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Multivariate Statistical 
Visualization

 

Abstract

 

: In this paper we describe multivariate statistical visualization techniques 
designed to improve the quality, accuracy and satisfaction of the statistical data analysis 
process. We describe techniques for visualizing multivariate data structure, for visualiz-
ing multivariate data models, and for visualizing multivariate data analysis sessions. We 
illustrate these techniques with ViSta, our statistical visualization research and develop-
ment testbed. 

 

1 Introduction

 

Statistical data analysis systems have long included graphics to help users see the results 
of analyses. Such statistical graphics have also been used to help users explore data for 
structure. Dynamic statistical graphics -- graphics which incorporate motion -- can be 
powerful tools for exploring data structure. They can be powerful because they help the 
scientific explorer visually analyze -- to visualize -- structure. 

Dynamic statistical graphics are especially powerful for visualizing structure in multi-
variate data. This is because multivariate observations can be abstractly represented as 
points in a space which has a dimension for every variable, and because dynamic statis-
tical graphics have been designed to visualize structure of high-dimensional space.  
Since the early stages of scientific inquiry involve exploration, and since scientific 
exploration leads to scientific hypotheses, dynamic statistical graphics can be central to 
the process of gaining scientific insight about multivariate data.

For many years, statisticians focused on developing and improving inferential methods 
designed to test hypotheses, to the neglect of exploratory methods designed to form 
hypotheses.  In recent years, there have been many new developments in exploratory 
data analysis methods.  Tukey, in his landmark book, Exploratory Data Analysis (1977, 
p. V), states that exploratory data analysis 

"is about looking at data to see what it seems to say.  It concentrates on simple arith-
metic and easy-to-draw pictures.  It regards whatever appearances we have recog-
nized as partial descriptions, and tries to look beneath them for new insights.  Its 
concern is with appearance, not with confirmation."  

The work reported here falls under the general rubric of "exploratory data analysis," and 
is guided by the philosophy of "looking at data to see what it seems to say."  We focus 
on dynamic statistical graphics methods for exploring multivariate data, methods which 
we call 

 

multivariate statistical visualization

 

 methods. 
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Multivariate statistical visualization methods capitalize on the pattern recognition 
power of human vision and on the computational power of graphics workstations to 
help data analysts look for structure (form hypotheses) that may be in their multivariate 
data.  The goal of multivariate statistical visualization is to aid in forming hypotheses 
about the data's high-dimensional (hD) geometric structure, even though we can only 
see in 3D.  To do this, the visualization must: 1) respect the data's high-dimensional 
geometry; 2) respect the user's three-dimensional perception; and; 3) respect the work-
station's two-dimensional screen and its other computational limits. Thus, the problem 
that all multivariate statistical visualization methods must tackle is how to present hD 
information in a 2D plane, such that our 3D perception can understand the hD geometry.   

 

1.1 Historical Background

 

Presenting 3D in a 2D plane is not new, of course.  Artists have done this for centuries, 
statisticians for over a century, and computers for nearly three decades.  Indeed, even 
techniques for presenting hD in a 2D plane are not new.  Tufte (1983, p. 40) presents a 
marvelous example, dating from 1861, of a 2D statistical graphic that incorporates six 
dimensions of information concerning the fate of Napoleon's army in Russia.

There are sophisticated computer techniques that create images that appear to genuinely 
occupy 3D volume.  These techniques do a very convincing job of tricking us into "see-
ing 3D."  Even ordinary computer-generated 2D printer plots can have additional 
"dimensions" added by labeling the points in the 3D space. Stuetzle (1987) has devel-
oped a system for manipulating several 2D "plot windows" that provide multiple views 
of hD data, helping to provide understanding of multivariate structure.  Also, with com-
mon computer-generated color graphics, more dimensions may be added by using vari-
ous colors and shapes to distinguish the points on discrete dimensions.  In addition, 
there are a variety of techniques for communicating 3D and hD on a 2D plane, including 
perspective and stereo projections, movement, dynamically-changing object shapes, etc. 
Many of these techniques are discussed in this paper.

Multivariate statistical visualization methods can be classified as passive or active.  
Active methods require the user to interact with the computer to create movement, 
whereas passive method only require the user to passively watch movement that the 
computer creates.  We briefly mention some examples of each kind of multivariate 
graphics in the next few paragraphs.

Fisherkeller, Friedman and Tukey (1974) developed an active multivariate statistical 
visualization system that constructed a spinplot -- a 3D scatterplot that could be rotated 
by the user.  The sophistication of this early approach has been greatly increased in later 
descendants (Donoho, et al., 1982; Friedman, McDonald and Stuetzle, 1982; and 
Donoho, Donoho and Gasko, 1986; Gabriel and Odoroff 1986), and has been incorpo-
rated recently in many commercial statistical systems. Huber, an early developer of this 
approach, discusses his experiences in a later paper (Huber, 1987). With these systems, 
the user rotates the spinplot with a mouse or cursor keys.  The user-controlled rotations 
create a reasonable sensation of depth. Spinplots are discussed later in this paper.

Additional active multivariate statistical visualization methods have been developed to 
assist the data analyst in understanding the structure of data.  Many of these methods 
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involve forming subsets according to locations or properties of the displayed objects or 
according to values of variables in the data set.  Donoho, Donoho and Gasko (86) imple-
ment "slicing" and "masking," methods for dynamically subsetting observations on a 
fourth dimension to determine where these observations are in the 3D scatterplot.  
Becker and Cleveland (1986) and Young Kent & Kuhfeld (1988) discuss "brushing," a 
way of dynamically subsetting observations simultaneously on two variables, which 
helps the user determine where the observations fall on yet other variables.   Many 
developers implement other subsetting methods that group observations according to 
variable values.

Subsetting is particularly powerful when combined with a tool called "metamorphing" 
by Young Kent & Kuhfeld (1988). This tool allows the user to change the appearance of 
objects on the screen that represent subsets of observations.  Various researchers have 
developed systems which allow objects to have attributes such as color, shape, labels, 
size, etc., and then allow these attributes to be metamorphed for subsets of observations, 
thereby helping to easily identify the different subsets.  

Tukey & Tukey (1980) proposed what is now known as the scatterplot matrix, a graphi-
cal matrix where each “element” is a 2D scatterplot formed by plotting the row variable 
against the column variable. Recent developments of this approach are presented by 
Carr, Littlefield, Nicholson and Littlefield (1987) and are available in many commercial 
systems. When brushing and metamorphing are performed on scatterplot matrices the 
result is a very useful active multivariate statistical visualization method.

