No statistical methods were used to predetermine sample size. The investigators 
were not blinded to allocation during experiments and outcome assessment.
Lethal aggression in mammals. To estimate lethal aggression in mammals 
(defined as the percentage of deaths caused by conspecifics) we compiled a  database 
 including the amount of conspecific killing observed in many species of mammals. 
We conducted computer searches including the words (alone or in combination): 
‘mammal’, ‘mortality factors’, ‘causes of mortality’, ’infanticide’, ‘death’,  ‘conspecific 
mortality’, ‘conspecific fighting’, ‘intraspecific aggression’ and  ‘conspecific  aggression’, 
as well as some other words related to relevant mortality factors in some mammal 
species, such as ‘bushmeat’, ‘road killing’ and  ‘overhunting’. We pooled all sources 
of  conspecific mortality (active and passive infanticide,  intergroup aggression, 
 cannibalism and intraspecific predation, male–male  fighting during mating 
period, territorial defensive behaviour, maternal abandonment, accidental injury). 
We considered only lethal conspecific interactions,  ignoring non-lethal aggression, 
because the recording of aggressive interactions ending in the death of any of the 
interacting organisms, both in humans and non-human mammals, is more precise8. 
We found information about more than four million deaths in the 1,024 mammal 
species (~ 20% of the total species) from 137 families (~ 80% of total families) and 
the three main extant mammalian clades (Prototheria, Metatheria and Eutheria) 
(Supplementary Information section 9a). We obtained  information from several 
studies in order to incorporate the intraspecific variability in lethal aggression for 
each mammal species. For each mammal included in our database, we recorded its 
territoriality (yes or no) and social behaviour (social or solitary) using information 
compiled in the Animal Diversity Web (http://www. animaldiversity.org).
Mammal phylogeny. The phylogenetic relationship between the mammals 
included in the database was built using Fritz et al.22 and Faurby and Svenning23 
phylogenies, which are updated phylogenies of the supertree of Bininda-Emonds  
et al.31, to account for the more recent mammalian taxonomy of Wilson and 
Reeder32. First, we used the phylogeny provided by Fritz et al.22 including 5,020 
extant mammals. Afterwards, we used a set of 100 phylogenies provided by Faurby 
and Svenning23 that contains 5,747 extant and extinct mammals (including species 
with dated records from the Late Pleistocene, defined as the last 130,000 years). Using 
this set of phylogenies, we were able to incorporate phylogenetic uncertainty in all 
our analyses. In each phylogeny we pruned all species not included in the  database 
and, in the few cases in which a species was missing in the supertree, we selected the 
closest relative (usually, a congeneric species, see Supplementary Information section 
9a). Mortality data about subspecies were pooled at the  species level.

We performed additional analyses with the inclusion of H. neanderthalensis 
because: i) close relatives of modern humans can be very informative to  estimate 
their phylogenetically shared traits, and ii) including fossils in the phylogeny results 
in more reliable ancestral state reconstructions33. The Faurby and Svenning22 
 phylogeny includes H. neanderthalensis. However, the Fritz et al.23 phylogeny 
only  contains extant species. For this reason, we grafted H.  neanderthalensis 
into this  latter phylogeny, indicating an evolutionary divergence from H.  sapiens 
0.43 million years ago (Mya)34 and extinction 0.028 Mya35. Although these 
dates are contested36, variations of a few thousand years did not significantly 
alter the  phylogenetic prediction of human lethal violence. For example, when 
time of divergence was changed to 0.23 Mya, the mean prediction remained the 
same but with a slightly higher confidence interval. The level of lethal violence 
in H.  neanderthalensis was obtained from multiple sources (see Supplementary 
Information section 9b).
Lethal violence in humans. To estimate lethal violence in humans (defined as 
the percentage of people that died owing to interpersonal violence) we  compiled 
information from almost 600 human populations and societies  spanning from 
the Palaeolithic to the present (Supplementary Information section 9c). Because 
of the extremely wide temporal range, we obtained information derived from 
very disparate sources, namely bioarchaeological and palaeo- osteological 
reports,  ethnographic records, statistical yearbooks and verbal autopsies  
(a method to  determine probable causes of death when no medical record or 
formal medical attention is available; they are performed by non-medical field 
workers,  recording written narratives from reliable informants in local languages 
that describe the events that preceded the death). Owing to this heterogeneity, 
and because our goal was to compare the level of lethal violence in humans with 
the level of lethal aggression in mammals, we did not differentiate the specific 
causes of  intraspecific mortality. Rather, we pooled together the deaths caused 
by war,  homicide,  manslaughter, infanticide, sacrifice, cannibalism and so on, 
 without  differentiating whether lethal events involved only one perpetrator or 
were  coalitional and  collective killings. Although it is worth investigating how 
specific types of violence have evolved in humans, we could not explore this 
issue because some types of violence have been insufficiently studied, both in 
non- human  mammals (for example, inter-group aggression in social  mammals 
other than chimpanzees) and humans (for example, infanticide in historical 

