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A B S T R A C T

Aim: The use of neural networks (NNs) is spreading to all areas of life, and Ecology is no exception. However, the 
data-hungry nature of NNs can leave out many small, valuable datasets. Here we show how to apply transfer 
learning to rescue small datasets that can be invaluable in understanding patterns of species co-occurrence.
Location: Semiarid plant communities in Spain and México.
Time period: 2016–2022.
Major taxa studied: Angiosperms.
Methods: Based on a large sample of plant species co-occurrence in vegetation patches in a semi-arid area of 
eastern Spain, we fit a generative artificial intelligence (AI) model that correctly reproduces which species live 
with which in these patches. Subsequently, we train the same type of model on two communities for which we 
only have smaller datasets (another semi-arid community in eastern Spain, and a tropical community in Mexico).
Results: When we transfer the knowledge learnt from the large dataset directly to the other two, the predictions 
improve for the community more similar to our reference one. As for the more dissimilar community, improving 
the accuracy of the transfer requires a further tuning of the model to the local data. In particular, the knowledge 
transferred relates primarily to species frequency and, to a lesser extent, to their phylogenetic relationships, 
which are known to be determinants of species interaction patterns.
Main conclusions: This AI-based approach can be performed for communities similar or not so similar to the 
reference community, opening the door to systematic transfer learning for accurate predictions on small datasets. 
Interestingly, this transfer operates by matching unrelated species between the origin and target datasets, 
implying that arbitrary datasets can then be transferred to, or even combined in order to augment each other, 
irrespective of the species involved, potentially allowing such models to be applied to a wide range of plant 
communities in different climates.

1. Introduction

Artificial intelligence (AI) is spreading to an increasing number of 
aspects of everyday life, including science Shen (2018). Ecology is no 
stranger to this trend, as new AI applications facilitate the understanding 
of entangled life Pichler and Hartig (2023), although not without the 
limits imposed by ecological complexity Lapeyrolerie and Boettiger 

(2023).
Comprehending the mechanisms behind species co-occurrence rep

resents a fundamental challenge within the field of ecology, given its 
pivotal role in the preservation of biodiversity Chesson (2000). Ecolo
gists have tried to explain how biodiversity is structured using infor
mation that might predict which species interact with each other 
Bascompte (2009). In particular, phylogenetic relatedness has been used 

* Corresponding author at: Centro de Investigaciones sobre Desertificacion -CIDE- (CSIC/UV/GV), Carretera Moncada - Náquera, Km. 4,5, 46113 Moncada, Spain.
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as a proxy for predicting who can live with whom under the assumption 
that closely-related species tend to behave similarly because they 
possess similar traits Morales-Castilla et al. (2015). However, a recent AI 
model has shown that many of the characteristics crucial for species 
survival (e.g., tolerance to abiotic conditions, resource requirements, 
competitive abilities, response to antagonists and mutualists or dispersal 
capacity) are not adequately captured by phylogeny while they are 
captured by the co-occurrences Siefert et al. (n.d.). This is because co- 
occurrence by itself can inform us on niche preferences as well as on 
the outcome of multiple ecological interactions.

Deep Neural Networks (NNs) have been used in related ecological 
applications to classify vegetation units based on species composition 
with ca. 80 % accuracy Černá and Chytrý (2005). Additionally, deep- 
learning models can predict vegetation temporal dynamics using 
climate data, as shown by Chen et al. (2021), who developed global 
gridded climate-vegetation models using monthly temperature and 
precipitation as inputs, with the normalized difference vegetation index 
(NDVI) representing vegetation greenness as the model output.

Species co-occurrences can be fitted with models that do not rely on 
NNs Harris (2016); Losapio et al. (2021). Although the mathematics 
behind such models may sound more familiar given the connection to 
the Lotka-Voltera equations and to Taylor series expansions, this very 
reliance on a specific functional shape limits their expressivity (i.e. their 
ability to fit arbitrarily complex non-linear functions) compared to Deep 
NNs. In the present article, we test whether a Deep NN (specifically a 
Generative AI model) trained on a larger plant co-occurrence dataset can 
still be applied to relatively small datasets, thanks to transfer learning.