Passive multivariate statistical visualization methods have been developed to search 
through the hD data space and to display smoothly changing, dynamic projections of 
this search.  Friedman and Tukey (1974) developed a passive method they call Projec-
tion Pursuit for looking through the hD data space to find "interesting" 2D views.  This 
approach is discussed extensively by Huber (1985).  Nicholson and Carr (1985) have 
developed another passive method that presents rocking views of objects located in 3D 
space whose dynamically changing shape represents the changing values of two addi-
tional variables.  With this system, the rocking takes place on all five dimensions simul-
taneously.  

Asimov (1985) and Buja & Asimov (1986) have proposed the Grand Tour, a passive 
multivariate statistical visualization method designed to reveal structure in hD space. 
This method displays smoothly-changing 2D projections of hD data space, with the 
change in projection being controlled by computer algorithms. Closely related to the 
Grand Tour is the Guided Tour, an active multivariate statistical visualization method 
developed by Young Kent & Kuhfeld (1988), Hurley & Buja (1990), and Young & 
Rheingans (1991a). A Guided Tour is designed for visualizing structure in high-dimen-
sional data that uses smoothly-changing 2D or 3D projections of hD data space, with the 
changes in projection being guided by the user through high-interaction, immediate 
feedback point-and-click actions. These methods will be discussed in Section 2.3.

Recently, a new active multivariate statistical visualization method has been introduced 
by Young and his co-workers (Young, Faldowski & Harris, 1992; Faldowski, 1992; 
McFarlane, 1992). The method, which is called a “spreadplot”, is a graphical analogue 
of a spreadsheet: it is a set of dynamic plots that are algebraically linked together via a 
set of equations.  When the user makes changes in one plot, the other plots change 
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according to the equations linking the plots. Spreadplots are particularly appropriate for 
viewing a multivariate model’s views of structure in multivariate data. The plots present 
several model views of the data, while the equations that link these plots are based on 
the model’s itself. These developments will be discussed in Section 2.4.

Spreadplots support a new class of graphical tools which perform interactive graphical 
modeling. With these tools users modify the model’s parameter estimates by manipulat-
ing elements of the graph -- i.e., they move points and vectors. When estimates are 
changed, these new estimates are used by the equations linking the plots to update all 
plots so that they show the new view of the data provided by the revised parameter esti-
mates. This process allows users to not only visually explore their data, but also to visu-
ally explore various models of their data, a powerful new way to “see what the data 
seem to say”.

 

1.2 ViSta: A Visual Statistics Testbed

 

In this paper we discuss nearly all of the techniques discussed in the previous section. 
The discussion uses ViSta (Young, 1992), a visual statistics research and development 
testbed, to illustrate many of the techniques. ViSta is written in Lisp, using the Lisp-Stat 
environment (Tierney, 1991). It has been developed on Apple Macintosh microcomput-
ers. It should also run (with minor modifications) on Unix workstations under X-Win-
dows, and on IBM-compatible microcomputers under Microsoft Windows. You can 
contact the authors for further information about the availability of ViSta.

ViSta is not a complete statistical system. Rather, it is a testbed for research and devel-
opment in statistical visualization techniques. As such, it supports the visualization tech-
niques reported in this paper, but does not include many more common features that 
appear in typical statistical systems. ViSta is designed for an audience of users having a 
very wide range of data analysis sophistication, ranging from novices to experts. ViSta 
provides data analysis environments specifically tailored to the user’s level of expertise. 
Guidance is available for novices, and tools are available for experts to create guidance 
for novices. A structured graphical user interface is available for competent users, and a 
command line interface is available for sophisticated users.

ViSta’s design takes into account that visualization techniques are not useful for every-
one all of the time, regardless of their sophistication. Thus, all visualization techniques 
are optional, and can be dispensed with or reinstated at any time. ViSta combines its 
novel visualization techniques with standard statistical system features that have proven 
useful over the years. This combination means that ViSta provides a visual environment 
for doing data analysis without sacrificing the strengths of command lines, batch pro-
cessing, and textual reports. ViSta’s design rests on the assumption that combining tra-
ditional approaches with cutting edge visualization techniques gives the user the most 
complete understanding of the data.

 

1.3 Organization of this Paper

 

In this paper we organize multivariate statistical visualization techniques into three 
areas, namely those for visualizing multivariate data; those for visualizing multivariate 
models of data; and those for visualizing entire sessions of multivariate data analyses. 
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We briefly define each of these in this section, and then go into each in depth in the 
remainder of the paper.

 

Visualizing

 

 

 

Multivariate Data Structure:

 

 Multivariate statistical visualization tech-
niques that are designed to help visualize data structure include scatterplot matrices, 
spinplots and tourplots, and dynamic versions of such familiar graphics as scatterplots, 
histograms, box-plots, etc. Visualizations involve the display of these graphics in multi-
ple windows that are linked by their observations and/or their variables. When an obser-
vation is highlighted, metamorphed or labeled in one window, it can be highlighted, 
metamorphed or labeled in other windows. These graphics are designed to help the ana-
lyst visually explore spaces representing the data’s structure. This topic most closely 
parallels the work on plot-windows presented by Stuetzle (1987).

 

Visualizing

 

 

 

Multivariate Models:

 

 Multivariate statistical visualization techniques that 
are designed to help visualize models of multivariate data include all of the techniques 
discussed above, as well as spreadplots involving those techniques. Spreadplots support 
interactive graphical modeling techniques that are designed to help the analyst visually 
explore the effects of revising a model’s parameter estimates. The parameter estimates 
are represented by graphical elements such as points or vectors in the multi-window 
spreadplot.These estimates can be revised with graphical tools for moving the points or 
vectors. Once new estimates are obtained, the implications of the new estimates are rap-
idly displayed as changes in the model, its fit, and its residuals. While the new estimates 
may not be mathematically optimal, they may be more meaningful, leading to greater 
insight about the data than the optimal estimates. This topic most closely parallels the 
work on spreadplots presented by Young, Faldowski. & Harris (1992), Faldowski 
(1992) and McFarlane (1992).

 

Visualizing Multivariate Analyses

 

: Techniques for visualizing multivariate analyses 
fall into two groups. First, there are techniques designed to help visualize the overall 
structure of an on-going multivariate data analysis session. The visualization is a “work-
map”

 

. 

 

As the session progresses, the workmap grows, showing each step taken. Thus, 
when data are input, an icon appears that represents the data. When an analysis method 
is applied to data, a “method” icon appears that is connected to the data icon, represent-
ing the fact that the data are being processed by the method. When the analysis takes 
place, a “model” icon appears connected to the method icon. This shows that the data 
have flowed through the method to yield a model. This workmap can be used to remind 
the analyst about the analysis that has taken place, and can be used to return to previous 
analysis steps. This topic most closely parallels the work on a structured interface for 
data analysis presented by Young & Smith (1991). 

