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Simple Summary: The increasing biological complexity in evolution poses a challenge
in evolutionary biology due to the difficulty of defining and measuring such organism
complexity. This can be approximated in several ways, for example, by determining the
number of parts that compose it, by the degree of organization of its hierarchical levels
of organization, and by assessing the informational content of its genome. In this work,
we approached organism complexity via the latter approach using two metrics: Genomic
Signature (GS) and Biobit (BB). We determined the values of these metrics in endosymbiont
bacteria versus phylogenetically related free-living bacteria. Endosymbiont bacteria suffer
from a process of genetic erosion and the degradation of their genome that would define
them, a priori, as less complex than their free-living relatives. We verified that the GS and
BB metrics show lower values in endosymbionts than in their free-living relatives, giving
support to the thesis that these metrics reflect the genomic (and biological) complexity of
the organisms.

Abstract: Endosymbiosis can be considered a regressive or degenerative evolutionary
process characterized at the genomic level by genome erosion and degeneration due to
high mutational pressure toward AT (adenine and thymine) bases. The genomic and
biological complexity of endosymbionts must be lower than that of the free-living bacteria
from which they evolved. In the present work, we contrasted whether two proposed
metrics for measuring genomic complexity in both types of bacteria, GS and BB, reflect
their complexity, expecting higher values in free-living bacteria than in endosymbionts. On
the other hand, we endeavored to delve into the factors that contribute to the reduction in
metric values in endosymbionts, as well as their eventual relationship with six genomic
parameters associated with functionality. This study aimed to test the robustness of these
proposed metrics in a well-known biological scenario, such as the endosymbiosis process.
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1. Introduction

The trend toward increasing biological complexity in biological evolution is one of the
most challenging issues in evolutionary biology, due in part to the lack of a comprehensive
definition of “biological complexity” and its measurement and universality. For instance,
we can state that an organism is more complex than another if it has more parts, a higher
hierarchical organization, or higher informational content in the genome [1-4], and we
approach biological complexity by referring to the latter. Assuming the genome is the
information unit of living organisms and a registry of the evolutionary history inherited
over generations, it can indicate the organism’s biological complexity [1,5-9].

A hypothetical approach to characterizing genome complexity is to use metrics that can
generally indicate the amount of information in a genome [5,9,10]. In this study, we use two
metrics: Genomic Signature (GS) and Biobit (BB). GS is a k-mer-based metric summarizing
the k-mer overrepresentation regarding its expected value [9,11]. BB is a genome metric
that combines the genome’s entropic and anti-entropic components, considering its k-mer
entropy [9,12]. Although both metrics depend on the distribution of the frequency table of
the k-mers present in the genome, they are based on different k-mer sizes and theoretical
approaches, making the analysis of both metrics complementary. Both metrics analyze
genome complexity via different approaches to determine how much a genome differs
from a random genome.

The evolution of endosymbiosis may be an excellent context to test whether genome
complexity metrics do indeed reflect biological complexity. Endosymbiosis leads to gene
loss, a reduction in genome size, and increasing randomness [13,14], so it should be
expected that the genomes of endosymbionts would have different metrics to the free-
living bacteria from which they are evolutionarily derived. From a functional point of
view, what is observed in the evolution of endosymbiosis is a systematic loss of genes until
entities are left with minimal genomes [13,14]. When a symbiotic relation is established, the
first genes to be lost are those related to mobility and those involved in metabolic pathways
for products that can be acquired from the host, and the symbiont has transporters for
them [14,15]; from this moment on, a cascade of genome reduction ensues. The process of
evolution toward endosymbiosis might be an excellent context for studying the behavior of
any complexity measure, including genomic complexity metrics. We expect these measures
to yield lower values as endosymbionts become more extreme than those in the free-living
bacteria they originate from. Previously, Moya et al. [9] used the GS and BB metrics in
cyanobacterial genomes, concluding that both metrics could measure complexity. However,
there was a lack of understanding of these measures in a regressive event. This study tested
whether GS and BB metrics change their values in bacterial endosymbionts to free-living
bacteria, thus supporting the genome metric complexity hypothesis.