In Hirn et al. (2022), a Generative AI model was proposed and 
applied to predict species co-occurrences in vegetation patches (i.e. 
clumps of plants from different specifies that grow in close proximity, 
but are well-separated from other such clumps/patches). Such patterns 
have been subsequently used to unravel the mechanisms behind the 
assembly of a plant community in South Eastern Spain. In that paper, 
two potential uses of Generative AI were suggested: 1) predicting the 
probabilities of already-observed patches under conditions different 
from those of the sampling, for instance to reconstruct successional 
trajectories, thereby guiding ecological restoration efforts in order to 
increase biodiversity, 2) predicting the probability of new, plausible 
vegetation patches that have not been seen in the training distribution 
because of limited sampling.

The present paper aims to overcome one of the limitations of the 
approach of Hirn et al. (2022), namely the fact that the accuracy of the 
method used in that paper depends on having datasets larger than those 
often available in the field of Ecology, limiting the applicability of these 
models in situations where sampling is costly and/or too time- 
consuming. Yet, we cannot afford to lose the information in small 
datasets, which contain valuable spatial and temporal information for 
the understanding of ecological processes. We therefore explore the use 
of AI to “rescue” information from these small datasets to understand the 
assembly processes of a particular community and help understand 
those of other communities Todman et al. (2023).

Transfer learning Baxter (1996); Caruana (1997); L. Pratt and Jen
nings (1996); L. Y. Pratt (1992) has been explicitly designed to reuse the 
knowledge acquired when training a model on a large dataset in order to 
apply it to a similar problem with a smaller dataset. More specifically, 
transfer learning uses parts of the training in one task for another one, 
saving up resources and requiring fewer observations. Transfer learning 
has been successfully performed to reconstruct the food web of Canadian 
mammals based on the trophic interactions observed in Europe Strydom 
et al. (2022). Although only 4% of the species were common between 
continents, the phylogenetic information served as a basis for success
fully transferring knowledge between the two systems, indicating that a 
common evolutionary pattern is assembling both trophic networks.

The authors of Strydom et al. (2022) only considered direct transfer: 
directly applying a model trained on European mammals, and applying 
it to Canadian mammals without further training. Here we would like to 

explore various approaches to transferring the knowledge gained from 
one community to another one. We want to do this in at least two ways: 
a) try different options beyond phylogenetic distance in order to match 
species between different communities, and b) further train the models 
(or part of them) on the target datasets after matching.

In the case of species co-occurrence, transfer learning can be 
explored by studying the performance of the AI models on a new dataset, 
i.e. observations in a new site or new observations in the same site. For 
example, it is possible to re-train only the final layers of neurons in a 
neural network while freezing up the initial layers, as proposed in Fre
gier and Gouray (2021). As this re-training requires smaller amounts of 
data, transfer learning can shortcut part of the costly process of col
lecting field observations. In fact, the more similar the new site is to the 
reference one, the smaller the amount of new data presumably required 
to reach a given level of accuracy on the new site. Conversely, cases in 
which transfer learning is found to require only small amounts of new 
data would indicate that the two sites share similar assembly rules which 
are broadly captured by the AI. A desirable property of an AI model is 
the transferability of its knowledge to new situations. Thus, not only 
ecologists could save an enormous amount of fieldwork required to feed 
the models but also, we can add a new value to past, small datasets.

Our main goal here we test the transferability of the co-occurrence AI 
model developed in a Spanish plant community sampled in 2019, to two 
different communities for which we only have smaller, older datasets, 
one with the same Mediterranean climate (La Unión in Southeastern 
Spain, sampled in 2015) and one with a different climate (San Juan Raya 
in Central Mexico, sampled in 2007). These communities have in com
mon that their vegetation grows in spatially delimited patches consti
tuted by a variable number of individuals growing in close association, 
but differ in soil type, among other discriminating features. As for their 
species composition, there are no common species between the Mexican 
community and the two Spanish ones, while some infrequent species are 
common between the two Spanish communities (see species lists in 
Supporting Information A.2).

More specifically, we pose three questions:

• Q1: Compared to training models directly on relatively small data
sets, is it possible to obtain better results by directly transferring a 
model trained on another (larger) dataset from a different plant 
community/location? This may obviously be dependent on the spe
cific communities and dataset size, but we are looking for a proof of 
principle.

• Q2: Is it possible to find a procedure that improves on phylogenetic 
matching in order to build a dictionary for direct transfer between 
communities?