The second multivariate analysis visualization technique is designed to guide an on-
going multivariate data analysis session. The visualization is a “guidemap”, and is based 
on the assumption that users with no knowledge about data analysis can benefit from an 
environment which visually guides their analysis. To this end, the sequence of steps 
which expert data analysts think should be taken are presented visually as a cyclic 
graph. The graph guides those with less expertise through the series of steps in a com-
plete statistical data analysis. This topic most closely parallels the work on strategies for 
guiding statistical novices presented by Lubinsky, Young & Frigge (1990).

We discuss each of these topics in the remainder of this paper.
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2 Visualizing Multivariate Data

 

In this section we discuss the theory underlying the visualization of multivariate data. 
We then present two major techniques based on this theory, each accompanied by an 
example.

 

2.1 Geometrical Representation of Multivariate Data

 

The multivariate data visualization techniques discussed in this paper are based on a 
geometric model of data that is commonly used in statistics. This model views the cases 
(observations) as points in a high-dimensional space which has a dimension for each 
variable. This geometric model is used to construct plots which are low-dimensional 
views of the data. Since the model is at the very heart of our approach to multivariate 
statistical visualization, we need to precisely define the model before proceeding fur-
ther.

We begin by supposing that multivariate data consist of 

 

h

 

 numerical variables observed 
on each of 

 

n

 

 cases or observations.  We further suppose that these data are collected 
together into a matrix 

 

X

 

, an (

 

n

 

 x

 

 h

 

) matrix of data with elements 

 

x

 

ia

 

.  This matrix has 

 

n

 

 
rows, one for each of the 

 

n

 

 cases, and 

 

h

 

 columns, one for each of the 

 

h

 

 variables. With-
out loss of generality,  we assume that 

 

X

 

 is "column centered":  i.e., that the mean of 
each column is zero. 

Now we can introduce the geometric model of data, which is called a 

 

data space

 

.  A 
data space is an abstract view of data.  In the data space each case of the data is repre-
sented by an 

 

h

 

-dimensional observation vector  

 

x

 

i

 

 

 

whose 

 

a

 

’th element is the observation 
on variable 

 

a

 

.  Thus, abstractly, the entire set of data is represented by 

 

n

 

 points in an 

 

h

 

-
dimensional data space.  We denote the data space as  

 

R

 

h

 

, an h-dimensional space of real 
numbers. The rows of the data matrix contain coordinates of the points in this space, the 
columns are the dimensions of the space.  Since we have assumed that 

 

X

 

 is column cen-
tered, the centroid of the space is at the origin.

The data space is the abstract foundation on which all of our visualizations are built: 
Every graphic provides a low-dimensional view of the data space, the data space being 
orthogonally projected onto the low-dimensional graphic. For example, we can think of 
a scatterplot as a plane which is located somewhere in the data space, with the observa-
tion-points (and sometimes the variable-dimensions) being orthogonally projected onto 
the plane for our inspection. A dot-plot is similar, except it represents the result of 
orthogonal projection onto a line in the space. Moving plots, such as tourplots, can be 
understood to be a three-space that is touring through the data space, with the points 
(and dimensions) in the data space being orthogonally projected onto the three-space, 
the projections being constantly updated as the 3D-space tours throughout the high-
dimensional data space.

 

2.2 Plot-Windows: Empirically Linked Plots

 

Since all of the graphics we deal with are views of the data space, they all represent dif-
ferent views of the same thing. Thus, they all have the same set of points, and these 
points all represent the same observations. Therefore, actions that take place in one plot-
window (such as labeling a point, or metamorphing the point’s symbol) can be mapped 
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straight-forwardly onto each of the other plot-windows, since there is a one-to-one cor-
respondence between points in one plot-window and points in another. We say that the 
plot-windows can be “linked” via their observations. This is one of the central ideas dis-
cussed by Stuetzle (1987).

Optionally, the graphics can also present a set of vectors which represent projections of 
the data space’s dimensions, the dimensions corresponding to the data’s variables. Just 
as there is a one-to-one correspondence of observation-points between various plot-win-
dows, so is there a one-to-one correspondence of variable-vectors between various plot-
windows. Thus, plot-windows can also be linked via their variables.

When plot-windows are empirically linked together via their observations or variables 
they jointly act as a single visualization of the data space. We call these “empirically” 
linked plots because they are linked through the data (and because we need to distin-
guish this type of linkage from the algebraic linkage used in the spreadplots described in 
Section 2.4). There are many types of basic plot-windows which can be linked together, 
including histograms, dot-plots, box-plots, scatterplots, spinplots, scatterplot-matrices, 
and tourplots. Dot-plots, box-plots and histograms are one-dimensional plots which dis-
play a single variable 

 

x

 

a

 

 of the multivariate data; scatterplots are 2D plots which display 
pairs of columns of 

 

X

 

; spinplots are 3D plots which display triples of columns of 

 

X

 

, and 
tourplots and scatterplot-matrices are hD plots that display many columns of 

 

X

 

. (We 
explain the hD plots below. We assume you are familiar with the others. If not, see 
Cleveland & McGill, 1988) 

Once the plot-windows are linked together, tools for brushing and selecting points can 
be used to select observations in one of the plots, while tools for metamorphing and 
labeling points can be used to identify the selected or brushed observations in all plots. 
Furthermore, the scatterplot matrix can be used as a control panel to determine which 
variables are shown in other linked plots. (We assume you are familiar with these tech-
niques. If not, see Cleveland & McGill, 1988).

Figure 1 presents an example of a visualization of data concerning automobiles. The 
automobiles are rated on six variables by a consumers magazine. Five of these variables 
have been selected for visualization. The visualization includes four plot-windows and 
two windows presenting car names and variable names. At the upper-left is a scatter-
plot-matrix, a matrix whose cells are scatterplots formed by the row and column vari-
ables. To its right is a spinplot. At the bottom-left is a scatterplot, and to its right is a 
histogram. The additional two windows present lists of variable and observation names. 

The four plot-windows and the OBS window are empirically linked via the data’s obser-
vations: The observations highlighted in the OBS window are also highlighted in the 
scatterplot, spinplot and histogram (and could be in the plot-matrix). Note that these are 
large American cars, and that the spinplot has been rotated to show these are separated 
from the other, smaller automobiles. From the scatterplot we see that these automobiles 
have high weight and displacement. The spinplot also shows that these tend to have high 
horsepower. When one selects or brushes points in any plot (by clicking or dragging the 
mouse), points for the same observations are highlighted in the other plots. Points that 
are selected can be metamorphed: Note that this has been done, as some points are rep-
resented by crosses and some by disks. Being able to see where observations appear in 
several plots lets the analyst get a better idea of the data’s structure.
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The four plots are also empirically linked via their variables: By clicking on a cell of the 
scatterplot-matrix the user can choose which variables are plotted in the other plots. In 
the figure the scatterplot-matrix has been clicked on where the “finger” cursor is 
located. As a result, the scatterplot and histogram are showing variables which corre-
spond to that cell, and the spinplot also uses these two variables. Clicks and shift-clicks 
on cells in the scatterplot-matrix determine which variables appear in the other plots. 
Being able to display various combinations of variables in the other plots lets the analyst 
look at many views of the data’s structure. In this example, using the scatterplot-matrix 
to select the three variables shown in the spinplot reveals that these three variables 
(Weight, Displacement and Horsepower) are all fairly strongly related in a linear fash-
ion, with the cars dividing into two groups.

