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Abstract Most studies using meta-analysis try to estab-
lish relationships between traits across taxa from interspe-
cific databases and, thus, the phylogenetic relatedness
among these taxa should be taken into account to avoid
pseudoreplication derived from common ancestry. This
paper illustrates, with a representative example of the
relationship between seed size and the effect of frugivore’s
gut on seed germination, that meta-analytic procedures can
also be phylogenetically corrected by means of the
comparative method. The conclusions obtained in the
meta-analytical and phylogenetical approaches are very
different. The meta-analysis revealed that the positive
effects that gut passage had on seed germination increased
with seed size in the case of gut passage through birds
whereas decreased in the case of gut passage through non-
flying mammals. However, once the phylogenetic related-
ness among plant species was taken into account, the
effects of gut passage on seed germination did not depend
on seed size and were similar between birds and non-
flying mammals. Some methodological considerations are
given to improve the bridge between the meta-analysis and
the comparative method.
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Introduction

In the last two decades, the comparative method has
experienced such theoretical and statistical development
that it has become a standard tool in studies on

evolutionary ecology aiming to establish the relationship
between traits across taxa (Martins 2000). Several methods
have been developed to establish relationships between
traits taking into account the phylogenetic relatedness
across taxa (Harvey and Pagel 1991). The validity of these
methods for drawing inferences about adaptive processes
from reliable phylogenies has produced a growing interest
in the analysis, and re-analysis, of interspecific databases
(e.g. Dodd et al. 1999; Larson and Barret 2000; Pagel
2000 and references therein).

Another statistical tool aimed at the analysis and re-
analysis of databases is meta-analysis, which is expanding
into ecological and evolutionary studies (e.g. Järvinen
1991; VanderWerf 1992; Møller and Thornhill 1997;
Bender et al. 1998; Van Zandt and Mopper 1998; Byers
and Waller 1999; Xiong and Nilsson 1999; Arnqvist and
Nilsson 2000; Gillooly 2000; Gurevitch et al. 2000; Poulin
2000; Norby et al. 2001; Rustad et al. 2001; Searles et al.
2001; Traveset and Verdú 2002). Criticisms of meta-
analysis have mainly focused on the problems of (1)
publication bias (Jennions and Møller 2001; Kotiaho and
Tomkins 2002), and (2) non-independence among ob-
servations (taxa) due to phylogenetic relatedness (Gur-
evitch et al. 2001). So far, although a large number of
studies using meta-analysis have tried to establish
relationships between traits across taxa from interspecific
databases, these meta-analyses have not been “phylogen-
etically corrected” by means of any of the available
methods (Poulin 2000; Jarosik et al. 2002; Traveset and
Verdú 2002; but see Møller and Thornhill 1998).

The aim of our paper is to illustrate, with a
representative example, that meta-analytic procedures
can, and must, also be phylogenetically corrected by
means of the comparative method. Our example examines
the relationship between seed size and the effect of
frugivores’ gut passage on the probability of seeds
germinating. We selected seed size as a working variable
because this trait is strongly correlated with taxonomic
membership (Mazer 1990; Jordano 1995).
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Materials and methods

Data on the effect of seed treatment in frugivores’ guts on
germinability were those employed in Traveset and Verdú (2002),
who meta-analyzed 351 experiments comparing final germination of
ingested versus uningested seeds (control group). Rather than
categorizing seed size, this time we obtained (either from the
literature or by asking for this information directly to authors)
quantitative values for this variable. We used maximum seed length
(log-transformed to achieve normality) as this was the most frequent
measure reported in the studies. We obtained these data from a total
of 103 fleshy-fruited species: 58 of these were subjected to gut
passage through birds and 45 through non-flying mammals. We
excluded data from reptiles and bats, as well as data from dry fruits,
due to the relatively few studies available on them. The entire
database is available from the authors upon request.
The metric chosen for the effect size was the log-transformed

