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Abstract

 

The concept of statistical strategy is introduced and used to develop a structured graphical user interface for guiding 

data analysis. The interface visually represents statistical strategies that are designed by expert data analysts to guide 

novices. The representation is an abstraction of the expert’s concepts of the essence of a data analysis. We argue that 

an environment that visually guides and structures data analysis will improve data analysis productivity, accuracy, 

accessibility and satisfaction in comparison to an environment without such aids, especially for novice data analysts. 

Our concepts are based on notions from Cognitive Science, and can be empirically evaluated.

The interface consists of two interacting windows: the 

 

guidemap

 

 and the 

 

workmap

 

. Each window contains a graph 

which has nodes and edges. The guidemap graph represents the statistical strategy for a specific statistical task (such 

as describing data). Nodes represent potential data-analysis actions that can be taken by the system. Edges represent 

potential actions that can be taken by the analyst. The guidemap graph exists prior to the data-analysis session, having 

been created by an expert. The workmap graph represents the complete history of all steps taken by the data analyst. 

It is constructed during the data-analysis session as a result of the analyst’s actions. Workmap nodes represent 

datasets, data models, or data-analysis procedures which have been created or used by the analyst. Workmap edges 

represent the chronological sequence of the analyst’s actions. One workmap node is highlighted to indicate which sta-

tistical object is the focus of the strategy. We illustrate our concepts with ViSta, the Visual Statistics system that we 

have developed.
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1.  The original concepts discussed in this paper were conceived jointly by both authors. Michael Frigge made a first 
attempt at an implementation, which was later abandoned. The implementation and development described in this 
paper were done entirely by the first author, who was also the primary author of the paper. The final version of this 
paper has benefitted from many constructive discussions with Richard A. Faldowski. Contact the first author for 
information or for software at forrest@unc.edu, or at UNC Psychometric Laboratory, CB-3270 Davie Hall, 
Chapel Hill NC 27599-3270, USA.
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1.0 Motivation

 

Data are the lifeblood of science. Because computerized data-analysis systems help scientists understand data, they 

have become of central importance to the scientific enterprise, evolving into extensive and powerful systems capable 

of performing many kinds of very sophisticated and complex analyses.

Unfortunately, the structure of data-analysis systems has evolved willy-nilly over the years. While much thought has 

been focused on the kinds of analyses that can be performed by these systems, less thought has been given to their 

overall structure: It seems to us that the more powerful a statistical system is, the more clumsy it is to use.

At the same time that these changes have been taking place in data-analysis software, the computational hardware on 

which these systems run has increased in capability: Processors are faster, memory is larger, displays are bit-mapped 

instead of character-mapped, and mice are widely use. And all the while, cost has decreased.

Thus, compared to a few years ago, much more complex statistical analyses can now be performed in less time and at 

less cost. Furthermore, a much broader cross-section of the scientific community has come to have access to data-

analysis systems. However, the main difficulty with essentially all data-analysis systems is not the sophistication of 

the analyses that can be performed. Rather, it is the fact that these systems are not designed with the capabilities of the 

user in mind. This weakness makes the systems difficult to learn and use, especially for the new community of novice 

users.

While much effort and thought have been expended to improve the capability of individual components of many sta-

tistical systems, relatively little effort and thought have been given to providing data-analysis systems with an overall 

structure that would make them accessible to the full range of users, from novices to experts. Some systems, espe-

cially the older systems such as SAS (SAS Institute, 1990) or SPSS (Norusis, 1990) seem to have no overall unifying 

design and little regard for the capabilities of their users. Other systems, such as S (Becker, Chambers & Wilks, 

1988), are designed with the capabilities of the sophisticated user in mind, being, essentially, high-level data-analysis 

languages. Recently available systems such as DataDesk (Velleman & Velleman, 1988) and JMP (SAS Institute, 

1990) are designed from the ground up on the basis of a unified graphical user interface metaphor. As one might 

expect, these systems are indeed much more appropriate for the novice user. However, these systems have no data-

analysis language, and so lack the flexibility and customizability that the sophisticated user needs. The Lisp-Stat 

(Tierney, 1990) and APL2STAT (Friendly and Fox, 1994) systems seem to have the potential to be appropriate vehi-

cles for implementing interfaces for the novice and the expert, since they are designed with an object-oriented and 

language-based philosophy, and since they are extensible. However, both lack a graphical user interface.

In all statistical systems that we are familiar with, even when simple data-analysis procedures are used, novice users 

are soon at a loss as to how to combine several data-analysis procedures into a cogent statistical strategy that reveals 
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the basic information in the data. The very power of many systems can actually hinder the data-analysis task, espe-

cially for users who are novices. It appears to us that there is a paradox: For many users increasingly powerful and 

sophisticated data-analysis systems have become less suited for understanding data than their less powerful and sim-

pler forebears.

In this paper we propose that data-analysis environments should present visualized statistical strategies and struc-

tures. We present an environment that guides the data-analysis steps taken by novice data analysts. Our environment 

also aids data analysts at all levels of sophistication by showing them the structure of their analysis session. In addi-

tion, sophisticated users can perform analyses simply by using the underlying data analysis language, if they don’t 

want to use the graphical interface. Finally, our environment includes graphical tools that can be used by expert data 

analysts to create the analysis strategies that are used to guide novice analysts.

Our fundamental hypothesis is that data analyses performed by data analysts in an environment that visually guides 

and structures the analysis will be more productive, accurate, accessible and satisfying than data analysis performed 

by the same people in an environment without such visual aids. We hypothesize that this should be true for all data 

analysts, but more so for novices. We also hypothesis that novices will choose to use the aids more often than those 

with more experience. We realize that these are hypotheses, and that we have no evidence to support them. While we 

do not test them in this paper, we do propose methods for doing so.

The implementation of our ideas is called ViSta, a visual statistics system developed by the first author (Young, 

1994). ViSta, which is written in Lisp, adds our structured graphical user interface to Lisp-Stat’s (Tierney, 1990) sta-

tistical engine, object system, graphical system and windowing environment. Lisp-Stat has been extensively 

reviewed by a number of authors (Baxter & Cameron, 1991; Lubinsky, 1991; Weihs, 1991; Young, 1991), and is the 

basis of at least one other extensive development project (Cook & Weisberg, 1994). ViSta is available from the first 

author, or can be downloaded from ftp.stat.ucla.edu. A more complete version of this paper is available (Young & 

Lubinsky, 1994). We are very interested in feedback about the efficacy of our ideas and implementation.