 

2.3 Tourplots: High-Dimensional Spinplots

 

A tourplot is a spinplot that spins in more than 3 dimensions (Asimov, 1985; Buja & 
Asimov, 1986, Young, Kent & Kuhfeld, 1988; Young & Rheingans, 1991a). A guided 
tourplot spins as directed by the user, the user creating a guided tour of the data. An 
unguided tourplot spins as it wishes, taking the viewer on a “grand” tour of the data. Just 
as a spinplot is designed to help the user visualize structure in three-dimensional data, a 
tourplot is designed to help the user visualize structure in high-dimensional data.

The most important aspect of the guided tour is what we call 

 

the visible space

 

: a 3D pic-
ture of the data formed by orthogonally projecting the data space 

 

R

 

h

 

 onto 

 

R

 

3

 

 and then 
displaying the projected data in a spinplot. Let us denote the canonical basis vectors of 
the data space 

 

R

 

h

 

 by 

 

e

 

a

 

, a=1, ... h. They are in one-to-one correspondence with the 
observed variables. The projection is orthogonal with respect to the canonical inner 
product in 

 

R

 

h

 

. Such orthogonal projections enable us to form 3D pictures which have 
mutually perpendicular x, y and z axes. The plot-window containing the visible space 
displays a sequence of projections in rapid succession. We denote any one of these as 

 

V

 

p

 

, an (

 

n

 

 x

 

 3

 

) matrix of data with elements 

 

v

 

iap

 

. This matrix has 

 

n

 

 rows, one for each of 
the 

 

n

 

 cases, and 

 

3

 

 columns, one for each of the 

 

3

 

 variables. The projection is one of the 
series 

 

V

 

0

 

, V

 

1

 

, 

 

V

 

2

 

,  ... 

 

V

 

p-1

 

, 

 

V

 

p

 

, 

 

V

 

p+1

 

,  ...  , where each 

 

V

 

p

 

 is in 

 

R

 

3

 

. The visible space, and 
its matrix representation, involve dynamically changing projections, thus the subscript 

 

p

 

. The visible space contains points, one point for each case as it is projected from the 
high-dimensional data space into the visible space. The visual space may also contain 
vectors, one vector for each variable as it is projected from the data space.

The central problem in designing a guided tour of data space is how to enable the user to 
construct the sequence of projections 

 

V

 

p

 

, and their corresponding visible spaces.  As has 
been discussed by Young, Kent & Kuhfeld (1988) and by Hurley & Buja (1990), this is 
done by giving the data analyst tools for constructing a series of "target spaces", and 
tools for smoothly interpolating between the target spaces.  

We begin by defining the initial visible space 

 

V

 

0

 

 and two initial target spaces 

 

T

 

0

 

. and 

 

T

 

1

 

. 
The definition of the initial visible space is, simply, that 

 

V

 

0

 

 is an (

 

n

 

 x

 

 3

 

) matrix whose 
three columns equal  three of the columns of 

 

X

 

.  The definition of the initial target 
spaces is equally simple:  

 

T

 

0

 

 

 

=

 

 V0., and T1 is define as three columns of X that are not the 
same as those used for T0. The subscripts on the visible and target space matrices indi-
cate that they vary, with the initial matrices indicated by zero.  The subscripts are differ-
ent for the two matrices:  For the visible space Vp we use p to indicate that the visible 
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space presents varying projections from the data space.  For the target space Tt we use t 
to indicate that the target changes over time.

The guided tour is a trigonometric interpolation that rotates a 3D projection of the data 
space from the first target by 90o to the second target, and then by 270o back to the first 
target, following the shortest geodesic path in 6-space.  This rotation is shown in the 
tourplot window as a dynamically changing projection of the data space. The rotation 
continues until the user takes some action to guide it in a different direction.

The trigonometric interpolation that performs the rotation is:

(EQ 1)

where Vp is the matrix of coordinates of the objects seen in visible space, where the 
cosine and sine functions are applied to the diagonal of Up, and where Up is a diagonal 
3x3 matrix with diagonal values 0o ≤  upaa ≤ 90o. The values upaa  increment from 0o to 
90o dynamically over p, the increment being a multiple of 5o.

An example of a tourplot, shown in four positions as it rotates in high-dimensional data 
space, is shown in Figures 2 through 5. The data used for this example are the crime 
rate, per 100,000 population, for seven major types of crime in each of the 50 United 
States for 1977. (The data were gathered by the FBI and were published in the 1979 Sta-
tistical Abstract of the United States by the US Department of Commerce). These data 
have been submitted to a principal components analysis. The figures show the scores of 
the 50 states on the principal components. This example is discussed more extensively 
by Young & Rheingans (1991a) who also present a video example (Young & Rheingans 
(1991b).

Figure 2 shows the tourplot, which is in the large window, in its initial V0 position. What 
we see is the plane of the 3D space formed by the first three principal components.  The 
first component is displayed horizontally and the second vertically (we can’t see the 
third, which is pointing towards us).  The 50 points represent the scores of the 50 states 
on the principal components. The small window named “First Target” shows T0, and the 
“Second Target” window shows T1.

This implementation uses real-time dynamic graphics which are guided by the user with 
high-interaction, immediate feedback, point-and-click mouse actions. The guided tour 
lets the user create and control rotation in a portion of a high-dimensional space which 
can have up to six dimensions. By clicking on the “Go/Stop” button the user starts the 
tourplot spinning towards the second target, which in this example are formed from 
principal components 4 5 and 6 (denoted PC4, PC5 and PC6). Figure 3 shows it spun 
about 1/3 of the way (about 30o) towards the second target, as can be told by the posi-
tion of axis label PC1 relative to PC4, and PC2 relative to PC5. Figure 4 shows it spun 
about 2/3’rds of the way, and Figure 5 shows it at the second target position (as can be 
seen by comparing with the “Second Target” window), where we see the plane formed 
by PC4 and PC5.