• Q3: For our example datasets, does further training on the target 
community (fine-tuning) improve the accuracy as compared to direct 
transfer?

2. Materials and methods

Fig. 1 presents a conceptual summary of the various steps we 
describe below.

2.1. Datasets

We selected three plant communities: the community of reference 
with the largest dataset (i.e., the largest number of vegetation patches) 
where the AI model of Hirn et al. (2022) was developed (Petrer, Spain), 
another community in the same climate (La Unión, Spain, ca. 100 km 
away) and a tropical community (San Juan Raya, Mexico, ca. 9300 km 
away). All three communities are governed by plant facilitation and 
consist of patchy vegetation, where each patch is usually composed of 
multiple species growing in close association, but surrounded by bare 
soil matrix.

The Petrer community (South Eastern Spain, 38◦29ʹN; 0◦47ʹW) is a 
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semi-arid Mediterranean ecosystem with a dry hot summer, and an 
average temperature of 16◦C and a mean annual precipitation of 395 
mm. Vegetation is distributed in patches, composed mainly of cham
aephytes and tiny shrubs Sánchez-Martín et al. (2023) growing on 
limestone soils, see Fig. A2 in Supporting Information. 71 different 
species were recorded in that field sampling, see A.2.1 in Supporting 
Information.

La Unión community (South East Spain, 37◦36ʹN; 0◦50ʹW) has a very 
similar semi-arid Mediterranean climate with a dry hot summer, but is 
mostly composed of different species. Its mean annual temperature and 
precipitation are respectively 17.9◦C and 316 mm. It is located in 
abandoned mine tailings along a low-altitude coastal mountain range. 

Vegetation patches colonize these disturbed systems triggered by nurse 
plants including trees, shrubs, perennial grasses and dwarf shrubs 
Navarro-Cano et al. (2018). Mine tailings have artificial soils that are the 
result of the refining process, with high metal concentrations and elec
trical conductivity and very low organic matter Colin et al. (2019), see 
Fig. A3 in Supporting Information. The data shows 156 different species, 
of which 29 also appear in Petrer, see A.2.2 in Supporting Information.

The San Juan Raya community (East-central Mexico, 18◦19ʹN; 
97◦38ʹW) is composed of completely different species, and also has a 
different climate. While it is also a semi-arid ecosystem, rain there is 
concentrated during the hot summer. It is located in the Tehuacan- 
Cuicatlan Valley (Puebla state, Mexico), with an annual average rain

Fig. 1. Conceptual map depicting the various steps taken in the study, and the relations between them. a) Datasets: The reference community is the one with the 
largest dataset, while the target community has fewer observations. The datasets themselves consist of “barcodes”, i.e. ones and zeroes representing the presence/ 
absence of a given species in each patch. The species are ordered by frequency of occurrence, and only the 16 most frequent species are kept. b) Train without 
transfer: The AI model consists of a Variational Autoencoder (VAE) whose neural networks can be trained both on reference and target datasets, but the accuracy 
tends to increase with dataset size, and so the accuracy of a model trained on the (smaller) target dataset may be sub-par. c) Direct transfer: One can try to apply the 
model trained on the reference dataset directly to the target dataset, without further training. However, the success of this approach depends on designing a matching 
procedure between species in both communities, i.e. between rows in the barcodes of both datasets. In this study, we tested matching by phylogeny, by frequency, 
and interpolations in-between. d) Tuned transfer: One can also take the model that has already been trained on the reference dataset, and further train it on the target 
dataset. Since this tuning will modify the functions inside the model, we expect the exact species matching outside the network to be less relevant. In practice, we 
used the simplest species matching based on frequencies.
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fall of 380 mm and mean annual temperature of 21◦C. The soils are deep 
and the lithology is made up of sandstones and the vegetation follows a 
patchy structure with xeric shrublands associated with columnar cacti 
Valiente-Banuet and Verdú (2008), see Fig. A4 in Supporting Informa
tion. The data shows 71 different species, none of which appear in the 
Petrer data, see A.2.3 in Supporting Information.