2. Materials and Methods
2.1. Genome Set and Species Phylogeny

We selected 78 fully sequenced genomes from endosymbiont organisms of three
bacterial clades: Bacteroidota, Oceanospirillales, and Enterobacterales. To compare them
and assess the trend to the endosymbiosis analyses, we added 72 free-living bacteria to root
each of these clades of endosymbionts. We differentiate both lifestyles with the keyword
‘habitat’. The 19 endosymbiont Bacteroidetes were rooted with 20 free-living Cytophagales
species, 15 endosymbionts of Oceanospirillales species were rooted with 15 free-living
species from the same clade, and finally, we rooted the 44 Enterobacterales with 37 free-
living Alteromonadales. In that last case, we used fewer free-living species due to the
sequencing bias toward pathogens and parasites and the assembly quality. To root the tree,
we used seven Fusobacteria species (Tables S1 and S2). Maximum likelihood phylogenetic
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trees using a concatenated alignment of 165 and 23S rRNA genes (3981 positions) and 27
conserved proteins (alignment supermatrix with 4102 positions) are shown in Figure S1 and
Figure 1. The rRNA tree scored a mean support of 95.04% based on ultrafast bootstrap with
4000 replicates [16], whereas the 27 ribosomal proteins supermatrix tree scored a 95.44%
mean support.
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Figure 1. The phylogenetic tree used a concatenated alignment of 27 conserved protein domains. It
was inferred using IQ-TREE v2.1.3 under the LG + F + I + G4 model with 4000 ultrafast bootstrap
replicates. Dots in branches show support values according to the legend. Species whose names are
colored red are endosymbionts, and those in black are free-living. The endosymbionts marked with a

Bacteroidota

red square are facultative, while the rest are obligate.

We reconstructed two trees: one from a 16S and 23S rRNA sequence supermatrix,
and another from a supermatrix comprising a set of 27 conserved protein domains. The
rRNAs were retrieved directly from the genomes using barrnap v0.9 “https://github.com/
tseemann/barrnap (accessed on 17 March 2025)”. Barrnap did not detect four 16S sequences
and one 23S sequence. These sequences were manually extracted from the annotation
files. To reconstruct a protein supermatrix, we downloaded the alignment profiles from the
PFAM database and performed hidden Markov model (HMM) searches [17] over all the


https://github.com/tseemann/barrnap
https://github.com/tseemann/barrnap

Biology 2025, 14, 338

4of 14

protein sets of the studied genomes downloaded from the Genome Taxonomy Database
(GTDB) [18]. Finally, we obtained those proteins covering more than 75% of species (more
than 150 species) and manually removed the possible paralogous sequences (Table S3).
We independently aligned the three rRNAs and conserved protein domain sequences
using MAFFT-L-INS-i v7.490 [19]. We then trimmed the aligned sequences with trimAl
v1.4.15 [20] using the gappyout option. Once aligned and trimmed, the sequences of each
set (rRNAs and protein domains) were concatenated, and they were used to infer the
species tree. Phylogenies were inferred using IQ-TREE v2.1.3 [21], and the model was
selected using ModelFinder [22]. We restricted the models to two sets: JC, HKY, K2P, GTR,
and SYM for the rRNA concatenated alignment, and WAG, JTT, LG, and JTTDCMut for the
conserved protein concatenated alignment. The robustness of the trees was assessed with
4000 ultrafast bootstrap replicates [16].

2.2. Genomic Metrics and Parameter Calculation

For each genome, we computed two genome metrics: GS and BB (see the following
sections for details). We also retrieved six genomic parameters from the GFF (annotation
file that describes DNA, RNA, and protein sequences) files linked to each genome (number
of CDSs, number of genes, number of rRNAs, gene mean length, genome length, and
GC content) and added the percentage of hapaxes. A hapax is defined as a sequence
appearing just once in a genome, or in this case, a k-mer with an absolute frequency of 1
in the frequency table of the k-mers of a genome, for a given value of k. We computed the
percentage of hapaxes to the total number of k-mers.

2.3. Genome Signature (GS)

The GS metric focuses on the k-mer content of a given genome [9]. For an alphabet
of four characters, as DNA, and defining a word length of k characters, we can obtain a
maximum of 4¥ words (k-mers). Then, the expected occurrence value of every k-mer is

EV = (Thum/4),

where 7; is the total number of k-mers found in the genome. For a specific value of k, a
value of GS (GSy) can be calculated as

1

4k
£

4k
GSk: -Z|ni—EV|.
i=1

n; — EV serves as the mean centering, with n; being the number of k-mers found for a
specific sequence, and the final value is divided by

4k
Zj:l n;.