 

2.0 Background

 

We hold that data analysis is a highly complex activity (Young & Smith, 1991) that involves repetitive actions that 

occur over and over again: Data analysis is a repetitive, cyclical search for understanding (Lubinsky & Pregibon, 

1988). We believe that data analysis productivity, accuracy, accessibility and satisfaction will improve in an environ-

ment that guides and structures the actions that occur during the search for meaning in data.

One of our main design principles is that a data-analysis system should incorporate a variety of environments, each 

suited to a specific level of data analysis sophistication that a user might have, so as

 

 

 

to maximize the data analyst’s 

productivity and satisfaction. We believe that data-analysis software should be designed to accommodate the com-

plete range of data analyst sophistication, from novice to expert. 
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We identify four kinds of data analysts: novice, competent, sophisticated and expert. Accordingly, we propose four 

kinds of environments: First, there should be 

 

guidemaps

 

 to guide novice data analysts through complete data analy-

ses; second, there should be 

 

workmaps

 

 to inform novice and competent data analysts of the overall structure of their 

data-analysis sessions; third, there should be an underlying 

 

data analysis language 

 

to let sophisticated data analysts 

dispense with the visual aids when they find them unnecessary; finally, there should be an 

 

authoring mode 

 

to help 

expert data analysts create the guidance diagrams that are used by novices. In addition to these four environments, 

which are all highly interactive, there should be a script environment for automating repetitive data analyses. These 

five environments should be seamlessly integrated within the statistical analysis environment. Analysts should be 

able to easily switch between them when desired, as we believe that analysts do not have the same level of expertise 

for all aspects of data analysis. 

 

Structuring Data Analysis: 

 

Young & Smith (1991) argue that the process of data analysis is improved when the 

environment structures the actions taken by the data analyst. They suggest that an evolving data analysis should be 

represented by an icon-based graphical user interface which constructs a map of the analysis as it proceeds. This map 

shows the structure of the actions taken by the data analyst, and the data, models and analysis procedures involved in 

those actions. The map presents the analyst with a visualization of the structure of the analysis session, and can be 

used to return to previous steps.

For our work, the formal representation of session structure is the workmap:

 

Definition

 

: A 

 

workmap

 

 is a directed acyclic graph consisting of nodes and edges (as suggested by Young & 

Smith, 1991), where a node represents a data-analysis object (a dataset or a data model) or a data-analysis proce-

dure that has been used by the analyst, and an edge represents the chronology sequence of the objects and proce-

dure (the creation dependencies) during the analysis session. Taken as a whole, the workmap is a visual, object-

oriented, directly manipulable, structured representation of the history of a data-analysis session.

Notice that a node is a self-contained unit of existing data (dataset), statistical computation (analysis procedure), or a 

combination of the two (data model), whereas edges represent the choices, actions and decisions that a data analyst 

made during the session. Nodes, which are the basic building blocks of the evolving data-analysis session, can be 

selected and reviewed at any time. The workmap visualizes the history of the evolving data analysis. It is a realization 

of a specific statistical strategy. (Workmaps have been incorporated in the BBN/Cornerstone system (BBN Software, 

1994) in consultation with the first author).

 

Guiding Data Analysis: 

 

Data analysis is a complex activity that involves many steps, and at each step the data ana-

lyst is faced with many choices. Often, the data analyst returns to previous steps in order to make different choices. 

As stated by Lubinsky and Pregibon (1988), “Like a detective, a data analyst will experience many dead ends, retrace 

his steps, and explore many alternatives before settling on a single description of the evidence in front of him.” We 
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argue that data analysis will improve when it occurs in an environment that guides the actions taken by the analyst to 

understand data.

We use the Artificial Intelligence notion of strategy as a basis for developing methods for guiding data analysts. Sev-

eral statisticians, notably Chambers (1981), Gale and Pregibon (1982), Gale (1988), Oldford and Peters (1988), Preg-

ibon and Gale (1984), Hand (1984; 1985), Lubinsky and Pregibon (1988), Van den Berg (1992), Gale, Hand & Kelley 

(1993), Hand (1993) and Hand (1994), have worked on the notion of a statistical strategy. We use this body of work, 

which is extensively reviewed by Gale, Hand & Kelly (1993), to develop our own definition of statistical strategy:

 

Definition: 

 

A 

 

statistical strategy

 

 is a formal representation of an expert statistician’s conceptual structuring of 1) 

the data-analysis 

 

procedures

 

 to accomplish a specified data-analysis task; 2) the data analyst’s 

 

actions

 

 (choices, 

decisions, etc.) that are possible with the procedures; and 3) the relationships between the procedures and actions 

needed to accomplish the task. The data-analysis task is to understand a specified data-analysis object (a dataset 

or data model).

For our data-analysis environment guidemaps are the formal representation of statistical strategy:

 

Definition: 

 

A 

 

guidemap

 

 is a directed cyclic graph consisting of nodes and edges. The nodes of the graph repre-

sent data-analysis procedures, whereas the edges represent the analyst’s possible actions. The structure of the 

map indicates the order dependencies between the procedures and the actions that can be taken with the proce-

dures to accomplish the data-analysis task of understanding the data-analysis object. Finally, the data-analysis 

object (dataset or data model) is represented by a highlighted node of the 

 

workmap

 

. It is said to be the focus 

object.

Notice that a guidemap node is a self-contained unit of 

 

potential 

 

statistical computation, while a guidemap edge rep-

resents the expert’s guidance about moving from one computation to the next. Nodes are the basic building blocks of 

potential data analyses, i.e., of statistical strategies. On the other hand, the edges in the strategy represent the data ana-

lysts’s possible choices, actions and decisions regarding the use of data-analysis procedures. They indicate permissi-

ble paths for traversing the nodes. Nodes can only be selected when they are highlighted. As a whole, the guidemap 

visualizes and abstracts the essence of an expert’s statistical strategy.