As was done in Hirn et al. (2022), we work with species presence/ 
absence instead of abundance: this binary response variable represents 
the final outcome of complex interactions. To further simplify the data, 
we do not consider as patches the cases where only one species is pre
sent, since we are mostly interested in the interaction between species, 
not in the overall frequency of single species. Note that we define 
(relative) frequency as the proportion of patches in which a given spe
cies appears. Further, we also avoid very infrequent species: out of the 
dozens of species observed in each plant community (see Table 1), some 
only appear in a handful of patches, which is unlikely to provide enough 
replicates for our models to learn any patterns. In fact, for the three 
communities we consider, going beyond the 16 most frequent species 
would already entail species that appear in fewer than 10% of patches, 
see Fig. A5 in Supporting Information. For each community, we there
fore arbitrarily limit ourselves to the 16 most frequent species and 
disregard the others. After this pruning, the final dataset used had fewer 
patches than the original data, see 1.

The plant species composition was recorded for 2635 vegetation 
patches in Petrer, 879 in La Unión and 892 in San Juan Raya (Table 1; 
see details on sampling procedures in Valiente-Banuet and Verdú (2008)
for San Juan Raya, Navarro-Cano et al. (2018) for La Unión and Sánchez- 
Martín et al. (2023) for Petrer). Fig. A5 displays the relative frequency of 
occurrence of the 16 most common species in each community, as well 
as the distribution of the number of different species per patch. It should 
be noted that, of these 16 most common species in each community, 
none are shared between communities, i.e. even the two communities in 
Southeastern Spain do not share any of their 16 most common species, 
see Table A1. A more subjective way to appreciate the difference be
tween the three communities is provided by the photographs Figs. A2, 
A3, A4. In our case, we transferred models from Petrer to the other two 
locations. The reason is that Petrer is the largest of our three datasets 
(2130 vegetation patches for the 16 species case).

2.2. Training without transfer

Following the steps in Hirn et al. (2022), we built a Generative AI 
model, specifically a Variational AutoEncoder (VAE) Kingma and 
Welling (2013), which takes inputs from the real data distribution and 
feeds them through an encoder neural network outputting a multivariate 
Gaussian distribution. A decoder then takes a sample point from the 
multivariate Gaussian (i.e. a point in the so-called latent space), and 
transforms it into the final output, i.e. some synthetic data that should 
resemble the input once the model has been trained.

The inputs are the patches themselves, with ones and zeroes repre
senting the presence/absence of each species, with the default being that 
the species are ordered by frequency of occurrence for two main prac
tical reasons: i) we do expect species frequency to be important in pre
dicting interactions, and ii) with this choice, we can easily reduce or 
increase the number of species under consideration without affecting the 
order of species.

The training process for the VAE adjusts the model parameters in 

order to minimize a loss function. As is standard for a VAE, we took the 
loss function to be the sum of two contributions: i) The Kullback-Leibler 
(KL) divergence in latent space between the target distribution (a 
multidimensional unit Gaussian) and the data’s distribution as encoded 
in the latent space–this KL contribution to the loss acts as a regularizer 
for the neural network–, and ii) A reconstruction error measuring the 
mismatch between the input and the final output. For the present binary 
classification task, we use the standard binary cross-entropy. As for the 
training procedure, we selected hyperparameters that enabled the NN to 
learn quickly, and kept those fixed for all the results of this paper: see 
A.3 for technical details about the model.

As a metric to compare models, we report the patch error rate, 
defined as the proportion of vegetation patches that are not perfectly 
reproduced by the VAE.

2.3. Direct transfer (Q1 and Q2)

After training an initial model on Petrer data, we expect that the 
model has learnt some of the basic rules governing species co- 
occurrence, and that a fraction of these rules may apply to new plant 
communities. The simplest way to test if any knowledge can be trans
ferred from Peter to the other communities is to take models trained on 
Petrer and apply them directly to the datasets of La Unión and San Juan 
Raya, an approach often called zero-shot learning in computer vision 
Chang et al. (2008); Lampert et al. (2009); Larochelle et al. (2008); 
Palatucci et al. (2009).

Yet, before we could transfer from a model trained in Petrer to 
another plant community, we needed to decide how to match the species 
between the initial community and the target one, i.e. how to build the 
dictionary that translates from a given species in Petrer, to a species in 
another community.

One idea to build such a dictionary would be to use the logic of 
Strydom et al. (2022) and match species according to phylogenetic 
distance. Yet we also wanted to compare this approach with options 
(Q2), for instance with a dictionary that directly matches the species by 
order of frequency, since this is the way the species are ordered by 
default for each community separately.