In this way, genomes of different sizes can be compared. A random genome of the
same size and base composition as the given genome is first created to obtain the optimum
value of k for a given genome. GSy is then calculated on the provided genome (GS,) and
the random genome (GS;), starting from k = 2, and GS; is subtracted from GS, to remove
random noise from the metric to obtain a preliminary value of GS (GSy).

GSp = GSg — GS;.

Finally, we repeat the procedure, increasing the value of k up to 16. The GS value for
that genome is the maximum value obtained for GS,,.
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2.4. Biobit (BB)

The BB metric is a logistic map that balances a genome’s entropic and anti-entropic
components [12]. BB compares the true genome with a random equifrequent one with
the same length. First, the k-mers yielding the maximum entropy of real and random
equifrequent genomes are calculated and compared. The entropy of a genome of length
G (Ezr(g)) takes a value between the minimum (logy(G), denoted L(G)) and the maximum
(2L(G)). The entropic (E(G) = Ez Gy — L(G)) and anti-entropic (A(G) = 2L(G) — Ey;(g))
components of the genome are then calculated, and then E(G) + A(G) = L(G). These elements
can be combined, nonlinearly, by

3
b8(G) = /1(0) [ 1ie) (1-25(g )
2.5. Statistical Analyses

We performed a correlation analysis between all the genomic variables and the com-
plexity indexes retrieved. This analysis was performed to assess what variables may be
affecting each of the metric values and to evaluate if any of the metrics indicate functionality.
Phylogenetically informed correlations were performed using an in-house function with
the variance—covariance matrix, calculating Pagel’s lambda [23,24] for each pair of traits
calculated using the phytools v2.1-1 [25] R package. This matrix was converted to correla-
tions between traits matrix with the stats R package “https://www.r-project.org/ (accessed
on 17 March 2025)”. Finally, t values for each correlation value r were obtained using the

formula t = rv/(n —2)/(1 —r2), and a p-value was derived from a t-student distribution
with n — 2 degrees of freedom. The p-values were corrected via the Holm-Bonferroni
method [26] to control the family-wise error rate (FWER).

We used two-sample comparisons to contrast the differences between free-living and
endosymbiont organisms in each variable. We applied phylANOVA [23] to consider the
phylogenetic relationships among lineages. The same dataset has also been used to assess
a principal component analysis (PCA) to further investigate the effect of and relationship
between the genomics variables on and between the complexity indexes and to assess which
variables better characterize the differences between the samples. We used a correlation
matrix to perform the PCA, as the scales of the variables were very different. The PCA
was phylogenetically informed by in-house functions using phytools, calculating Pagel’s
lambda for the whole matrix [23,24].

2.6. Phylogenetic Signal

Pagel’s lambda was used to phylogenetically inform correlations and PCAs. The
phylogenetic signal of each trait in the entire tree and the three clades was analyzed
using Blomberg’s K [27]. When K is significantly different from zero, the trait shows a
phylogenetic signal; that is, the trait resembles more in closer species than expected by
chance. A robust phylogenetic signal is assumed when K > 1 since K =1 is the predicted
value under Brownian evolution.

3. Results and Discussion
3.1. Phylogenetic Analyses

To analyze the endosymbiosis phylogenetic transition, we first selected 150 bacte-
rial genomes, 78 of which are from bacterial endosymbionts and the other 72 from free-
living bacteria (Tables S1 and S2). These free-living bacteria draw the evolutionary path
to endosymbiosis in three main lineages: Bacteroidota phylum, Enterobacterales, and
Oceanospirillales orders. We used seven Fusobacteria species to root the entire tree. As
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indicated, the transition to endosymbiosis was assessed using free-living relatives for each
lineage. As expected, the Oceanospirillales and Enterobacterales form a sister clade of
the Bacteroidota. The internal topology of each group differs between rRNA and protein
trees. For the rRNA tree (Figure S1), some free-living Oceanospirillales are in the root of
Proteobacteria, and others are placed in the root of the Alteromonadales and Enterobac-
terales clade. Despite this topology, the protein supermatrix tree (Figure 1) resolves these
arrangements better, and the three groups are correctly clustered, following previously
reported topologies [17,28]. The protein supermatrix tree was thus used for the analysis
where a tree was needed.