 societies). Lethal violence was determined for each source using the criteria of 
the  researchers. Ethnographic records, statistical yearbooks and verbal  autopsies 
commonly included the casualties of the interpersonal violence. The death 
toll owing to  interpersonal violence in bioarchaeological studies was found by 
 following the most widely used criterion in this type of study; that is, the presence 
of  perimortem and blade injuries as an indication of death caused by interpersonal  
violence8,37. This means that we did not include antemortem and healed injuries 
in our  calculation of lethal interpersonal violence37. Nevertheless, skeletal trauma 
should be viewed as minimal estimates, since many injuries caused by conspecifics 
do not damage the bones8,38.

The samples were categorized according to their age and socio-political 
 organization. To assign the age to each sample, we considered the periods used 
to divide human history according to both the New World and Old World 
chronologies27. Old World human societies were grouped into Paleolithic  
(~ 50,000–12,000 bp), Mesolithic (~ 12,000–10,200 bp), Neolithic/Calcolithic  
(~ 10,200–5,000 bp), Bronze Age (~ 5,300–3,200 bp), Iron Age (~ 3,200–1,300 bp) 
and Medieval periods (~ 1,300–500 bp). New World human societies were grouped 
in Archaic (~ 12,000–3,000 bp), Formative (~ 3,000–1,500 bp), Classic (~ 1,500–
800 bp)  and Post-Classic periods (~ 800–500 bp). From then on, we considered 
two further periods affecting human societies throughout the entire world, the 
Modern Age (~ 500–100 bp) and the Contemporary Age (~ 100 bp–present day).