Previous exploration of these data (Young & Rheingans, 1991a) tells us that the first 
principal component is overall crime rate, whereas the second one is relative rate of 
property vs. personal crime. We have selected and labeled some of the states in the 

V p Tt U pcos[ ] Tt 1+ U psin[ ]+=
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space to emphasize this interpretation. On the left of Figure 2 we see low crime-rate 
states, and on the right high crime rate states. At the top are states with average rate, but 
excessively high rates of property crimes, whereas at the bottom are average rate states 
with excessively high personal crime rates.

The tourplot is useful to see whether these clusters of states are clustered in hD space. If 
all 2D and 3D views of the tourplot show the cluster of states remaining compact, then it 
is probably the case that they are clustered in hD space. However, if some views show 
the states separated, then the states are not clustered in hD space. For example, while 
Massachusetts, Rhode Island and Hawaii are close together in Figure 2, they separate in 
the other figures. California and Nevada remain close in these four views, but New 
York, which starts out close to them in Figure 2, separates from them in other views 
(closer study reveals New York is an outlier). On the other hand, North and South 
Dakota and West Virginia seem to remain close together in all four views, as do North 
and South Carolina, and Mississippi, Louisiana and Alabama.

Figure 2: Tourplot in First Target Position
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Note that the other buttons at the top of the tourplot. The user can use these to guide the 
tour taken by the tourplot. In particular, the “H Spin” and “V Spin” buttons control the 
rate of spinning on the horizontal and vertical axes. These buttons allow the user to 
change the path that the tour spins along through hD data space, thus enabling the user 
to control which part of the space is toured. Vertical spinning can be stopped so that 
spinning occurs only horizontally (involving the two targets’ horizontal axes). The 
opposite can be done so that the space spins only vertically. Spinning can be sped up on 
one or the other axes to change the tour path. In addition, the  “Rock” button causes the 
tour to rock back-and-forth over a small angular displacement, helping the user to get a 
better understanding of the structure at some point in the tour. Finally, the “Home” but-
ton returns the plot to its initial position, so that the user can always start the tour over 
again when desired. 

The remaining aspect of the Guided Tour is represented by the “New Tour” button. This 
button changes target spaces (as described momentarily) enabling the user to tour new 
parts of data space. Figure 6 shows the data space in a position that the user found inter-

Figure 3: Tourplot Partially Rotated Towards Second Target
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esting (the labeled states are somewhat more clustered than in other views). With the 
space stopped in this position, the “New Tour” button was clicked. This changes the 
“First Target” window to become identical to the tourplot, and changes the “Second Tar-
get” window according to equations given in the rest of this section. This button calcu-
lates the next two target spaces in the sequence of targets so that the user can create 
alternative 3D views of the data space, these views being used as targets for rotation.

The “New Tour” button does the following: It calculates the largest 3D space that is 
orthogonal to the visible space Vp (the largest invisible space). This space is “largest” in 
the sense that it contains the three longest mutually orthogonal dimensions which are 
also orthogonal to the visible space. It is also largest in the sense that it is the maximum 
variance 3D space orthogonal to the visible space. This tool is called hD-residualization 
by Young Kent & Kuhfeld (1988) and Young & Rheingans (1991a) because it computes 
the largest “residual” space in the invisible portion of the high-dimensional data space. 
The hD-residualization equations are based only the fact that the data space X is related 

Figure 4: Tourplot Further Rotated Towards Second Target
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to the visible space Vp by the equation (we omit the subscript on Vp for simplicity and 
because these equations hold for all values of p):

(EQ 2)

where R is an (n x h) matrix of residual information between the two spaces, and B is a 
(3 x h) matrix of coefficients of three orthogonal linear combinations of the h variables, 
determined by the equation

(EQ 3)

where 

. (EQ 4)

Then 

Figure 5: Tourplot in Second Target Position
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(EQ 5)

can be decomposed into

(EQ 6)

using a singular value decomposition.  We then define 

T2t =V (EQ 7)

 and 

T2t+1 = PQ. (EQ 8)

Figure 6: Tourplot with New Targets

R X VV X–=
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2.4 Spreadplots: Algebraically Linked Plots

A spreadplot is a group of dynamic plots that are algebraically linked together by equa-
tions.  When the user makes changes in one plot, the other plots change according to the 
equations linking the plots. Note that algebraic linkage is fundamentally different from 
empirical linkage. Empirical linkage involves observations and variables. Algebraic 
linkage involves equations. In fact, both kinds of linkages can simultaneously exist 
between plots in a spreadplot.

A spreadplot is the graphical equivalent of a spreadsheet: The main parallel between the 
two concepts is that each consists of a group of interacting cells, with the several cells 
being algebraically linked by equations. The obvious difference is that a spreadsheet’s 
cells are numeric, whereas a spreadplot’s are graphical. Just as in a spreadsheet, when 
changes are made in one cell, the algebraic links cause other change to occur. The differ-
ence is that a spreadplot shows the graphics that result from the underlying equations, 
not the numbers. 

Perhaps the most important difference between a spreadplot and a spreadsheet is that 
spreadplot cells do not have to be arranged in a rectangular grid. The analogy to a 
spreadsheet breaks down when we think about “rows” or “columns” of plot-cells: A row 
(or column) of the spreadplot does not have a natural meaning. Rather, plot-cells are 
algebraically related to other plot-cells, but the actual arrangement of the cells into the 
spreadplot's “sheet” is arbitrary.

There is, however, an important parallel between spreadsheets and spreadplots:  In both, 
some cells allow the user to change the information presented in the cell, whereas other 
cells do not.  In particular, a graphical cell in a spreadplot can be one which lets the user 
make graphical changes whose implications flow to other cells in the spreadplot via the 
equations connecting the cells.  However, not all graphical cells in the spreadplot need 
to support user-interaction.  This is the same notion discussed in the introduction: cells 
in which a user can create changes contain active graphics, whereas those which do not 
support user interaction contain passive graphics.  Thus, a passive cell contains a 
graphic which changes as a result of user interactions flowing from active graphical 
cells.  Of course, the graphics in active cells can also be changed as a result of user inter-
action in other active cells.

The tourplot shown in figures 2-6 is an example of a spreadplot. The three plots are 
algebraically linked by the residualization equations given above. When the “New 
Tour” button is clicked the specific position of the tourplot in its spin between the two 
targets is used, along with the residualization equations, to update the two target win-
dows via equations 7 and 8. Specifically, the “Guided Tour” window is linked to the 
“First Target” window by equation 7 and to the “Second Target” window by equation 8. 
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3 Visualizing Multivariate Models

In the previous section we presented graphical tools for visualizing multivariate data, 
focusing on plot-windows (groups of empirically linked plots), tourplots (high-dimen-
sional spinplots), and spreadplots (groups of algebraically linked plots). In this section 
our attention is directed towards graphical tools for visualizing multivariate models -- 
tools that a specifically designed for specific models of multivariate data.