 

3.0 Representing Statistical Strategy

 

In this section we discuss our definition of statistical strategy in detail, focusing on the four key aspects of the defini-

tion: the formal representation; the data-analysis object that is the focus of the strategy; the role of the expert statisti-

cian; and objects, procedures and actions.
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3.1 The Formal Representation of Strategy

 

First, our definition states that a statistical strategy is based on a 

 

formal representation

 

. Our formal representation 

consists of graph structures like that shown in the guidemap window of Figure 1 (a screen image from ViSta). The 

guidemap, titled 

 

Analysis Cycle

 

, presents the overall statistical strategy. This specific guidemap is always the first 

guidemap for a newly created dataset object. It is only a small portion of the overall strategy, since it causes additional 

“sub”-guidemaps to be displayed in the window. Taken as a whole, the guidemap in Figure 1, plus all of the additional 

guidemaps, are our formal representation of statistical strategy. 

The strategy concerns a specific data or model object, thus, a data or model object is the focus of the analysis. The 

focus object is represented in the workmap window by the highlighted (dark) icon. The workmap itself shows where 

this object fits into the structure of the overall evolving analysis. The two separate windows emphasize the separation 

between the evolving data analysis (mapped in the workmap) and the strategy that is guiding the data analysis 

(mapped in the guidemap). We discuss the workmap in the next subsection. Here, we discuss the guidemap.

As stated above, the guidemap is a directed (possibly) cyclic graph consisting of edges and nodes. In our work, 

guidemap nodes are represented by the rectangular 

 

button

 

 icons, and guidemap edges are represented by the 

 

arrows

 

. 

Thus, the buttons show potential steps in the analysis that the analyst is guided to take, whereas the arrows indicate 

the flow of guidance from one step to the next. A node is a self-contained unit of 

 

potential

 

 statistical computation 

which may do its own computations, or, recursively, call another strategy. 

Buttons can be “active” or “inactive”. Active buttons are highlighted (such as the 

 

Link:Explore 

 

button in Figure 1) 

and are ready to cause an action. Clicking on the 

 

??

 

 side of an active button enters a hypertext which causes help to be 

displayed about the action of the button. Clicking on the 

 

!!

 

 side of an active button enters a hypercode which causes 

the button’s action to be initiated. Once the button’s action has taken place, the highlighting (activation) of the buttons 

changes: The clicked button deactivates, and the buttons that it points to are activated. Inactive buttons (such as the 

 

Link:Transform 

 

button in Figure 1) are not ready to do anything: Clicking on them has no effect.

There are two kinds of buttons: Flow Buttons, which control the flow between various portions of the large structure 

of guidemaps, and Procedure Buttons, which control the use of data-analysis procedures. 

Flow buttons include the 

 

Link

 

, and 

 

GoTo:Model

 

 

 

buttons in Figure 1, and the 

 

Return

 

 and 

 

GoTo:Data

 

 

 

buttons in Fig-

ure 2. These buttons take the user to other guidemaps. The 

 

Link

 

 button takes the analyst to a new strategy, whereas 

Insert Figure 1 About Here

Insert Figure 2 About Here
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the 

 

Return

 

 button returns to the linked-from strategy. The 

 

Link

 

 button is, in essence, a 

 

macro

 

 data-analysis proce-

dure which is itself a strategy, since this button opens up new strategies. For example, clicking on the 

 

!!

 

 portion of the 

 

Link:Explore

 

 

 

button in Figure 1 causes the 

 

Explore Data

 

 guidemap, shown in Figure 2 to appear. Correspondingly, 

clicking on the 

 

Return

 

 button in Figure 2 will take you back to Figure 1. Upon return to the guidemap in Figure 1, the 

highlighting of the buttons will change according to the connecting arrows. That is, the 

 

Link:Explore

 

 button will 

deactivate, and the 

 

Link:Transform

 

 

 

and

 

 

 

Link:Analyze

 

 buttons will activate. 

The 

 

GoTo

 

 

 

button changes the focus of the data analysis, and of the strategy, to a new data or model object. When a 

new object has been created and named, then the name of that object replaces 

 

Data

 

 or 

 

Model

 

 in the 

 

GoTo

 

 

 

button. 

Then, when the 

 

GoTo

 

 

 

button is clicked, the appropriate data or model icon is highlighted in the workmap, and the 

appropriate strategy is displayed in the guidemap window.

All buttons other than flow buttons are procedure buttons that activate data-analysis procedures. In Figure 2 we see 

procedure buttons such as 

 

List Variables

 

 and 

 

Visualize Data

 

. When an active procedure button is clicked, the indi-

cated data-analysis procedure (listing variables, showing the datasheet) is activated.

 

3.2 The Focus of the Strategy

 

The focus of a statistical strategy is a data-analysis object (a dataset or a model). In Figure 1, the icons named 

 

Car-

Ratings

 

 and 

 

Norm-CarRatings

 

 are data icons, whereas 

 

PCA-CarPrefs

 

 is a model. The focus object is represented 

by the icon that is highlighted in the workmap.

Each time a new object is created, it is represented by a new icon. Whenever a new dataset or model object is derived 

from an existing dataset object, an arrow is drawn from each of the new object’s parents (usually only one) to the new 

object to show the creation dependency. These arrows have a meaning that parallels, but is somewhat different from, 

their meaning in the guidemap: They represent the flow of data into or out of a data-analysis object (dataset or model) 

or procedure as a result of a data analyst’s action. In the guidemap, on the other hand, a arrows represent potential 

actions a data analyst might take.

The evolving progress of the data-analysis session is shown in the workmap. Certain actions taken via the guidemap 

create new nodes in the workmap. A new dataset object may be created by a mathematical procedure (such as normal-

ization or principal components analysis) or by a non-mathematical operation (such as removing variables or merging 

datasets). A new model object is always created by a mathematical procedure. A procedure icon appears between the 

original and new objects when the creation involved mathematical operations, otherwise, no procedure icon appears. 

If a procedure icon appears, the creation dependency arrow is drawn from the parent objects through the procedure to 

the new object. Naturally, a new object may be brought in from “outside” of the system, in which case the new object 

is not connected to a parent (e.g., 

 

CarRatings

 

 in Figure 1).
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The specific object which is the focus of the analysis (and, therefore, of the analytic strategy) is highlighted in the 

workmap. In Figure 1, 

 

Scores & Ratings

 

 is the focus object. Any data or model object in the workmap can be 

selected at any time to be the new focus object. When a new focus object is selected, the new strategy associated with 

it is displayed in the guidemap window, and the user enters that strategy.