3.2. Phylogenetic Signal

Almost all phylogenetic signals of all the study traits across the whole tree, and in
the three clades where endosymbiotic events occurred (Figure S2 and Table S4), were
significant. None of the phylogenetic signals were stronger than Brownian evolution (i.e.,
K > 1) in the whole tree or the Enterobacterales clade. However, some traits with K >
1 were found in the Oceanospirillales (number of genes and CDS, genome length, and
GC content) and Bacteroidota (GC content and GS) clades. Taking Brownian motion as
a reference, K values greater than 1 indicate more variance among clades than expected
by chance. In contrast, values lower than 1 indicate greater variance within clades than
expected by chance. When studying the differences in distribution for many of the traits
between endosymbionts and free-living organisms (Figure 2), the greater differences seem
to correlate with greater values of K, which would make sense as the difference among the
clades is greater than expected.
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Figure 2. Boxplots of each trait for free-living and endosymbiont genomes in the whole tree. Stars
indicate the statistical significance of the mean based on the phylogenetically informed test.
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3.3. Metrics, Genome Parameters, and Phylogenetic Correlations

Table S5 shows the values of the metrics and parameters calculated (from now on
called traits when referring to both). To assess if both metrics indicate functionality, we
performed phylogenetic correlation analyses concerning the genome parameters for the
whole tree and the three lineages, respectively (Figure 3). As can be observed, the GS and
GC content show a moderate positive (0.62) relationship in the entire tree (Figure 3a) and in
the Bacteroidota clade (0.63) (Figure 3d), becoming stronger in the Enterobacterales clade
(0.72) (Figure 3b). For BB, the only correlation with an absolute coefficient greater than
0.85 is with the percentage of hapaxes, which holds in every lineage. Nevertheless, for the
Bacteroidota and Oceanospirillales (Figure 3c,d), many correlations were not statistically
significant, possibly due to the lower number of taxa involved.
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Figure 3. Phylogenetic correlation plots for (a) the whole tree, (b) the Enterobacterales, (c) the
Oceanospirillales, and (d) the Bacteroidota clades. Crosses indicate statistically non-significant
correlation values, and the correlation value is shown in color according to the legend.
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3.4. Principal Component Analysis of Traits That Discriminate Between Bacteria Lifestyles

The principal component analysis (PCA) of all the traits (metrics and parameters)
reveals that these traits discriminate between the habitats of the organisms (Figure 4). For
all the bacteria studied (Figure 4a), the first component can almost distinguish between free-
living and endosymbiont organisms independently. For the calculation of this component,
the more important variables are the number of CDSs, number of genes, genome length,
and percentage of hapaxes. For the Enterobacterales lineage (Figure 4b), three clusters are
observed, with the free-living organisms being the ones in the center. When analyzing the
Oceanospirillales and Bacteroidota lineages, the first component is enough to discriminate
between the lifestyles (Figure 4c,d).
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Figure 4. Phylogenetic-informed principal component analysis (PCA) of (a) the entire tree, (b)
Enterobacterales, (c) Oceanospirillales, and (d) Bacteroidota clade. Arrows show the loadings for
each variable, and the points represent the genomes; their color shows the lifestyle of the organisms

according to the legend.

3.5. Genomic Base Composition Drives the GS and BB Values

From the results of the phylogenetic correlations, regarding the comparison of GC
content versus the value of GS, we obtained a moderate positive relationship in most of
the clades. Analyzing this in detail, we represented the correlation for all the genomes
(Figure 5). As can be observed, there is a quadratic correlation pattern where the maximum
value of GS corresponds to the genomes with a GC content near 50%. When the values of
GC content decrease or grow by around 50%, the GS metric values always tend to decrease.
This decrease in the GS metric with extreme GC content values indicates that the metric
may be related to the randomness of the genome sequence, as a genome with equiprobable
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base frequencies is more likely to have an even distribution of k-mers. A genome with
uniform base frequencies would lead to a more random genome (maximum GS) than one
with a biased nucleotide base composition, where the probability of specific arrangements
of nucleotide bases of length k would be higher.

Endosymbiont 4  Free-living
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Figure 5. Plot representing the values of Genomic Signature against GC content. Values in red
correspond to endosymbionts, while values in blue correspond to the free-living organisms.