In addition, to establish a baseline to compare specific matching 
dictionaries, we considered random matching of species. Yet, there are 
16! ≃ 2⋅1013 possible ways to sort 16 species. We chose a random 
sample of 60 possible such dictionaries to apply Petrer models to the two 
other communities, and computed the error rates in the target location. 
This gave us an estimate of the range of expected error rates from this 
direct transfer with random dictionaries. We next compared this results 
with three different approaches to build a dictionary which we first 
describe briefly here, then detail in the next paragraphs. Our three ap
proaches to build dictionaries are:

• 1) Using phylogeny, i.e. additional biological information,
• 2) Simply matching species between the two communities in order of 

their relative frequencies,
• 3) A number of intermediate possibilities to interpolate between the 

purely phylogenic dictionary and the purely frequency-based 
dictionary.

For option 1), i.e. the dictionary by phylogenetic distance Strydom 
et al. (2022), we followed an iterative procedure: we selected the most 

Table 1 
Number of patches and species in the original data, and after restriction to the 16 most common species, for each of the three sampling locations.

Original data Original data Original data Data restricted to 16 main species Data restricted to 16 main species

Number of patches Number of species Species per patch (mean ± sd) Number of patches Species per patch (mean ± sd)

Petrer (Spain) 2635 82 3.53 ± 2.29 2130 3.23 ± 1.67
La Unión (Spain) 879 134 4.38 ± 4.51 498 3.31 ± 1.52
San Juan Raya (Mexico) 892 71 5.18 ± 2.37 840 4.25 ± 1.68
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frequent species in the target dataset (among those that had not yet been 
matched), and looked for its closest relative in the reference dataset. If 
we needed to break a tie, we chose the most frequent species in the 
reference dataset. We then repeated the process for the next most 
frequent species in the target dataset, until we exhausted all 16 species. 
This algorithm yields a unique matching between any pair of commu
nities, see Table A1. Phylogenetic distances were extracted from the 
phylogenetic tree constructed with the help of the ‘V.Phylomaker’ 
package in R (version 4.1.1), which contains a dated mega-tree of ca. 
75,000 species of all vascular plant families Jin and Qian (2019).

For option 2), i.e. the dictionary by frequency, we first matched the 
most frequent species in both communities, then the second most 
frequent ones, and so on, until the least frequent species in both 
communities.

For option 3), i.e. the combined options, we considered 17 cases, 
labeled by an index n varying form 0 to 16. We selected the n most 
common species, and matched those by frequency. The remaining 16 −

n species were then matched by phylognetic distance. The extreme cases 
(n = 0 and n = 16) reproduced options 1) and 2) respectively).

This served as a test (Q2) of whether phylogenetic information is 
relevant, whether it is more useful than relative frequencies, and 
allowed us to select the best matching procedure.

2.4. Tuned transfer (Q3)

We took models trained on the reference community, matched them 
to the target communities by frequency, and then trained them on the 
target community with the same hyperparameters described in A.3, 
including the learning rate, except that we kept the best model out of the 
first 50 epochs instead of 200, given that 50 epochs were more than 
enough for training to have converged when starting from a pre-trained 
model.

Note that this tuning of models is slightly different from fine-tuning 
as is commonly performed in computer vision, where a smaller learning 
rate is used, and some layers are either frozen altogether or are trained 
with a smaller training rate: here we did not freeze any layer, and 
instead directly updated the weights of the whole network with the same 
learning rate as during the initial training, as we did not detect any 
benefit from training slower. Data and code for all the above can be 
found at https://github.com/johanneshirn/eco_transfer

3. Results

3.1. Training without transfer

We obtained a median patch error rate of 30% in La Unión (trained 
on 249 patches), compared to 20% in San Juan Raya (420 training 
patches) and 7% in Petrer (1065 training patches). When comparing the 
accuracy of the models trained in different plant communities, it is 
important to remember that error rates may depend not only on dataset 
size, but also on the contents of the dataset, see Fig. 2: the three plant 
communities we studied differ in the species identity, richness and 
relative frequencies, see Tables 1, A1 and Fig. A5.