odds ratio (lnOR), which estimates the probability of seed germi-
nation after gut passage, relative to its probability in the control
group (Egger et al. 1997). Significant positive values of lnOR
indicate that seed germination is enhanced by gut passage whereas
significant negative values indicate the opposite. The 95%
confidence interval of the effect size shows whether the value is
significantly greater or less than zero. When the same plant species
was present in several experiments, a cumulative effect size
following the Mantel-Haenszel procedure (Rosenberg et al. 2000)
was calculated to obtain just one effect size per species and thus
avoiding pseudoreplication in subsequent analyses. Likewise, if the
same plant species had been tested for both birds and non-flying
mammals, we only considered the data reported for the frugivore
group in which the experimental sample size (number of seeds) was
highest.
A fixed effects meta-analysis of covariance (meta-ANCOVA

hereafter) was carried out to test for the effects that bird and non-
flying mammal’s guts have on the germination of different-sized
seeds. Random effects models are currently available for meta-
analysis but not for comparative methods. Thus, to make
comparable the analyses, we decided to use fixed-effects meta-
ANCOVA.
Meta-ANCOVA is a particular case of the General Linear Model

applied to meta-analysis consisting of a weighted least squares
regression where the weight is the inverse of the variance of the
effect size, and the resulting standard error of the regression
coefficient is corrected by a factor of the square root of the residual
mean square for the regression. Finally, the significance of the
model is provided by the sum of squares of the regression contrasted
against a chi-square distribution with the same degrees of freedom
as the number of dependent variables included in the model (Hedges
and Olkin 1985). Thus, the effect size (lnOR) was considered the
response variable and it was weighted by the inverse of its variance;
the frugivore group (birds vs. non-flying mammals) was the
explanatory variable, while seed size was the covariate. The
interaction between frugivore type and seed size informed us, as
in a traditional ANCOVA, about the homogeneity of slopes (i.e. if
the gut effect of both birds and non-flying mammals was similarly
correlated with seed size). Because meta-analysis is not well
developed to statistically account for different slopes, we had to
perform separate analyses for birds and mammals after assessing
such heterogeneity.
In order to incorporate the phylogenetic relationships of the plant

species in our study, we ran a phylogenetical ANCOVA (phylo-
ANCOVA hereafter) following the same design used for the meta-
ANCOVA described above: the effect size (lnOR) was the response
variable while frugivore type was the explanatory variable and seed
size the covariate. The phylo-ANCOVA was run using PDAP
software (Garland et al. 1993), contrasting the conventional F-
values of the analysis of covariance (PDSINGLE module) against
the values obtained from the phylogenetically correct, empirically
scaled null distribution generated after 10,000 simulations of the
evolution of the (possibly correlated) characters along the phyloge-
netic tree of the plants (PDSIMUL and PDANOVA modules). As we
previously did in the meta-ANCOVA, we tested for homogeneity of

slopes to know if the gut effect of the two groups of frugivores was
similarly correlated with seed size. We checked if the weight that the
meta-ANCOVA gives to the effect size may alter the results of the
phylo-ANCOVA by re-running the phylo-ANCOVA with the gut
effect on germination (lnOR) weighted (multiplied) by the inverse of
its variance [var (lnOR)].
The plant phylogeny used to run the phylo-ANCOVA was that

published in Soltis et al. (2000) with grafted clades (Rosaceae and
Caprifoliaceae) resolving phylogeny at the genus level. Because
phylogeny was unknown for several groups (e.g. Ficus, Araliaceae,
Moraceae), our phylogenetic tree contained several polytomies.
These “soft” polytomies, reflecting a lack of information about the
branching pattern instead of a true instantaneous speciation, can be
handled by correcting the degrees of freedom of the model (Garland
and Díaz-Uriarte 1999). A super-tree was constructed with
information from several phylogenies, and therefore equal branch
lengths were assumed (Ackerly and Reich 1999; Verdú 2002). Equal
branch lengths are appropriate under the punctuational evolutionary
model, but may inflate the type I error rates (Ackerly 2000). We
checked the standardization of branch lengths for both seed size and
gut effect on germination by correlating the absolute value of each
contrast versus its standard deviation (Garland et al. 1992).
Furthermore, we tested several branch length transformations (i.e.
Pagel’s arbitrary and Grafen’s arbitrary branch lengths) and obtained
the same results, which makes our results more robust with respect
to branch lengths. The pdi file containing both the phylogeny and
the tip values is available from the authors upon request.