Before proceeding to the new tools introduced in this section, we wish to emphasize that 
all of the tools discussed in Section 2 on Visualizing Multivariate Data can be -- and will 
be -- used in various ways with models discussed in this section. They will be used to 
provide views of the data as seen through a model of the data, where these views are 
somehow related to the algebraic properties of the model.

However, the main focus of this section is on a new tool for statistical visualization that 
is only applicable when we have a model of some data. We call the tool Interactive 
Graphical Modeling. We introduce it in the next section. Then, in Section 3.2 we apply 
this tool to Principal Components Analysis, andin Section 3.3 we apply it to Multidi-
mensional Scaling.

3.1 Interactive Graphical Modeling

Interactive Graphical Modeling is a statistical visualization technique for visually 
exploring the nature of alternative parameterizations of statistical models. The tech-
nique uses graphical tools to modify a model's parameterization, with the implications 
of the modifications being displayed as changes in the dynamic graphs that portray the 
model, its residuals, and its fit. A data analyst would use these tools to explore for a 
model of the data which provides better understanding of the data than the one provided 
by a traditional algebraic analysis.

Interactive graphical modeling assumes that an explicit data analysis model has been fit 
to the data by some means that generates initial estimates of the model’s parameters. 
This might be done, for example, for multiple regression, principal components or mul-
tidimensional scaling, using standard OLS techniques1. Once a model has been fit, it is 
visualized by a spreadplot whose cells reflect the geometry of the model, and whose 
algebraic links reflect the algebraic nature of the model. At least one of the cells, per-
haps more, displays the model’s parameter estimates as a plot of points or vectors (or 
other appropriate graphical elements). This is the plot that presents the “structure” of the 
model. This plot has tools for changing the model’s parameter estimates, such as a tool 
for moving points or vectors. 

In addition to the structure plot there would usually be plots displaying fit indices and 
residuals2. The structure plot is linked via appropriate equations to the fit and residual 
plots, so that when the model’s parameter estimates are changed (by moving points or 
vectors) the revised parameter estimates are used in the equations to update the plots of 

1.  These are the selection of approaches currently available in our ViSta testbed.

2.  Residual plots are not yet available for MDS.
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the residuals and fit values. In this fashion, interactive graphical modeling enables the 
data analyst to re-visualize the model many times, to support a search for the visualiza-
tion that provides the most insight into the data.

We now turn to two specific examples of interactive graphical modeling, one for princi-
pal components analysis and the other for multidimensional scaling. Both of these 
examples should be thought of as work-in-progress. More complete descriptions of 
interactive graphical modeling is available for principal components analysis in Fal-
dowski (1992), and for multidimensional scaling in McFarlane (1992).

3.2 Principal Components Analysis

3.3 Multidimensional Scaling

The data for Multidimensional Scaling (MDS) are different than the multivariate data 
we have been working with in previous parts of this paper, although the essence of the 
geometrical model (the data space) remains unchanged. Instead of an (n x h) multivari-
ate matrix of observations about n objects on h variables, there is an (n x n) matrix of 
distance-like data that specifies the approximate distances between the n objects in some 
low-dimensional space. This matrix is symmetric with zeros on the diagonal. These 
data, which are called dissimilarity data rather than multivariate data, are denoted by the 
matrix , which has elements .

The geometrical model that we adopt for dissimilarity data is nearly the same model that 
we adopted for multivariate data. We assume that there is a data space in which each 
object is represented by an n-dimensional observation vector xi, such that the Euclidean 
distances dij between the points in the data space equal the dissimilarity  observed 
between the two objects. Thus, abstractly, the entire set of data is represented by n 
points in an n-dimensional data space. We denote the data space as 

 

R

n, an n-dimensional 
space of real numbers. 

The purpose of an MDS analysis is to represent objects as points in a relatively low-
dimensional space 

 

R

r such that the dissimilarity data are accurately represented by the 
interpoint distances in this space. We denote the r-dimensional space by the (n x r) 
matrix X. The rows of X contain coordinates of the points in the r-dimensional space, 
the columns are the dimensions of the space. We assume that X is column centered, the 
centroid of the space is at the origin. To determine the nature of the dimensions in such 
an analysis, the analyst must be able to somehow visualize the points in the space. When 
clusters or patterns of points become evident, a reasonable interpretation of the dimen-
sions may be facilitated.

In the ViSta-MDS algorithm1 the dissimilarities are converted to a matrix of scalar 
products through a conversion discussed in Schiffman, Reynolds & Young (1981). The 
most important property of the scalar products matrix is that it is a matrix of products of 

1.  Note that ViSta-MDS permits more than one dissimilarity matrix, and that these matrices may 
be asymmetric. In this case the matrices are averaged, and the averaged matrix is made symmetric 
by averaging corresponding elements on either side of the diagonal.

∆ δij

δij
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vectors about an origin that corresponds to the centroid of all the points. Because this is 
a matrix of scalar products, we know that we can obtain the coordinates of each stimu-
lus on each dimension by performing a singular value decomposition. 

If the scalar products matrix is denoted A, we have

A  =  UVU', (EQ 9)

where U is a matrix of singular vectors (eigenvectors) and V is a diagonal matrix of sin-
gular values (eigenvalues). We can then obtain our coordinates matrix, X, by performing 
the matrix multiplication 

X  =  UV1/2. (EQ 10)

The jth column of the matrix X contains the coordinates of the n stimuli on the jth 
dimension. Only the first r columns of the X matrix are used.

The results of the previous equations form the initial spreadplot produced by ViSta-
MDS. An example of the ViSta-MDS spreadplot is shown in Figure . This example 
involves data collected by Jacobowitz (1975). These data are the averages of the dissim-
ilarity judgments of 8 judges about 15 colors. The entire set of colors includes those 
listed in the “Stimuli” window of the spreadplot, plus Black, which is scrolled off the 
top of the window. Several of the colors are those found on the spectrum (e.g. blue, 
green, yellow), but others (such as pink, gold, black and silver) do not appear on the 
spectrum. It was hypothesized that the MDS space X would consist of two regions, one 
containing the spectral and the other the non-spectral colors. 

This MDS X space is plotted in the scatterplot-matrix, the scatterplot and the spinplot. 
As can be seen from these plots, the space does consist of the two hypothesized regions: 
After ten iterations1 the spectral colors appear as a circle in the plane formed by the first 
and third dimensions, while the non-spectral colors are positioned away from the repre-
sentation of the spectrum.

The “scree plot” shows the proportion of the scalar products’ variance which occurs 
along each successive dimension in the initial solution space (this plot does not update 
during the iterations). This plot provides a measure of the “usefulness” of each dimen-
sion. In order to decide how many dimensions of the stimulus space are useful, analysts 
look for an “elbow” in the scree plot. The hinge of the elbow is considered to be the last 
useful dimension.