3.2. Direct transfer (Q1 and Q2)

We now focus on transferring knowledge from Petrer to La Unión and 
San Juan Raya communities. As compared to the baseline (random 
matching dictionary between species of each community), a matching 
based on phylogenetic information reduces the error rate on average 
when transferring from Petrer to La Unión, see upper panel of Fig. 3. Not 
so in San Juan Raya, where the phylogenetic matching does not provide 
an improvement over the baseline on average (lower panel of Fig. 3). 
While this may sound surprising, it simply implies that there are better 
ways to build a matching dictionary than using pure phylogenetic dis
tance. The height of the boxes in the left part of the plot of Fig. 3 also 

provides us with an indication of how much of an improvement other 
dictionaries might provide.

In our case, we already mentioned in 2.3 that we would consider 
other alternatives beyond a purely phylogenetic dictionary: a frequency 
based one, and a range of dictionaries interpolating between purely 
phylogeny-based and purely frequency-based. Indeed, we can see from 
Fig. 3 that in both locations, a matching that also includes some infor
mation about species frequencies in addition to phylogenetic informa
tion provides a better basis for transferring the information from the 
original community (Petrer) to the target ones (La Unión, San Juan 
Raya). Note however, that the relative importance of phylogeny and 
frequency in the matching, as well as the location of the optimum, differ 
between our two target datasets.

We therefore conclude that including frequency information when 
building the species dictionary between plant communities can improve 
the success rate of direct transfer as compare to using only phylogenetic 
distance (Q2). Also, we find that direct transfer worked better between 
climatically-similar ecosystems (i.e. from Petrer to La Unión led to a 
median patch error rate of 13%) than between more dissimilar ecosys
tems (i.e. transferring from Petrer to San Juan Raya led to a median 
patch error rate of 23%) (see Fig. 4). Fig. 4 shows that directly trans
ferring a model may not always yield an improvement compared to 
directly training on the target dataset, so the answer to (Q1) depends on 
the specific case (i.e. which plant communities are considered on either 
side of the transfer, as well as the sizes of the respective datasets.

3.3. Tuned transfer (Q3)

Tuning the Petrer model to local data improves the accuracy 
compared to direct transfer (Q3), see Fig. 4. When tuning that Petrer 
model to local data in La Unión or San Juan Raya, we train the model on 
local data, as when training without transfer: the difference lies in the 
starting point (initialization of the model parameters). Instead of start
ing from a random initialization of the network, in the tuning case we 
start from a model that has already been trained on the reference 
community data (Petrer), which we match to the target community 
using frequencies (for simplicity). Fine-tuning in the closely-related 
community (La Unión) led to patch error rates around 7% while such 
a rate was 12% in the more dissimilar community (San Juan Raya), see 
Fig. 4.

4. Discussion

The explosion of AI methods is leading ecologists to search for 
complex patterns that were previously hard to detect Borowiec et al. 
(2022). To fully achieve the benefits of AI, big datasets are necessary 
Perry et al. (2022). This might not be a problem in areas where gigabytes 
of data are publicly available, such as those related to climate, satellite 

Petrer
(1065 training patches)

La Union
(249 training patches)

San Juan Raya
(420 training patches)

0% 10% 20% 30% 40%
Patch error rate

Fig. 2. Validation error rates for models trained without transfer on the data
sets from the three locations.
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matching by pure frequency results in an error rate that is not improved by any combination of frequency and phylogeny.

La Union San Juan Raya

0% 10% 20% 30% 40% 0% 10% 20% 30% 40%

Fine−tuning Petrer model

Direct transfer from Petrer

Training without transfer

Patch error rate

Fig. 4. Error rates on two target datasets for models trained: 1. without transfer, i.e. only on the data from the sampling location they are applied to, 2. on the Petrer 
data only, then transferred directly to the target data using the dictionary by frequencies, or 3. on the Petrer data first, then further trained on local data.
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imagery or genetic sequences Peters et al. (2014). Yet field ecology, 
despite the advances in the publication of open-access datasets, is 
behind these disciplines in terms of sheer quantity of data, partly 
because of the difficulty of compiling large datasets under field condi
tions Liu et al. (2018). Here we have shown that smaller datasets (fewer 
than 1000 patches for the present communities) can benefit from the AI 
revolution if combined with a larger dataset (more that 2000 patches in 
the present case) and an adequate application of transfer learning.