Results

Meta-analytic approach

Frugivores significantly improved the germination of
seeds [(lnOR=0.26; 95% confidence interval (0.22–
0.30)], and this effect was significantly different
(QB=42.1; df=1; P<0.00001; heterogeneity test between
groups) between birds [lnOR=0.19; (0.15–0.23)] and non-
flying mammals [lnOR=0.45; (0.38–0.53)]. Heterogeneity
within both frugivore groups was highly significant
(Qw=1,318.1 and Qw=1,038.5 for birds and non-flying
mammals, respectively; P<0.00001 in both cases), indi-
cating that other variables should be included in the model
to explain the variance. By including seed size (log-
transformed) as a covariate in the meta-GLM model (meta-
ANCOVA), we found that the slopes between the response
variable (gut effect on germination) and the covariate (seed
size) were different between birds and non-flying
mammals (sum of squares of the interaction between
seed size×frugivore group=QR=38.6; df=2; P<0.000001).

In the case of birds, the meta-analysis showed that the
germination enhancing effect of gut passage through birds
increased with increasing seed size (y=−0.15+0.37x;
P<0.00001), although the percentage of explained vari-
ance was low (R2=9.6%) (Fig. 1). In contrast, the
germination enhancing effect of gut passage through
non-flying mammals decreased with increasing seed size
(y=0.61−0.14x; P<0.001), and in this case, the explained
variance was negligible (R2=1.4%) (Fig. 1).

In short, the meta-analysis revealed that the positive
effects that gut passage has on seed germination increase
slightly with seed size in the case of birds whereas they
decrease negligibly in the case of non-flying mammals.
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Phylogenetic approach

Unlike the meta-ANCOVA, the phylo-ANCOVA showed
that the slopes of seed size on gut effect on germination
were not significantly different between birds and non-
flying mammals (F1,81=2.07; P=0.22). The same conclu-
sion was reached when the gut effect was weighted by the
inverse of its variance, as the meta-analysis does
(F1,81=1.71; P=0.27). Because the ANCOVA assumption
of homogeneity of slopes was fulfilled, the effects of birds
and non-flying mammals were studied together in the
same model. The gut effect on germination was not
different between birds and non-flying mammals and was
not related to seed size (Table 1; Fig. 2). The results were
the same when the weighted gut effect was used as the
dependent variable (Table 1; Fig. 3)

Therefore, the phylogenetic analysis revealed that the
effects of gut passage on seed germination do not depend
on seed size and are similar between birds and non-flying
mammals.

Discussion

Bridging meta-analytic procedures with the comparative
method, when taxa are considered as experimental units,
has been shown to be very useful for extracting more
reliable conclusions than when performing meta-analysis
alone (Traveset and Verdú 2002). The present study
illustrates this, considering the relationship between seed
size and the frugivores’ gut effect on seed germination.
The most interesting finding in our analyses was that the
conclusions obtained in the meta-analytical and phyloge-
netic approaches are very different.

For avian frugivores, a positive meta-regression be-
tween seed size and gut effect on germination was found.
The percentage of intergeneric variance of seed size
explained by the regression line was around 10%, close to
that found in the multivariate meta-regression model
which included seven independent variables to explain
frugivores’ gut effect on seed germination (Traveset and
Verdú 2002). This indicated that germination of small

Fig. 1 Meta-analytic approach to the relationship between seed
size and the frugivore’s gut effect on seed germination. Birds and
non-flying mammals are analyzed separately because of the
heterogeneity of the slopes

Table 1 Phylogenetic ANCOVA on the effects of frugivores group
(birds vs non-flying mammals) and seed size on the unweighted and
weighted gut effect on seed germination

Unweighted

Source of variation SS df F P

Frugivores 0.08 1 0.06 0.87
Seed size 1.05 1 0.72 0.77
Error 119.2 82

Weighted

Source of variation SS df F P

Frugivores 108 1 0.05 0.87
Seed size 375 1 0.17 0.88
Error 173,653 82

Fig. 2 Phylogenetic approach to the relationship between seed size
and the unweighted frugivore’s gut effect on seed germination