We followed the widely accepted socio-political classification28,39, according to 
which human societies can be classified into four types: bands (small, nomadic, 
egalitarian groups of people, usually hunter–gatherers), tribes (small, mostly  
egalitarian, groups with limited social rank usually resident in permanent villages 
as hunter–horticulturalists), chiefdoms (stratified, hierarchical non-industrial  
societies usually based on kinship) and states (politically organized  complex 
 societies). To assign each sample to different socio-political and temporal 
 categories, we relied on the information from each original source (Supplementary 
Information section 8c). The use of standard statistics to summarize information 
coming from disparate sources with extremely different sample sizes and time 
coverage is problematic, as has been reported40. To avoid such issues, we pooled 
all the samples (skeletal remains, dead individuals and so on) found during each 
period (see Supplementary Information section 8c for an exhaustive list of cases, 
samples and studies) and depicted them using box plots.
Phylogenetic signal of mammal lethal aggression. The phylogenetic signal for 
lethal aggression was calculated using Pagel’s lambda41 that compares the similarity 
of the covariances among species with the covariances expected under Brownian 
evolution. Significant phylogenetic signal occurs when λ >  0 and may take values 
of either 0 <  λ <  1 (indicating that close relatives resemble each other less than 
expected under Brownian evolution) or λ =  1 (indicating that close relatives are as 
similar as would be expected under Brownian motion). Values of λ >  1  (indicating 
that close relatives are more similar than expected by Brownian evolution) cannot 
be reached because the off-diagonal elements in the variance–covariance matrix 
cannot be larger than the diagonal elements42. To account for the possibility of 
a phylogenetic signal higher than expected under Brownian motion, we also 
 calculated Blomberg’s K (that is, the ratio between the observed phylogenetic  signal 
and that expected under a Brownian evolution model)43. This phylogenetic signal 
metric is not restricted in its upper limit, and ranges from 0 (no phylogenetic signal)  
to infinity, with K =  1 indicating Brownian evolution. Statistical significance of 
Pagel’s λ was calculated through a likelihood ratio test, comparing the likelihood 
of the model that was fitted to the data to that of a model in which λ was fixed to 0. 
Significance of Blomberg’s K was calculated through a randomization test from a 
null model constructed with 1,000 random permutations of the data across the tips 
of the mammal tree. Both tests were performed using the R package ‘phytools’44. 
The level of phylogenetic signal of lethal aggression in mammals measured as 
Blomberg’s K (K =  0.09) was significantly higher than 0 (P =  0.013) and lower than 1  
(P ≪  0.001). This indicates that close relatives tend to have similar values of lethal 
violence but at a level lower than would be expected under Brownian evolution. 
This evolutionary pattern is consistent with that shown by Pagel’s lambda (λ =  0.60) 
and therefore only this metric is shown in the main text. The evolution of lethal 
aggression throughout the phylogeny of mammals was estimated using  stochastic 
mapping as implemented in the R package ‘phytools’44. Lethal aggression was  
logit-transformed before all analyses.
Effect of territoriality and sociability on mammal lethal aggression. To examine 
which factors explained the level of lethal aggression in mammals, we performed 
a phylogenetic generalized-least-squares (PGLS) model45, with lethal aggression 
(logit-transformed) as the dependent variable and territoriality and sociability as 
independent variables. PGLS takes into account the phylogenetic signal in the 
residuals of the model fitted to the data45. To account for the  intraspecific  variability 
in lethal aggression, for each of the 1,024 mammal species, we  generated a  normal 
distribution of lethal aggression values with their empirically observed means 
and standard errors. To control for potential biases produced by between-study   
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differences in sample size, the means and standard errors that were used to  generate 
the random distributions were first weighted by the number of  individuals included 
in each study. We then ran the analysis 100 times, randomly sampling each time a 
value from each of the 1,024 normal distributions. When a species was  represented 
by a single value, we used as its standard error the across- species  average of 
 standard errors. The analyses were run with the help of the PGLS  command in 
the R package ‘caper’46.
Phylogenetic estimation of human lethal violence. Phylogenetic trait  estimation 
techniques were used to obtain the lethal violence level for H. sapiens as a  
function of its position in the mammal phylogeny. These techniques take  advantage 
of ancestral state estimation methods to predict traits of extant species25,47.  
The trait value of the focal species can be estimated as the ancestral node of the 
tree rerooted at the most recent common ancestor of the focal species and the rest 
of the tree48,49. The trait value estimated with this ancestral estimation method is 
the same as that provided by the intercept of a PGLS performed on the same tree. 
However, PGLS allows us to simultaneously include the level of the phylogenetic 
signal and other traits as covariates to improve the phylogenetic estimation of the 
study trait25. Following this approach, we also estimated human lethal violence with 
the help of a PGLS approach with territoriality and sociability as covariates and the 
phylogenetic information of the mammal tree rooted in the node where H. sapiens 
diverged from the rest of the mammals. The target species must be excluded from 
the analysis to estimate the PGLS parameters. Four PGLS models were fitted to our 
data: (i) without covariates and without H. neanderthalensis; (ii) with territoriality 
and sociability as factorial covariates but without H. neanderthalensis; (iii) without 
covariates and with H. neanderthalensis; and (iv) with territoriality and sociability 
as factorial covariates and with H. neanderthalensis. In all models, the dependent 
variable was logit-transformed and its variance was included using the approach 
explained in the previous section.
Lethal aggression in main ancestral nodes of the human lineage. We  estimated 
levels of lethal aggression in the most recent common ancestor of six  important 
clades defining the course of the evolutionary history of humans: the class 
Mammalia, the infraclass Placentalia (placental mammals), the superorder 
Euarchontoglires or Supraprimates (primates, tree-shrews, colugos, rodents and 
hares), the grandorder Euarchonta (primates, colugos and tree-shrews), the order 
Primates (primates) and the superfamily Hominoidea (apes). Lethal aggression in 
these ancestral nodes was inferred using the same analytical approach as that used 
to estimate lethal violence in humans.
Accuracy of the estimation of mammal lethal aggression from the PGLS. The 
accuracy of trait-estimation in a particular species increases with the level of  
phylogenetic signal of the study trait25. To test for the accuracy of our models 
under the observed phylogenetic signal, we used leave-one-out cross-validations 
with the whole mammalian data set in Supplementary Information section 9a. 
We inferred the level of lethal violence (logit-transformed) for each mammal 
species with the PGLS procedure and compared it with its actual value. We first 
examined the relationship between the estimated and observed lethal violence 
values50 and subsequently calculated the proportion of species for which the actual 
value fell inside the 95% confidence interval of the estimated trait (Supplementary 
Information section 2).
Effect of sampling effort on the estimation of human lethal violence. To check 
whether the estimates of conspecific-mediated human mortality were influenced 
by inappropriate or insufficient sampling, we repeated all analyses considering the 
 subset of mammalian species with more than 50 observations (n =  645  mammals). 
We  performed PGLS analysis to test whether territorial and social behaviour still 
 influence the level of lethal aggression (logit-transformed) for this subset of well- 
sampled species. Afterwards, we calculated the conspecific-mediated human mortality 
using this subset of well-sampled mammals (Supplementary Information section 4).
Effect of phylogenetic depth on the estimation of human lethal violence. 
To check whether the estimates of conspecific-mediated human mortality 
were  influenced by the depth of the phylogeny, we repeated these analyses by 
 progressively including deeper nodes to obtain the estimate and the 95%  confidence 
intervals using the PGLS model without covariates. We considered the following 
hierarchically nested clades, from shallower to deeper: Homininae, Hominidae, 
Hominoidea, Catarrhini, Simiiformes, Haplorrhini, Primates, Primatomorpha, 
Euarchonta, Euarchontoglires, Boreoeutheria, Eutheria, Theriiformes and 
Mammalia51. We are aware that moving from shallower to deeper nodes means 
including an increasing number of species in the analyses (for example, we have 
only four Homininae but 1,022 Theriiformes in our phylogeny). To subsequently 
check whether the increasing number of species has any effect on the 95%  
confidence intervals, we repeated all analyses with random-pruned phylogenies 
equalling the number of species included in each of the clades described here  
(50 random phylogenies per clade) (Supplementary Information section 5).
Effect of phylogeny size on the estimation of human lethal violence. To check 
whether the estimates of conspecific-mediated human mortality were  influenced 