The workmap and guidemap graphs differ in several respects. First, the structure of the guidemap graph doesn’t 

change, it remains as shown throughout the analysis, although its highlighting changes. The workmap graph, on the 

other hand, grows as new data and model objects are created and as new analysis procedures are used (both structure 

and highlighting change). Second, the guidemap is a (potentially) cyclic graph, whereas the workmap is an acyclic 

hierarchical tree graph. This represents Lubinsky and Pregibon’s (1988) observation that actions taken during data 

analysis are not hierarchical, but are cyclical, although the resulting analysis is hierarchical. Third, the guidemap (as 

represented by the initial guidemap shown in Figure 1, and all its sub-guidemaps) has an entry point but no exit point, 

whereas workmaps have both entries and exits. This represents the fact that a strategy has a beginning step but no 

final step. The lack of an exit point from a strategy reflects the fact that a strategy is cyclic, and that users should be 

able to quit a strategy (with the window’s close box) whenever they choose.

 

3.3 The Role of the Expert Statistician

 

We turn now from the first two aspects of our definition of strategy (the formal representation and its focus) to the 

third aspect, namely that a statistical strategy represents the conceptual structure of an expert statistician. 

It is assumed that the expert is only expert in a proscribed domain of statistical analysis, not for the entire domain. 

The role of such an expert is to decide, for the expert’s area of statistical analysis expertise, what steps are involved, 

and in what order the steps should be taken. Thus, the representation shown in the guidemap in Figures 1 and 2 (and 

in other guidemaps that are not shown) is an experts knowledge about exploratory data analysis. These guidemaps 

represent the expert’s conceptual structure of the sequence of steps involved in exploratory data analysis. The expert 

creates these guidemaps by using the “guidetools” that are discussed in Section 5.0.

 

3.4 The Objects, Procedures and Actions

 

The final aspect of our definition of strategy is that the expert’s conceptual data analysis structure concerns three 

classes of things and the relationships among these things. The things are the 

 

data-analysis objects

 

, the 

 

data-analysis

 

 

 

procedures

 

, and the 

 

data analyst’s

 

 

 

actions

 

. All three are included in our representation of statistical strategy.

 

Data-analysis Objects: 

 

There are two types of data-analysis objects: dataset objects and model objects. Both types of 

data-analysis objects are represented by icons in the workmap (but not in the guidemap). Datasets are represented by 

tall rectangular icons containing very narrow vertical bars (representing variables). Models, like data, are represented 

by tall rectangular icons, but they contain mathematical symbols as well as “variable” bars to reflect the fact that 
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models are data that have been subjected to mathematical operations. The highlighted data-analysis object is the focus 

of the statistical strategy.

 

Data-analysis Procedures:

 

 Procedures are represented by the wide rectangular icons in the workmap and guidemap 

windows

 

1

 

. The procedures are the nodes of the guidemap’s strategy structure, with each node being a self-contained 

piece of statistical computation, including visualizations (construction and presentation of dynamic statistical graph-

ics), tables and textual results. These procedure-nodes, in the exploratory data analysis example shown in Figure 2, 

include a datasheet, the ability to list variables and observations, data visualization and reporting, summary statistics, 

and the ability to create new data. These are the kinds of exploration procedures the expert deems to be appropriate 

parts of the analysis strategy. 

 

Data Analyst’s Actions:

 

 The possible actions of the data analyst are represented in the guidemap by the arrows con-

necting the procedure icons. On the other hand, in the workmap the arrows indicate actions that the data analyst has 

already taken. In the guidemap window, the direction of the arrow indicates the order in which the expert thinks the 

novice should use the data-analysis procedures. Thus, the data exploration strategy in Figure 2 indicates that the 

expert thinks the first three steps should be looking at the data themselves or listing their variable names or observa-

tion labels. Note that these procedure-buttons are highlighted and others are not. Once all three of these actions are 

taken, the next three buttons become highlighted (and the first three become gray), indicating that the next three anal-

ysis procedures are now available. In this way, the novice is guided through the data exploration strategy. At least one 

of the procedure-buttons in the guidemap window is always active, indicating which of the procedures can be used 

next by the analyst. Initially, when a strategy is entered, certain procedure(s) are highlighted, indicating what the ana-

lyst should do, and that the system is waiting for an action.

 

4.0 Using Statistical Strategies

 

In the previous section we described our visual representation of statistical strategy, a representation involving two 

graphs called the guidemap and workmap. In this section we describe how the data analyst uses these two graphs.

 

4.1 Using the Guidemap

 

The guidemap window presents a map of an expert’s statistical strategy. This map is used to guide data analyses per-

formed by novice analysts. At the very beginning of the analysis of a new dataset object (see Figure 1) the guidemap 

window contains the 

 

Analysis Cycle

 

 guidemap. This guidemap presents the overall flow of a data analysis, emphasiz-

 

1.  Only the major data-analysis procedures, such as the “PrnCmp” principal components procedure, are represented 
in the workmap by icons (see Figure 1). This avoids cluttering the workmap. However, all procedures are iconized in 
the guidemap, to maximize detail. For this reason, only small portions of the entire guidemap are presented to the data 
analyst at any one time. 
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ing the major steps and their cyclical relationship. The initial highlighting of this map guides the user to explore the 

data, since the 

 

Link:Explore

 

 button is the only active (highlighted) button.

The flow of guidance is indicated by the arrows connecting buttons: When an active button’s action is completed, the 

button deactivates (changes to gray), and the buttons that are pointed to by its arrows are activated. The change in 

highlighting indicates the actions that the user is guided to take next, and the arrows indicate how guidance flows. 

Therefore, in Figure 1, after the data are explored the analyst is guided to transformation or analysis.