In particular, we have shown that taking a model trained in a com
munity of reference (Petrer) and tuning it to another community (La 
Unión or San Juan Raya) gives us the best of both worlds. Firstly, as 
compared to direct transfer, it allows for the possibility of including 
some knowledge from the target community, and how its pattern of 
species co-occurrence differ from those of the reference community. 
Secondly, as compared to training on the target community but starting 
from a random initialization of the neural network weights, it allows us 
to start from an ecologically sound set of parameters that already re
produces a plausible distribution of occurrence frequencies and species 
co-occurrence. Although knowledge transfer worked very well in both 
communities (i.e., correctly reproduced the species composition of most 
of the vegetation patches), it performed better in the community taxo
nomically and climatically more similar to the reference community. 
Altogether, these facts indicate that there are similarities in the rules of 
species co-occurrence, but, at the same time, shows the existence of 
idiosyncratic particularities in each community that our AI model has 
not yet learned.

The first question ecologists should ask is how large must be the field 
sampling for AI to achieve a reasonable accuracy. Our data on plant co- 
occurrence obtained in the community of reference show that the model 
reaches its minimum error rate (10 %) with 900 patches. This is to say 
that a model constructed with that amount of data will correctly 
reproduce the species composition of 90% of the patches. Below this 
sample size, the error rate of the model increases steeply. Note that this 
number should not be taken as a universal law, given that the accuracy 
of the model will depend on the biological complexity of the dataset.

Caution is needed when applying AI models to small datasets because 
overfitting could cause the impression that the model has perfectly 
learnt the patterns behind the data and can be used to predict new, 
unsampled, combinations of species. However, overfit models “memo
rize” the whole data, and therefore do not perform well on new, unob
served data Pichler and Hartig (2023). In our study, we guarded against 
this pitfall of overfitting by using a validation set and a standard early- 
stopping procedure. We are thus confident that our models could 
generalize their learning to other plant communities.

Using AI to “rescue” small datasets (sensu Christin et al. (2019)), we 
have shown that the knowledge about species co-occurrence obtained in 
our well-sampled plant community in Petrer, was successfully trans
ferred to two other communities with smaller datasets. These datasets 
were not large enough for us to train a model without transfer with good 
accuracy, as they yielded error rates of 20% and 30% respectively on La 
Unión and San Juan Raya. However, after transferring the plant species 
co-occurrence patterns learnt in Petrer and tuning the model to local 
data, we could reduce the error rates to 7% and 12% respectively.

What were the co-occurrence patterns learnt in Petrer that were 
successfully transferred to the other two communities? To transfer 
optimally to a new community, we found that we needed to establish a 
matching of species that took into account species frequency in both 
communities, and possibly phylogenetic information in the closely- 
related community. This feature is consistent with other plant-plant 
interaction studies in which the concurrence of both variables 
improved the likelihood of models explaining which species interact 
with whom Alcántara et al. (2019); Verdú and Valiente-Banuet (2011)). 
The rationale of this result is that phylogenetically-related species tend 
to behave similarly and therefore we could predict the outcome of in
teractions based on the phylogenetic position of each species. However, 
even more than phylogenetic relatedness, the relative frequency of 

species is the main determinant of most of the ecological interactions 
Vázquez et al. (2007) because frequency strongly determines the prob
ability of co-occurrence for interacting species.

We have successfully transferred the ecological patterns learnt from 
plant species growing on limestone soils in a semi-arid dryland from 
South Eastern Spain to two communities that are also governed by plant 
facilitation but different climate and taxonomy. This outcome is very 
promising because it suggests that common rules are behind the as
sembly of communities. Therefore, transfer learning could be very useful 
in ecology to continue building on the shoulders of giants.

While there may be ways to get around them, two of the current 
limitations of our method are a) the inability to deal with infrequent 
species, and b) the requirement of defining in advance the number of 
species to be taken into account. As for the ability to transfer co- 
occurrence models to other plant communities, what we have pre
sented here a first proof of principle: next steps would involve testing 
whether the idea can be applied to a wider range of ecosystems.

One possible avenue for future research would be to assemble a 
meta-dataset by joining together datasets from a large number of com
munities to train a general model. Such a model might then be applied 
via direct transfer to a wide variety of communities. Another promising 
application of the present technique of modeling interactions between 
species would be for studies of Dark Diversity. In that case, the unit of 
data would not be a single patch, but a community, and one would train 
the model to predict if a given species could be viable in a given com
munity, even though it has not been observed there yet.
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