GS is a measure based on the overrepresentation and underrepresentation of the
k-mers. More homogeneous genomes with a high number of nucleotide base pairs, such as
A and T in the case of endosymbionts, will thus favor the overrepresentation of AT-rich
k-mers, which will result in an uneven distribution of the k-mer frequency and, thus, in
higher 7; values. Consequently, n; >> EV produces an increase in GSq (see the GS equation
in methods). Otherwise, genomes with equal proportions of nucleotide bases (GC content
around 50%) will provide an even k-mer distribution, resulting in #; values closer to their
EV, approximating the term |n; — EV| to 0, and leading to lower GS¢ values. Why then is the
opposite behavior observed in Figure 5? This is due to the effect of GSr on the calculation of
the metric. In the genomes of the endosymbionts, there is an overrepresentation of AT-rich
k-mers, and considering that with GS, we are working with relatively small k values, which
makes the frequency tables of the given genome and the random genome quite similar in
distribution. The values of GS; and GS; are far more similar the further away the given
genome is from a 50% GC content. The representation of GS, and GS, against GC content
is shown in Figure S3, supporting the presented idea. We see this mathematical reasoning
in the data where we can observe the peak in Figure 5 occurring strictly at a GC content
of 50%. Uneven k-mer distributions due to GC content then decrease the GS value. This
peak is the reason behind the linear correlation values between both traits, but as shown
here, they are closely related. When we computed a quadratic regression with the data, we
obtained a multiple R-squared value of 0.7707 with an adjusted R-squared values of 0.7676,
showing a high quadratic correlation.

We also observed that the percentage of hapaxes is strongly positively correlated in
all the clades. When analyzing BB, we then represented the percentage of hapaxes versus
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the value of BB to observe how these unique k-mers’ presence may be driving the metric
(Figure 6). We can observe a significant negative Pearson correlation of —0.89, so the
percentage of hapaxes may influence the metric such that the higher the number of k-mers
appearing once, the lower the metric value. That is also consistent with the metric principles
because, in random genomes, all k-mers should be hapaxes [12]. We also observed seven
endosymbiont outliers in the BB metric (Figure 2), allowing for us to further analyze these
organisms’ nature and metrics. It is worth noticing that these outliers tend to present higher
or similar values to the free-living bacteria with the highest BB value. However, why is BB
so high in the outliers?

Endosymbiont 4  Free-living

>

AA

85 90 95 100
Hapax %

Figure 6. Plot representing the values of BB against the percentage of hapaxes. Values in red
correspond to endosymbionts, while values in blue correspond to the free-living organisms.

3.6. Outlier Analyses of BB

The highest value of BB corresponds to Candidatus Sodalis pierantonius str. SOPE,
a Sitophilus oryzae primary endosymbiont [29]. The genome of this organism presents a
high percentage of mobile elements, especially insertion sequences (ISs), typically present
at the first stages of the endosymbiont process, as is the case in this endosymbiont. The
high percentage of these repetitive mobile elements decreases the percentage of hapaxes,
favoring the homogeneity of the genome, and seems to increase the BB value.

The next highest value of BB corresponds to Candidatus Hamiltonella defensa 5AT,
a secondary endosymbiont of Acyrthosiphon pisum [30]. This genome is also colonized by
mobile elements that constitute around 20% of the genome, leading to a decrease in the
percentage of hapaxes and an increase in the metric.

The next organism with a high BB value is Sodalis glossinidius str. ‘Morsitans’, a
secondary endosymbiont of Glossina morsitans [31]. In this case, a moderate percentage of
ISs (around 2.5% of the genome) was observed, possibly linked to a recent evolutionary link
between the endosymbiont and the host [32]. The presence of these sequences decreases
the percentage of hapaxes as before, increasing the metric value. In those three previous
examples, we observed some of the highest percentages of GC in our endosymbiont dataset
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(more than 40%) and also some of the largest endosymbiont genomes in our dataset,
possibly indicating a recent evolutionary link with their respective hosts.

Candidatus Hamiltonella defensa 5AT and Sodalis glossinidius str. ‘Morsitans” are also
the only two facultative endosymbionts in the dataset that reflect the recent acquisition
by their hosts. Finally, the last four outliers correspond to the same organism, Candidatus
Carsonella ruddii, a primary endosymbiont of different species of psyllids [33]. Unlike
what we observed with C.H. defensa and S. glossinidius, these organisms have the lower
percentages of GC in our endosymbiont dataset (around 15%). They are the shorter ones
of that dataset (fewer than 160.000 bases). The percentage of hapaxes is lower because
this genome seems to retain some specific sequences, leading to the retention of some
specific k-mers, which decreases the total percentage of hapaxes due to the short size of the
genomes. This decrement, as before, seems to increase the BB value.