Let’s consider how the guidemap in Figure 1 works. First of all, note that all of the buttons in the guidemap are 

 

macro

 

 

buttons: Whenever one of them is used a new strategy map will replace the one shown in the figure. When the new 

strategy map is completed, the user will once again be shown the map in the figure, although it’s pattern of highlight-

ing will have changed as indicated by the arrows. Thus, after exploring the data, the transformation and analysis (i.e., 

model fitting) buttons become highlighted. If transformation is chosen first, then when this is completed the analyst 

will be guided to analyze the data. If, instead, analysis is chosen before transformation, then when the analysis is 

complete the 

 

GoTo:Model

 

 button will become highlighted. Note, however, that if the 

 

Transform

 

 button was not 

used before the analysis, it will remain highlighted, so that the user now has the choice of either transforming the data 

and then reanalyzing, or of proceeding to look at the model. Finally, after looking at the model, the user can either 

transform the data once again, or start over with a new set of data. Thus, this map represents the expert’s view that 

data analysis is a cycle that begins with exploration and which may or may not involve transformation before the first 

data analysis (model fitting). Then, the model resulting from the analysis should be looked at. The model may or may 

not suggest re-transformation, with this cycle of transformation, analysis and model inspection continuing indefi-

nitely. 

Note that when a new dataset object is created (for example, by transformation) the user will always be given the 

choice to change the focus of the strategy to the new data, thus beginning the analysis cycle all over again with a 

brand new, unused 

 

Analysis Cycle 

 

guidemap, starting with data exploration. On the other hand, the analyst may also 

continue focusing on the old data, if desired, although usually when new data are created the user will shift focus to 

them. Thus, there is an implicit cycle in the data analysis process that does not appear in the guidemap: Whenever 

new data are created the analysis cycle usually recommences. Actually, it might be better to describe data analysis as 

a 

 

spiral

 

, rather than a cycle, since when the analysis cycles back around it is usually at a deeper level of analysis with 

a new focal dataset.

Let us now turn to consider what happens when the 

 

Link:Explore

 

 button is used. Since this button is a 

 

macro

 

 button 

(i.e., a button which corresponds to another guidemap), when it is used the map in the window changes to the 

 

Explore Data 

 

guidemap shown in Figure 2. Now, as indicated by the button highlighting, the analyst has the choice 

of three actions: show the datasheet, list variable names or list observation labels. When the user chooses any one of 
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these three actions, the action takes place and the chosen button turns gray, since it is no longer a recommended 

action. The other two buttons remain highlighted.

Notice that the just-used button is connected to a short vertical arrow rather than to another button. This short vertical 

arrow is called an 

 

and 

 

icon because it is an “and gate” that restricts the flow of guidance from one action to the next. 

Specifically, all of the buttons that are connected 

 

to

 

 an 

 

and 

 

icon must be used before guidance can flow through the 

icon to the buttons that follow it.

Thus, when one of the active buttons in Figure 2 is used, no other buttons become highlighted until all three active 

buttons are used. Then, all of the buttons that have arrows pointing to them from the and icon are activated. In this 

way the user is guided to use all three active buttons in Figure 2 before doing anything else. They can be used in any 

order. Once they are all used, the next group of three buttons is activated, and the analyst must use them (in any order) 

before going on. After these three buttons have been used, the guidemap appears as shown in Figure 3.

The guidemap in Figure 3 has changed from the one in Figure 2: The data analyst is now being guided to either return 

to the guidemap which led to this one (the one shown in Figure 1, but with the Transform and Analyze buttons acti-

vated) or to create a new dataset object. The analyst may wish to take the latter step to create a subset of the original 

data. If the decision is made to create new data, then the analyst has the choice of going to those data, which brings up 

a brand new Analysis Cycle map (identical to that shown in Figure 1) or of returning to the old Analysis Cycle map 

(with the structure shown in Figure 1, but with Transform and Analyze activated).

Note how the strategy has guided the analyst: As shown in Figure 1, the analyst must explore the data first. The ana-

lyst must analyze the data before inspecting the model. In Figure 2 and 3 the analyst must look at the data and their 

identifying information before visualizing the data or getting summary statistics. On the other hand, the data analyst 

has choices: In Figure 1, it is not required, though it is possible, to transform the data before fitting the model. Simi-

larly, in Figure 2, it is possible to visualize the data before seeing summary statistics, or to do the actions in the 

reverse order.

4.2 Using the WorkMap

In the example shown in Figure 1, the workmap shows a data analysis session that has already involved several major 

steps. In the first step, the analyst read in the data that defined the CarPrefs dataset object. These data were then sub-

mitted to a Principal Components Analysis, as indicated by the PrnCmp procedure icon. This analysis produced the 

PCA-CarPrefs model object. The analyst then requested that a new dataset object Scores-PCA-CarPrefs be created 

by the model object. Separately, the analyst also read in data that defined the CarRatings dataset object. These data 

Insert Figure 3 About Here
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were normalized, as indicated by the Norm procedure icon, creating a new dataset object named Norm-CarRatings, 

which was merged with the Scores-PCA-CarPrefs dataset object to obtain another dataset object named Scores & 

Ratings (the current focus of the statistical strategy).

It should be emphasized that portions (or all) of the data analysis can be created directly in the workmap window, 

without using the guidemap window, whenever a sufficiently sophisticated data analyst wishes. An entire data analy-

ses can be created from the workmap without ever seeing a guidemap. This can be done by clicking the mouse on the 

body of an icon to obtain a popup menu of actions that the icon supports.These menu-items are also accessible from 

the menubar shown.

It should also be emphasized that a previous portion of the data analysis can be revisited at any time by simply click-

ing on the appropriate workmap icon. Then, the analysis can be continued in a new direction by simply taking differ-

ent steps than were taken previously. The workmap graph provides a very convenient and simple way of 

backtracking, a feature that can be very hard to do with conventional systems which do not keep the full history of a 

data analysis session. Note that this can be done across sessions by simply saving the workmap (or portions of it) and 

reloading it during another session.

Also, note that if the data analyst is performing the analysis directly from the workmap, that guidance is available at 

anytime by simply requesting that the guidemap be shown. When so requested, the appropriate portion of the 

guidemap structure is displayed in the guidemap window. Thus, it is possible for the data analyst to use guidance 

when needed, and to avoid it when it is not needed.

4.3 Data Analysis without Guidemaps and Workmaps

Finally, portions (or all) of the data analysis can be performed without guidemaps or workmaps, as may be desired by 

sophisticated users. This can be done in three distinct ways. One is to use menubar menus (the menubar is always dis-

played). Another is to type statements in ViDal, ViSta’s Data Analysis Language. The third is to use ViDal scripts. 