by the size of the phylogeny, we repeated these analyses with the  progressive 
 inclusion of more species in the phylogenies. Specifically, we estimated human 
lethal  violence and its 95% confidence interval in 50 randomly generated 
 phylogenies with 100, 200, 300, 400, 500, 800, 900 and 1,000 spp., using the PGLS 
model without covariates. Afterwards, we contrasted these values with the level of 
human lethal violence obtained using the empirical phylogeny, checking whether 
smaller  phylogenies departed from empirical results more strongly than larger 
phylogenies (Supplementary Information section 6).
Statistical difference between phylogenetically estimated lethal violence in 
humans and ancestral nodes. We have checked whether the level of lethal  violence 
phylogenetically inferred in humans is different from the lethal aggression inferred 
for the main ancestral nodes using t-tests. The phylogenetic estimates of both lethal 
violence in humans and lethal aggression in ancestral mammals were obtained by 
joining the 100 values obtained for each of the four PGLS models (with and without 
covariates and with and without H. neanderthalensis) and the two  mammalian 
phylogenies used (Fritz et al.22 and Faurby and Svenning23 phylogenies).  
We  subsequently tested, by means of t-tests, whether these two distributions 
 differed. Because we repeated the same test six times (once per ancestral node), 
we corrected all P values by means of sequential Bonferroni corrections.
Statistical difference between observed and phylogenetically estimated lethal 
violence. For each temporal period and socio-political organization, we randomly 
sampled a given value of observed mortalities from a normal distribution with 
the same mean and standard error and compared it with a randomly sampled, 
phylogenetically estimated value. The phylogenetically estimated values were 
obtained by joining the 100 values obtained for each of the four PGLS models (with 
and without covariates and with and without H. neanderthalensis) and the two 
 mammalian phylogenies (Fritz et al.22 and Faurby and Svenning23 phylogenies). 
We repeated these paired comparisons 800 times, and recorded the proportion of 
times where the observed values were higher or lower than the phylogenetically 
estimated  values. We subsequently tested, by means of binomial tests, whether this 
proportion differed from the randomly expected deviation. We ran each binomial 
test 1,000 times and retained the average P values and deviance from the expected 
value. All P values shown underwent sequential Bonferroni correction.
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extended data table 1 | Outcome of the phylogenetic generalized linear model testing the effect of territoriality and social behaviour  
on the magnitude of lethal aggression in mammal species (n = 1,024 species)