Note that the scree plot shows fit for the scalar-products derived from the dissimilarity 
data, not the dissimilarity data itself. One the other hand, the “Stress plot” shows fit to 
the dissimilarity data itself. Specifically, it shows the degree to which the interpoint dis-
tances match the dissimilarity judgments with a measure called “Stress”. This measure 
is the square-root of the proportion of sum-of-squares of the data that is not fit by the 
model:

1.  The initial spreadplot is not shown because it is essentially the same as the one shown, and 
because we wish to save space. The iterative algorithm is given below.
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 , (EQ 11)

where the Euclidean distance dij between stimulus i and stimulus j is defined as

 . (EQ 12)

Note that the initialization procedure does not optimize fit of the model to the data, but 
to the scalar-products derived from the data. For this reason, ViSta-MDS contains an 
iterative procedure designed to optimize the fit of the model to the dissimilarities. Push-
ing the “Iterate” button (on the spinning plot at the top center of the screen) brings up a 
dialog box that asks the user for the desired number of iterations. Once the user specifies 
the number, the optimizing iterations begin. The stress for the initial configuration of 
points is σ=.163, while σ=.135 after 10 iterations.

The iterations are based on the Guttman-transform (Guttman, 1968) of the dissimilari-
ties matrix and are designed to move the points so that the value of stress is minimized 
(so that the interpoint distances are as similar as possible to the dissimilarities). The 
transformation is based on the equation

, (EQ 13)

where the matrix B contains the elements

 (EQ 14)

The matrix  is the configuration for the next iteration. The ratio of dissimilarities to 
distances is the basis of the Guttman-transform. A ratio of one implies that the distances 
perfectly match the dissimilarities. If the ratio is larger than one, the points are moved 
farther apart from each other. If the ratio is smaller than one, the points are moved closer 
together, and if the ratio is one, then there is no need to move the points at all.

The Guttman-transform produces non-increasing values of stress; that is, each succes-
sive solution is at least as good as the previous one in terms of its fit to the dissimilari-
ties. When we have iterated to a minimum value of stress we would like to be able to 
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say that we have arrived at the overall minimum -- the “global” minimum. However, 
there may be other solutions that produce equally low, or even lower, values of stress. 
That is, the solution that we have may be a “local minimum”, not an overall global min-
imum, of the stress function. However, the solution produced by the iterations is often 
accepted by naive users as the only solution, even though there may well be other, more 
intuitively correct solutions, that fit as well (or may even fit better).

The problem of local minima is combatted with interactive graphical modeling. Interac-
tive graphical modeling allows the analyst to graphically move a point in the MDS con-
figuration and view the resultant change in the overall fit and structure of the model. 
When the point is moved, the algebraic links in the spreadplot are such that the corre-
sponding elements in the matrix of coordinates (X) automatically update, a new value of 
stress is calculated and all plots are changed to reflect the newly revised model. If the 
value of stress does not worsen when the point is moved, then the previous configura-
tion was a local minimum. Even if the fit worsens, we can iterate from the new configu-
ration of points to see if the moved point remains in its new position. If so, then the new 
solution is a new (possibly local) minimum, and we say that the point “belongs” in the 
new location. If the point returns to its previous location, then we have returned to the 
previous (still possibly local) minimum, and we say that the point “belongs” in that pre-
vious position. If the new fit and structure are not satisfactory, the point(s) may be 
returned to the original position(s) using the “Back Up” button on the spinning plot.

As was noted above, the iterative procedure has arrived at a configuration of points that 
displays the two hypothesized regions, one for spectral colors and the other for non-
spectral colors. This is one intuitively acceptable solution. However, it is also conceiv-
able that judges would place the non-spectral color gold in between the spectral colors 
yellow and orange, as gold can be considered a combination of those two colors. It 
would be interesting to determine whether such an adjustment to the solution space 
would result in another (possibly local) minimum.

To test this theory, the “gold” point was moved from its position in Figure  to a position 
between the orange and yellow points. The stress value increases some. The new config-
uration was then iterated five times. Throughout the iterations, the moved point 
remained very close to its new position (see Figure ), indicating that the new configura-
tion can be considered a local minimum. The stress for this new configuration is σ=.137, 
compared to the previous stress of σ=.135. This is an excellent example of a case in 
which a point fits nearly equally well in two different locations.

The problem of local minima has plagued analysts since the first developments in multi-
dimensional scaling. Interactive graphical modeling provides MDS users an easy-to-
use, powerful environment for exploring alternate MDS solutions. Through the use of 
interactive graphical modeling, analysts can search for other model representations that 
may fit the dissimilarity data as well as the optimized solution. The immediate updating 
of all information regarding the model allows the analyst to quickly determine whether 
the new model is an acceptable local minimum.
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4 Visualizing Multivariate Analyses

In Section 2 of this paper we discussed visualizing multivariate data, focusing on 
dynamic statistical graphics that can be used to explore and visualize the structure of 
multivariate data. In Section 3 we discussed visualizing multivariate models, focusing 
on interactive graphical modeling tools that can be used to explore and visualize models 
of multivariate data. In this section we discuss visualizing entire multivariate analysis 
sessions, focusing on the computational environment in which the multivariate analyses 
take place.

Our basic assumption is that the data analyst should be provided with a data analysis 
environment designed to maximize data analysis productivity and satisfaction. To 
accomplish this goal, the environment should reflect the sophistication of the user’s data 
analysis knowledge. Furthermore, the environment should be designed to accommodate 
the complete range of data analysis sophistication, from novice to expert. Since the data 
analysis environment which does this for a novice is different from the one which does 
this for a sophisticated analyst, there should be specific aspects of the environment 
which are designed for specific levels of sophistication. 

In particular, we believe that a data analysis environment that is appropriate for the 
entire range of sophistication should have the following five features: First, there should 
be optional guidemaps -- graphical diagrams that provide guidance -- to guide novice 
data analysts through complete data analyses. Second, there should be optional work-
maps -- graphical diagrams that show the evolving structure of an ongoing analysis ses-
sion -- to inform competent data analysts of the overall structure of their data analysis 
sessions. Third, there should be an optional command line interface to let sophisticated 
data analysts dispense with the visual aids when they find them unnecessary. Fourth, 
there should be an optional batch mode interface so that repetitive or “canned” analyses 
which do not require the presence of a data analyst can be performed. Fifth, and finally, 
there should be optional guidance tools to let expert data analysts create the guidance 
diagrams that are used by less expert analysts.