Note that we can display the workmap at any time to see the entire history of the analysis, even though we have not 

been displaying it during the analysis. All of the information necessary to construct the workmap is created as the 

analysis session unfolds, even when the workmap is hidden. Also note that in any of the above situations we can dis-

play the guidemap so that we can use an expert’s advice as to how to proceed with the analysis. These aspects of 

ViSta, which we do not discuss here, are described by Young (1994) and Young & Lubinsky (1994).

5.0 Creating Statistical Strategies

The guidemaps that embody statistical strategy are created while in “authoring” mode. In this mode there is an 

Author’s WorkBench window in which new guidemaps are created. In addition, a Tools menu is added to the 

menubar, and the action of all Data, Transform, Analyze and Model menu items is enhanced. 
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Taken together, the modified menu items and the new Tools menu items are “guidetools” that are used to create new 

guidemaps.The expert uses these guidetools to create the buttons that are to become the nodes of the guidemap. 

Recall that there are flow buttons, which control the flow between portions of the analysis, and procedure buttons, 

which control the use of data-analysis procedures. The Tools menu creates flow buttons, while the other menus create 

procedure buttons.

Procedure buttons are created by using those menu items that are needed to perform the specific type of data analysis 

for which guidance is being created. When in authoring mode, the action of the menu items is modified so that, in 

addition to the analysis action taking place, a button is placed on the author’s workbench (the button’s title is the same 

as the menu item’s name). 

Note the basic design philosophy underlying the creation of statistical strategies: The expert creates the guidemap’s 

data-analysis procedure buttons by using the menu system in exactly the same way that s/he would use it when it is 

not in authoring mode. Since the system is in authoring mode, buttons appear in the workbench window. Otherwise, 

everything is the same as when the system is not in authoring mode. This design feature means that the expert is free 

to perform whatever analysis is desired, using whatever data-procedures are appropriate, without any new authoring 

“features” standing in the way of the authoring process.

On the other hand, flow buttons, which do not correspond to data-analysis actions, are created by using the new 

authoring “features” that are represented by items of the Tools menu. There is a menu item for each type of flow but-

ton, including Link, GoTo, Return and And items (for icons shown in previous figures), AutoLink and AutoReturn 

items that cause a guidemap to automatically link to another guidemap and to automatically return to the linked-from 

guidemap, and an Initial item to indicate which buttons are to be activated when the guidemap is initially displayed. 

Thus, while the author does not need to learn any new aspects of the system while creating the procedure steps of the 

data analysis, new features must be learned to indicate flow control (the actual guidance). In a more complete imple-

mentation, many additional flow-control features would be available. The literature on visual programming is partic-

ularly relevant (Chang, 1990; Shu, 1988; Rasure & Williams, 1991; Myers, 1990).

Once the expert has placed two or more buttons or icons on the workbench, s/he can connect them together with an 

arrow drawing tool. Of course, at any time the buttons and icons can be dragged to new locations to give the 

guidemap a more pleasing and comprehensible layout. The arrows automatically reposition themselves to reflect the 

new layout. Of course, when the map is entirely created, the expert saves it for later use by the novice. Finally, the 

expert must create the help information that is displayed when the novice clicks on the ?? side of a button. This is 

done by using an ordinary text editor, and by saving files with names that meet certain conditions so that they can be 

found when needed.
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6.0 Discussion

In this section we discuss issues related to our research concepts and their implementation. These issues include sta-

tistical objects, hypertext and hypercode, visual programming and program visualization, a cognitive model of data 

analysis, and methods for empirically evaluating our ideas.

6.1 Statistical Objects

ViSta is implemented using the object-oriented programming features of Lisp-Stat (Tierney, 1990). Lisp-Stat has 

been extremely useful for prototyping and testing our ideas in visual statistics. We doubt that an academic statistician 

could have prototyped these ideas on his own without monetary support in approximately 18 man-months (as was 

done here by the first author) using any other system. Indeed, we began prototyping our ideas in S (Becker, Chambers 

& Wilks, 1988) and after 9 man-months abandoned the effort. The fact that Lisp-Stat includes object, windowing and 

graphical systems made the effort much easier. One of the great strengths of Lisp-Stat is the openness of the system, 

particularly of the graphical subsystem. It was fairly straight-forward to develop guidemaps and workmaps, with the 

system running on a variety of hardware.

One of the strengths of Lisp-Stat is that it supports object-oriented programming, as do New-S (Becker, Chambers & 

Wilks, 1988) and APL2STAT (Friendly & Fox, 1994). One essential idea of the system is that an object is a collection 

of data structures and computing methods. Certain objects, called prototype objects, have data structures that do not 

contain data. Prototypes are used to create instances, which are objects with the same data structures and methods as 

the prototypes, where the data structures contain data. Another essential idea is that object prototypes can inherit data 

structures and computing methods from other object prototypes. This greatly simplifies the programming task, since 

already existing data structures and computing methods do not have to be reprogrammed for new objects.

At the heart of our implementation is a system architecture involving statistical object prototypes. Our system is 

based on the insight that the fundamental statistical object prototype should be the data prototype, and that program-

ming would be greatly simplified if statistical models were prototype objects inheriting from data object prototypes. 

Our experience, which suggests that this insight was correct, also suggests that a mixed hierarchical structure based 

on multiple inheritance would further simplify programming structure. 

Our current view of the best system architecture is shown in Figure 4. We now believe that one of the most fundamen-

tal kinds of statistical object prototypes is the “data prototype”. It has data structures and computing methods that are 

needed by all statistical objects. In addition, we believe there should be two additional fundamental statistical object 

prototypes, called the “model prototype” and the “transformation prototype”. These have data structures and comput-

Insert Figure 4 About Here
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ing methods that are unique to models or transformations. We further suggest that there should be specialized data 

object prototypes for specialized kinds of data (multivariate, relational, tabular, etc.). For each kind of specialized 

data prototype there is a corresponding specialized model object prototype which multiply inherits data structures and 

computing methods from the generalized model prototype and from the appropriate specialized data prototype. The 

same type of multiple inheritance applies to the transformation prototypes as well.

We now come to the bottom of the hierarchy. Here we have specific model and transformation prototypes that inherit 

structures and methods from the appropriate model or transformation prototype. These could include specific multi-

variate model prototypes for multiple regression, principal components and correspondence analysis, a relational 

model prototype for multidimensional scaling, and a tabular model prototype for analysis of variance. There could 

also be a number of specific transformation prototypes, as shown in the figure. (All model and transformation proto-

types shown in the figure are implemented in ViSta, though with the simple inheritance structure).