As can be seen, the number of hapaxes is inversely related to BB. Moreover, the
hapaxes proportion is directly related to the genome heterogeneity; the lower the number
of hapaxes, the higher the homogeneity of a genome (as it has more repeated k-mers).
Conversely, a genome with a high proportion of hapaxes becomes more heterogeneous as
fewer repetitive k-mers are seen, and we could thus relate BB to the k-mer heterogeneity.

3.7. Genome Complexity and Metrics

To assess the complexity hypothesis, we first studied the statistical difference in each
metric between the free-living and endosymbiont lifestyles for each group, informing the
tests with the corresponding phylogeny. Some genomic parameters show significantly
lower values for the endosymbiont genomes in some of the lineages (Figure S4 and Table
56). These are the number of genes in all the lineages, genome length, and CDSs in
Enterobacterales and Oceanospirillales, as well as the GC content in Oceanospirillales. With
GS, a significant difference can be observed in the whole tree and the Oceanospirillales,
while BB shows no significantly lower values for the endosymbionts in any clade. This non-
significant difference regarding the Enterobacterales is due to the presence of the outliers
mentioned above, which manifest as outliers in all the whole tree and Enterobacterales
plots. If we remove the seven outliers, there is a significant difference in the BB values
between the endosymbionts and the free-living organisms in the whole tree (p-value 0.03)
but not in the Enterobacterales (p-value 0.09). For GS, removing these outliers reveals
a significant difference in the whole tree (p-value 0.009), and there is also a significant
difference in the Enterobacterales (p-value 0.009).

Nevertheless, instead of perceiving the same behavior, BB and GS do not show re-
markably significant differences between endosymbionts and free-living organisms in
Bacteroidota, and only GS is able to discriminate the two habitats regarding the Oceanospir-
illales. For BB, it may be due to having fewer taxa in those two clades than in the Enter-
obacterales one. GS’s ability to discriminate in the case of the Oceanospirillales may be
explained by analyzing the base composition of the genomes (Figure S5). As can be seen,
when the difference in the AT content (or GC content) is greater between the habitats, the
metric seems to discriminate better between them. With the results obtained, GS repre-
sents a complexity that is based more on the informational content of the genomes and its
relationship with entropy. In contrast, BB represents a complexity based the determined
adaptability or plasticity of the genome, as observed regarding its outliers in transitional
phases of the endosymbiosis process, which are supposed to have been more subjected to a
higher dynamism.

For GS, the degeneration process characteristic of the endosymbionts brings the
genomes to a base composition that deviates more from a 50% GC content, thus decreasing
the metric. With BB, free-living organisms tend to have a greater metric value, which
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correlates with the theoretical biological complexity. However, we still observe a higher
BB value on the genomes of species in a transitional stage due to the content of repetitive
structures.

4. Conclusions

We demonstrated that GS decreased during the endosymbiosis process, and BB has
significant differences in the whole tree. For BB, we explained the Enterobacterales outliers
within the context of the first steps of the endosymbiosis process.

We also observed that the selection bias toward AT in endosymbiont genomes is
related to the lower values of GS. This metric accounts for the representation of the k-mers
by retrieving their frequency to the expected number of k-mers to find. More homogeneous
genomes thus have more similar k-mers, indicating an overrepresentation of certain k-mers.
Considering the behavior of the metric when analyzing the random genome, the lower
values in the case of the endosymbionts are explained.

We concluded that GS may be too limited to the actual contents of the genome and
their relationship with the entropy of a random genome. At the same time, BB shows more
promise as a metric that could quantify a larger part of the complexity of the genome and
its adaptability.

More studies investigating other biological scenarios should be performed to establish
GS and BB as universal metrics of genomic complexity as well as their relationship with
biological complexity.
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www.mdpi.com/article/10.3390/biology14040338/s1, Figure S1: A phylogenetic tree was performed
using a concatenated alignment of 16S and 23S rRNA genes. Figure S2: Phylogenetic signal heatmap.
Figure S3: Representation of GS, and GS¢ against GC content. Figure S4: Boxplots of each trait
for free-living and endosymbiont genomes in each studied clade. Figure S5: Barplots of the mean
base composition of the genomes for each habitat and within each group. Table S1: Taxonomy,
accession numbers, and FTP links for the used genomes stored in NCBI. Table S2: Summary of
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