We performed this analysis using the mammalian phylogeny provided by Fritz et al.22 and 100 mammalian phylogenies provided by Faurby and Svenning23. In this latter case, we show the  
across-phylogeny mean of each statistical parameter. Lethal aggression was logit-transformed before all analyses.
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extended data table 2 | Outcome of the t-tests assessing difference between the inferred value of lethal violence at each of the chosen 
ancestral nodes in the mammalian phylogeny and the phylogenetic estimates of human lethal violence

We compared the lethal aggression of the ancestral nodes with the magnitudes of lethal violence obtained according to the four PGLS models (with and without covariates and with and without  
H. neanderthalensis) and the two mammalian phylogenies (Fritz et al.22 and Faurby and Svenning23 phylogenies) using a t-test. Significance after sequential Bonferroni correction at α =  0.05.
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extended data table 3 | Outcome of the binomial tests assessing difference between the observed lethal violence in human societies  
and the inferred lethal violence according to the phylogenetic analysis

We compared the observed lethal violence of each type of human society with the magnitudes of lethal violence obtained according to the four PGLS models (with and without covariates and with 
and without H. neanderthalensis) and the two mammalian phylogenies (Fritz et al.22 and Faurby and Svenning23 phylogenies). Each binomial test was run 1000 times. Significance after sequential 
Bonferroni correction at α =  0.05.

© 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.


	The phylogenetic roots of human lethal violence

	Authors
	Abstract
	References
	Acknowledgements
	Author Contributions
	﻿Figure 1﻿﻿ Evolution of lethal aggression in non-human mammals.
	﻿Figure 2﻿﻿ Social behaviour and territoriality influence lethal aggression in mammals.
	﻿Figure 3﻿﻿ Lethal violence in humans.
	﻿Extended Data Table 1﻿﻿Outcome of the phylogenetic generalized linear model testing the effect of territoriality and social behaviour on the magnitude of lethal aggression in mammal species (n = 1,024 species).
	﻿Extended Data Table 2﻿﻿Outcome of the t-tests assessing difference between the inferred value of lethal violence at each of the chosen ancestral nodes in the mammalian phylogeny and the phylogenetic estimates of human lethal violence.
	﻿Extended Data Table 3﻿﻿Outcome of the binomial tests assessing difference between the observed lethal violence in human societies and the inferred lethal violence according to the phylogenetic analysis.
	Abstract