Note the following interesting aspect of this architecture: The analysis procedures discussed in previous sections of 

this paper correspond to what we refer to here as specific model prototypes, whereas the models that we discussed ear-

lier are instances of these specific model prototypes. Thus, models are instances of procedures! This is as it should be 

— an analysis procedure is a collection of computing methods and data structures waiting to be applied to informa-

tion, whereas a model is the specific instance of having applied those methods to a specific collection of data. Also, an 

analysis procedure has an empty data structure, whereas a model has a data structure that has been filled with the 

results of applying the method to some data. Note also that this simplifies the ability to update analysis sessions with 

new or revised data: Whenever new data are at hand, all models can be easily updated simply by updating their data 

and reapplying their methods to the new data.

6.2 Hypertext and Hypercode

Hypertext (or, more generally, hypermedia) is a generic approach to linking and structuring all forms of computerized 

materials so that nonlinear, dynamic documents can be constructed (for more information, consult Woodhead (1990) 

or Martin (1990)). Hypermedia consist of nodes that are connected by links. The nodes contain the materials, which 

may be text, diagrams, animations, images, video, sound, computer programs or any other computerized information. 

The links provide a mechanism for nonlinear navigation among the nodes. The nodes may be linked together into 

web, hierarchical, cyclic, or other structures. Hypermedia always have tools for navigating the link structure and for 

displaying the node material. 

Clearly, our help system is a hypertext: The guidemap buttons are the nodes that contain the help text, and the arrows 

are the links between the nodes. In addition, the ?? side of a guidemap button is the tool that accesses and displays the 

hypertext. The buttons also navigate the hypertext. Finally, the structure of the hypertext is shown by the structure of 

the guidemap. 
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Of much more interest is the fact that our guidance system is a hypercode, a form of hypermedia where the materials 

are computer programs. Note that the structure of the hypercode is represented by the structure of the guidemap, and 

that the hypercode is navigated by clicking on the !! side of guidemap buttons. When the novice analyst clicks on the 

!! side of a button, the button not only navigates to a particular piece of hypercode, but also causes the execution of 

that piece of code. Thus, from the point-of-view of the novice user, the guidemaps display the structure of the guid-

ance hypercode, provide a means of navigating through it, and a means of executing pieces of it. (Note that the 

guidemaps also display the structure of the help hypertext, provide a means of navigating through it, and for display-

ing pieces of it. Thus, both the hypertext and hypercode are seamlessly unified.)

It follows that the expert user’s process of authoring guidemaps is, in fact, a process for writing hypercode. As 

described above, authoring involves creating two kinds of buttons: action buttons and flow buttons. When an action 

button is created, the code that is written is a ViSta function which parallels a data-analysis menu item and which 

causes a data-analysis step to take place. On the other hand, when the author creates a flow button, the code that is 

written consists of standard Lisp flow control functions. 

Thus, authoring guidemaps is computer programming. However, it is not the usual type of programming in which the 

programmer types statements. Rather, it is one in which the statements get generated automatically when the author 

(programmer) selects a button. This form of computer programming is known as visual programming, which is dis-

cussed in the next section.

6.3 Visual Programming and Program Visualization

Visual programming and program visualization are very active areas of research in computer science. There goal is to 

simplify programming, and to make programming accessible to a wider audience. They attempt to reach this goal by 

combining the disciplines of interactive graphics, computer languages and software engineering to take advantage of 

a person’s nonverbal visual capabilities and a computer’s interactive graphical capabilities.

Conventional textual computer languages process program instructions and manipulate information that exist in one-

dimensional, nongraphical (textual) streams. Visual programming, by contrast, refers to a way for people to create 

programs using graphical methods. These icons can be viewed as two-dimensional graphical instructions (Myers, 

1990), as opposed to one-dimensional textual instructions (although the two-dimensional visual program is translated 

into an underlying one-dimensional textual program). Program visualization, on the other hand, is an entirely differ-

ent concept: Here, the program is specified in the usual textual manner, but is then illustrated visually in some form. 

Thus, the program is specified as text and translated into graphics. Note that this reverses the process involved in 

visual programming, where the program is specified as graphics and is translated into text.

Guidemaps and workmaps are simple examples of visual programming and program visualization. Guidemaps are 

visual programs which have been created by an expert using a visual authoring system, and which are “executed” by 
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the novice. Workmaps are program visualizations which have been created textually (or visually). In fact, when a 

workmap is saved and re-executed, it becomes a visual program as well as a program visualization.

The earliest visual languages were computerized flowcharts. More recently, visual languages are formally based on 

graph theory, consisting of nodes and edges (note the connection with hypertext). Often the edges are directed (and 

called arrows). There are graphs such as “higraphs”, which allow nodes to contain other nodes and which permit 

arrows to split and join, or “colored petri nets” which allow parallel processing systems to be constructed. A number 

of visual programming systems use dataflow diagrams. Here the operations are typically put in nodes, and the data 

flow along the arrows connecting the nodes. 

In our work we have based guidemaps on directed cyclic graphs and workmaps on directed acyclic dataflow diagrams 

(see Young & Smith, 1991). Our developments are limited, however, in that we have not developed looping or condi-

tional branching. Thus, one can argue that our workmaps and guidemaps do not constitute a full visual programming 

language, since the abstract definition of a computer language requires the inclusion of these capabilities. For this rea-

son, we feel that it would be advantageous to more thoroughly investigate the possibility of developing (or using an 

existing) visual dataflow language as the basis for a structured graphical interface for performing and guiding data 

analysis. Two interesting possibilities that bear further examination are VisaVis (Poswig, Vrankar & Morara, 1994) 

and Khoros (Rasure & Williams, 1991). Both are functional visual programming languages with looping and condi-

tional branching. Khoros is also a dataflow language.