These five features should be very tightly coupled -- seamlessly integrated -- within a 
single data analysis environment so that the data analyst can switch effortlessly between 
them whenever desired. We discuss each of these notions in this section, along with the 
notion of tight coupling.1

4.1 Guidemaps for Novice Users

A statistical data analysis system should guide novice data analysts through the steps of 
the data analysis, particularly for multivariate data analysis. While this concept has been 
discussed (Chambers, 1981; Gale & Pregibon, 1982; Gale, 1988; Oldford and Peters, 
1988; Pregibon & Gale, 1984, Hand, 1984; 1985; Lubinsky & Pregibon, 1988; Lubin-
sky, 1989; Lubinsky, Young & Frigge, 1990) guidance has been incorporated in only 
one commercial statistical system that we are familiar with (BBN Software, 1989), and 
this guidance is not presented as a visualization, but rather as unstructured text panels.

1.  At the time this is being written, ViSta includes all of these notions except guidemaps and 
guidance tools.
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Our concept (Lubinsky, Young & Frigge, 1992) is to provide guidance to the novice 
user via a visual diagram that indicates which steps should be chosen next - a guidemap. 
The structure of the guidemap doesn’t change as the analysis proceeds, although its 
highlighting changes. Furthermore, new guidemaps appear as the analysis proceeds to 
guide the user with details of the analysis. In a guidemap the steps are indicated by but-
tons, and the sequence of steps by arrows pointing from one button to the next. Figure  
shows an example of a high-level and very general guidemap for multivariate analysis. 

The user makes choices by pointing and clicking on the buttons with a mouse. Active 
buttons (which are dark) are suggested actions, whereas inactive buttons (the light ones) 
are actions that are not suggested. After a suggested action is taken the selection of 
active buttons changes to show the user which actions can be taken next. In this diagram 
the user has already selected data - the “Select Data” button is inactive and the follow-
ing buttons are active. When the user clicks on one of the three active buttons, the corre-
sponding action takes place, the button lightens in color, and the following buttons 
become active. For example, once the model is defined by clicking the “Define Model” 
button the “fit-model” button becomes inactive. Note that the guidemap is a cyclic 
graph whose nodes are the possible actions, and whose edges are the possible sequence 
of actions. For more detail, and an example of a partially working guidemap prototype, 
see Lubinsky, Young & Frigge (1990).

4.2 Workmaps for Competent Users

A data analysis environment should provide competent data analysts with a graphical 
interface that is a visual diagram of the steps taken in the analysis. Unlike a guidemap, 
which doesn’t change, this workmap is created and expands as the analysis takes place. 
The user points and clicks to perform analyses and to create the structured analysis dia-
gram. Note that the workmap is an acyclic graph whose nodes are the possible actions 
and whose edges are the sequence of possible actions. For more details see Young & 
Smith (1991).

An example of a workmap is shown in Figure . In this analysis the analyst first loaded in 
datafile named “car-ratings”, creating a data icon with the same name. These data were 
then standardized, creating a new data object with an icon named “STD:car-ratings”. 
The analyst then loaded in a second datafile named “car-pref14”, creating a third data 
object and another data icon with the same name. These data were analyzed by the 
“PrinComp” method for principal components analysis. This produces a method icon 
named “PrinComp”, and a model icon named “PCA:car-pref14”. The analyst then 
requested that the model create three new data objects of scores, coefficients and input 

Describe

Define Fit MakeSelect - Data

Transform
Data

Data

Model Model Predictions

Figure 9 - A Guidemap
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data. Finally, the analyst merged the standardized ratings with the principal component 
scores. Any of the icons in this diagram can be opened in various ways to visualize or 
report data or results. This example corresponds to the example in Section 4.3 on com-
mand lines, and the example in Section 4.5 on batch mode.

4.3 Command Lines for Sophisticated Users

For sophisticated data analysts the data analysis environment should provide a com-
mand line interface. An example of commands used in ViSta is shown in Figure 11. 

These commands are entered through the keyboard, causing the analysis to take 
place.They also create the structured analysis diagram. (The diagram may be hidden, if 
desired). In this example, data named “car-ratrings.lsp” are loaded from the ViSta:Data 
folder. These data are standardized, with a report (listing) being obtained. Then data 
named “car-pref14.lsp” are loaded from the same folder. These data are submitted to a 
principal components analysis. Finally, three data objects are created of the results of 
the analysis.

4.4 Guidance Tools for Expert Users

A data analysis environment should provide expert analysts with tools to create guid-
ance diagrams that can be used by other users. These diagrams should be constructed by 
using the mouse to point and click, or by using the command line to type commands. A 
guidance diagram has already been shown, but we have not yet developed tools for cre-
ating guidance diagrams, this being a research topic for the future.

4.5 Batch Mode - Automated Analysis in Repetitive Situations

The four kinds of environments discussed above are all highly interactive. This means 
that as soon as an icon is clicked, or a command is typed, the data analysis environment 
responds. This is desirable in many situations, especially when analyses are being per-
formed on a one-shot or exploratory basis. However, in other situations, such as when 
an analysis will be repeated again in the future on a new wave of data, it is preferable to 
be able to collect all commands together into a file and run them all at once without user 
interaction. This is called “batch” mode because all commands are run as a batch. 

An example of a ViSta batch mode file is shown in Figure 12. In this example the sys-
tem will load data concerning car ratings, which are then standardized. It will then pro-
duce a report (listing) of these data, followed by a visualization and some summary 

Figure 11 - Command Line Interface
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statistics. The system then loads data about car preferences which are then submitted to 
a principal components analysis. A report and a visualization is produced of the results 
and then output data objects are created. This batch code corresponds to the analyses 
discussed in Section 4.2 on workmaps and in Section 4.3 on the command line inter-
face.

4.6 Tight Coupling of All Environments

The five data analysis features discussed above are tightly coupled, as can be seen from 
the previous sections. The guidance diagrams used by novice analysts generate com-
mands that are identical to those typed by sophisticated users with the command line 
interface. The graphical interface used by competent analysts also generates the same 
commands. The commands, in turn, generate the structured analysis diagram and per-
form the data analysis. These commands can be used in batch files.

It is possible to switch between the several kinds of environments at any time. When the 
sophisticated user moves into an unfamiliar type of data analysis, or when the analyst 
looses track of the overall structure of the analysis, the analyst can switch from the com-
mand line interface to the graphical interface, with the entire structured history of the 
analysis session being presented. Similarly, the moderately competent analyst can 
switch guidance diagrams on or off as desired.

5 Conclusion

In this paper we have discussed three major aspects of multivariate statistical visualiza-
tion, namely data visualization, model visualization and analysis visualization. We 
believe that data analysis systems of the 21st century will incorporate the methods we 
have presented, and that they will help the data analyst have a more insightful, produc-
tive and satisfying experience, enabling them to more clearly “see what the data seem to 
say”. 

Figure 12 - Batch Mode
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