Fig. 3 Phylogenetic approach to the relationship between seed size
and the weighted frugivore’s gut effect on seed germination. The
weight is the inverse of the variance. Birds and non-flying mammals
are analyzed together because of the homogeneity of the slopes



seeds is negatively affected when ingested by birds, but
this effect becomes positive as seed size increases. An
ecological explanation for this is that small seeds are
retained for longer in a bird’s digestive tract than large
seeds (Levey and Grajal 1991), which may cause an
excessive abrasion of the seed coat within the gut. Short
transit times through the digestive tract have been
interpreted as an adaptation that allows birds to consume
fruits in greater quantities and, consequently, the fitness of
the large-seeded plants might be increased. Alternatively,
larger seeds could have thicker coats with the same effects
(unfortunately, no data are available to test this possibi-
lity).

In the case of non-flying mammals, the meta-regression
between seed size and gut effect on germination was
negative, the effect of seed treatment in mammals’ guts
being positive on small seeds and negligible on large
seeds. Such results actually support the hypothesis that
mammals have exerted a selective pressure favouring
small-seeded species, given that the mammalian syndrome
consists of fruits with many small seeds (Herrera 1989).
Alternatively, the mammalian syndrome may be related to
the taxonomical composition of mammal-ingested fruits
(Herrera 1987). The results of the present paper actually
support the latter hypothesis because the significant
relationship between seed size and mammals’ gut effect
on seed germination vanished after the phylogenetic
control of plant species. Furthermore, the low percentage
of variance explained by the meta-regression line (1.4%)
suggests that this relationship is not biologically relevant.

The significant relationships that were found between
seed size and frugivores’ gut effect on germination
disappeared after controlling for taxonomic relatedness
among plant species, implying that the association
between both characters is due to common ancestry and
not to the result of correlated evolution. It is well known
that a great amount of interspecific variation in seed size is
accounted for by taxonomic relatedness (Herrera 1992).
For example, Lord et al. (1995) have shown that
taxonomic membership accounted for around 90% of
seed mass variation in six data sets from different regions
of the world. When considering only fleshy-fruited
species, the amount of variance explained by the phylog-
eny of 910 world-wide species was only 32% (Jordano
1995). This means that even though phylogeny may have
constrained the force of natural selection in shaping seed
size, a considerable amount of variance is still available for
natural selection to act upon. The results from our study
suggest that the role of frugivores’ guts on the evolution of
seed size has been negligible. However, other factors
linked to seed treatment in the guts of frugivores and seed
size, such as emergence, growth and survival rates in
seedlings born from seeds ingested by animals should be
simultaneously investigated to know the importance of
treatment in frugivores’ guts on the evolution of seed size
(Paulsen and Högstedt 2002).

The philosophy of modern meta-analysis is to combine
the individual effect sizes by means of weighted statistical
models, using as weight the inverse of the variance of the

effect size (Rosenberg et al. 2000). In this way, when
several effect sizes are averaged to calculate a cumulative
effect size, greater weight is given to the effect sizes with
smaller variances. In the comparative method, the weights
used to calculate ancestral states are a function of the
within-species variation, the phylogeny, and the model of
character evolution (Martins and Hansen 1997). Therefore,
we believe the comparative method would benefit
considerably by including the weight used in meta-
analysis for the estimation of ancestral states. This weight
is a measure analogous to the measurement error derived
from the individual variation within species, and the
incorporation of that error into the phylogenetically
independent contrasts does not affect point estimates of
parameters (correlations between traits, values at ancestral
nodes, P-values, etc) (Garland et al. 1993). In our analysis,
the conclusions of the phylo-ANCOVA did not change
after weighing effect sizes, but we argue that the statistical
consequences of this procedure must be checked in each
study.

A final consideration to apply to future studies
combining meta-analysis and the comparative method is
that ecological datasets usually involve two independent
sets of relatives (in this case, plants and frugivores) and,
thus, the analysis should account for the phylogeny of
both. As far as we know, no comparative method is able to
account simultaneously for two phylogenies from two
different groups of species. In the present example, we
have considered only the phylogeny of plants, which may
confound effects if, for example, seed size covaries with
frugivore taxon. In such a case, the effect of gut passage
on germination may be covarying with the frugivore clade
and not with seed size.

Further studies combining the comparative method and
meta-analysis will certainly help to develop both methods
in the field of evolutionary biology.
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