6.4 A Cognitive Model of Data Analysis

Young & Smith (1991) present a structured graphical user interface for data analysis that, like ours, is also designed 

to improve the data analysis process. One of the cornerstones of their presentation is that the structure of the data-

analysis environment should reflect the various modes of cognition used by data analysts during data analysis. This 

idea leads them to propose a cognitive model for data analysis: There are several specific cognitive modes of behavior 

and thought used by a data analyst during data analysis, one of these modes being active at any given time, with the 

activation of a mode depending on the specific kind of ongoing data analysis activity. They then argue that a data-

analysis environment should have visible software modes (windows) corresponding to the cognitive modes. They 

propose three cognitive modes, each being supported by a corresponding software mode: An exploratory cognitive 

mode that is active when a data analyst explores data, and which is supported by a graphical user interface (a system 

mode) like our guidemap; A confirmatory cognitive mode that underlies confirmatory data analysis and is supported 

by an alphanumeric interface like our language window (discussed in Young & Lubinsky, 1994); A structure cogni-

tive mode which is used to construct, maintain and revise a meaningful structure of the overall data-analysis session, 

and which is supported by a graphical user interface like our workmap.

While we agree with Young & Smith’s assumption that data analysts have different modes of cognition during data 

analysis, we take the position here that modes of cognition are a function of the level of data-analysis expertise rather 
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than a function of the specific data-analysis activity occurring at a given moment of a data-analysis session. We 

believe that the same cognitive modes are used by novice, competent, experienced and expert data analysts, but that 

the distribution of time spent in the various modes changes as the data analyst becomes more experienced with a par-

ticular aspect of data analysis. 

Thus, we argue that a well-structured data-analysis environment should have software modes (i.e., windows) that 

reflect the variation in cognitive modes that data analysts employ, and that the frequency of employment of such cog-

nitive (and, therefore, software) modes is a function of the experience of the analyst. We also argue that a specific data 

analyst does not necessarily always operate at the same level of expertise throughout an entire analysis. Thus, some-

one may be very experienced with exploring data, but at the same time be less competent when it comes to perform-

ing a principal components analysis, and totally unfamiliar with time series analysis. Therefore, we have designed our 

data-analysis environment to permit an analyst to effortlessly switch between the various interfaces, and to have these 

interfaces be mutually complementary and seamlessly integrated.

Perhaps the truth of the matter combines Young & Smith’s assertion that the user’s cognitive mode depends on the 

specific type of statistical activity that is under way, as well as on our assumption that the user’s cognitive mode 

depends on the level of expertise of the analyst for the specific type of statistical activity that is taking place. In any 

case, this is a matter for future empirical research, research which could yield improvements in the quality, satisfac-

tion and productivity of the data-analysis process.

6.5 Empirical Evaluation

We have proposed and developed an environment for data analysis that is designed to improve the data analysis pro-

cess. Our work is based on our own theories about statistical strategy and about how to design an environment based 

on these theories. While one may (or may not) think that our theories and developments will improve the data analy-

sis process, we have presented no evidence addressing this issue. However, we have presented a formal hypothesis 

about the effects of our work, and that hypothesis can be empirically evaluated.

As you will recall, our fundamental hypothesis is that data analyses performed by data analysts in an environment 

that visually guides and structures the analysis will be more productive, accurate, accessible and satisfying than data 

analysis performed by the same people in an environment without such visual aids.

We can empirically evaluate this hypothesis by designing an experiment in which there are several groups of data 

analysts (the subjects). All subjects would use ViSta to analyze the same data to obtain answers to the same specific 

questions. The groups would vary according to what visual aids they were provided to do the analysis: Group GS 

(guided and structured) would have both guidemaps and workmaps, whereas group G would have only guidemaps, 

and group S would have only workmaps. In addition, group M (menus) would perform the analysis using menus but 

without guidemaps and workmaps, and group L (language) would perform the analysis by typing statements in ViDal 
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(ViSta’s Data Analysis Language), seeing no menus, guidemaps or workmaps. Our hypothesis leads us to predict that 

group GS would perform the best, groups L and M the worst, with groups G and S in between.

We must, of course, empirically define “productive, accurate, accessible and satisfying”. While this is not the place to 

present these empirical definitions, we can anticipate how such measures would be developed: Productivity could be 

defined by measures of the total number of steps in the analysis, and the number of dead-ends and false turns made 

during the analysis (as judged by the subjects themselves as well as by expert judges). Accuracy could be defined not 

only by whether the subjects “got the right answer”, but also by whether the techniques used to answer the data anal-

ysis question were appropriate (as judged by expert judges). Accessibility and satisfaction could be based on the sub-

ject’s judgments about how satisfied or frustrated they felt during the analysis, whether they would want to use the 

environment again, and whether they would recommend it to a friend.

In addition to our basic hypothesis, we hypothesize that the amount of improvement of the data analysis process 

should be greatest for novices, with less improvement for subjects with greater statistical sophistication. To test this 

hypothesis our experiment would have to be repeated with subjects selected from populations with different levels of 

data analysis sophistication. For example, the novice population could be students in classes that provide the first 

introduction to data analysis. An intermediate population could be graduate students who have taken several data 

analysis courses. An advanced population could be professional data analysts.

Clearly, when software is developed whose purpose is to improve the user’s experience, that experience should be 

empirically evaluated. Unfortunately, this software development step is time-consuming and expensive, and is rarely 

taken. However, we feel that our research and development effort is incomplete unless we know whether our ideas 

really work. Thus, we look forward, with some trepidation, to empirically evaluating the ViSta user’s experience.

7.0 Conclusion

Understanding and representing statistical strategy is a relatively new area of research that is just now gaining 

momentum. As the capability of computers continues to increase, while their price continues to decrease, the audi-

ence for complex software systems such as data-analysis systems will become wider and more naive. Thus, it is 

imperative that these systems be designed to guide data analysts who need the guidance, while at the same time be 

able to provide full data-analysis power. An efficacious way of doing this is certainly needed, and we believe that 

visual statistical strategies should be available to guide and structure the data-analysis process so that relatively nov-

ice users can perform high-quality data analyses. 

Naturally, we hope that our methods for guiding novice data analysts will prove useful. Of much greater importance, 

however, is our basic point: Concentrated attention should be given by computational statisticians to the development 

of software environments which improve the data analyst’s experience. We hope that our work is a useful first step in 

what we see as an important but neglected area of computational statistics. 
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9.0 Figures

Figure Captions

FIGURE 1. Formal Representation of Statistical Strategy in the WorkMap and GuideMap

FIGURE 2. Formal Representation of Strategy for Exploring Data

FIGURE 3. Strategy for Exploring Data after using several analysis procedures

FIGURE 4. Statistical Object Prototype Structure
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