Tema 9

Química Física de los Polímeros

Química Física de los Polímeros

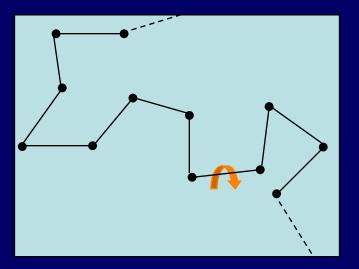
- 1. Introducción y Definiciones
- 2. Clasificación
- 3. Distribución de Pesos Moleculares
- 4. Conformación y Configuración
- 5. Termodinámica de las Disoluciones Poliméricas

Bibliografía

- Química Física. Eds. Bertrán-Núñez. Temas 64-69.
- Macromoléculas, A. Horta; UNED.
- Polymer Chemistry; G. Challa; Ellis Horwood.

Características de Macromoléculas

- * Formadas por unión de monómeros
- * Polidispersas
- * Flexibles



por el origen

polímeros orgánicos sintéticos:

PVC, PE

naturales:

proteínas, polinucleótidos, celulosa

polímeros semi-sintéticos:

ésteres de celulosa

polímeros inorgánicos:

Poli(dimetil siloxano)
-Si(CH_3)₂-O-

por la composición de sus monómeros

homopolímeros

-AAAAAAA-

copolímeros

aleatorios

alternados

en bloque

de injerto

-ABAABABBBAAA-

-ABABABABA-

-AAABBBAAABBB-

-AAAAA-

BBBBBB-

terpolímeros

por la estructura de la cadena

cadenas lineales:

cadenas ramificadas:

polímeros en red: 2D o 3D

polímeros escalera:

por el mecanismo de polimerización

Por adición

Por condensación

n
$$H_2N(CH_2)_5COOH$$
 \longrightarrow $H[--HN(CH_2)_5C--]_nOH$ $+$ (n-X) H_2O n $HN(CH_2)_5C=O$

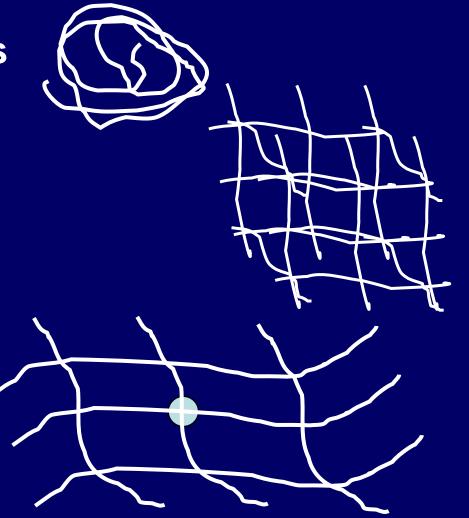
Por apertura de anillo

por sus propiedades

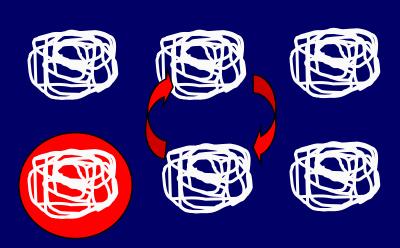
Termoplásticos

Termoestables

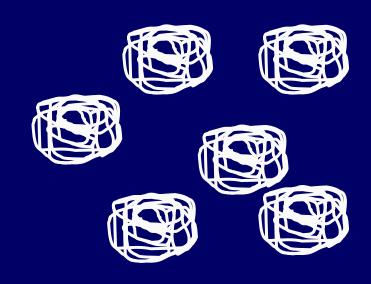
Elastómeros



por sus propiedades Cristalinos



Termoplásticos Amorfos



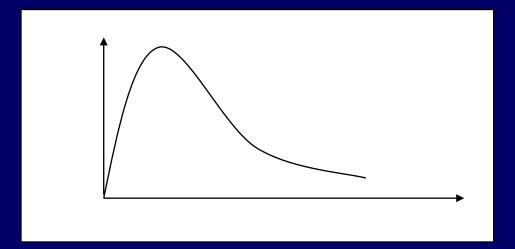
Sol. duro Sol. blando Liq.

Sol. duro Sol. blando Liq.

Distribución de pesos moleculares

Cuando se sintetiza un polímero se obtiene una distribución de longitudes de cadena que puede caracterizarse por cromatografía

Fracción en peso



 M_{j}

La anchura de la curva depende del método síntesis (mecanismo y condiciones)

Promedio en número:

$$M_n = \frac{\sum N_i M_i}{\sum N_i} = \sum x_i M_i$$

Promedio en peso:

$$M_{w} = \frac{\sum W_{i}M_{i}}{\sum W_{i}} = \sum w_{i}M_{i}$$

$$M_{w} = \frac{\sum W_{i}M_{i}}{\sum W_{i}} = \frac{\sum (N_{i}M_{i}) \cdot M_{i}}{\sum W_{i}} = \frac{\sum N_{i}M_{i}^{2}}{\sum N_{i}M_{i}}$$

Las ecuaciones anteriores pueden escribirse también en función del **grado de polimerización** X_i (número de monómeros que forman la cadena)

Si la masa molar del monómero es M₀

$$M_i = X_i M_0$$

Promedio en número:

$$M_n = \sum x_i M_i$$

$$X_n = \sum x_i X_i$$

Promedio en peso:

$$M_w = \sum w_i M_i$$

$$X_{w} = \sum w_{i}X_{i}$$

Promedio z:

$$M_z = \frac{\sum N_i M_i^3}{\sum N_i M_i^2}$$

Promedio z+1:

$$M_{z+1} = \frac{\sum N_i M_i^4}{\sum N_i M_i^3}$$

Promedio viscoso:

$$\mathbf{M}_{v} = \left(\frac{\sum_{i} N_{i} M_{i}^{a+1}}{\sum_{i} N_{i} M_{i}}\right)^{1/a}$$

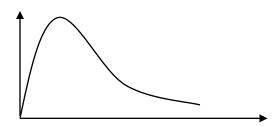
$$\overline{M}_{\scriptscriptstyle D} \leq \overline{M}_{\scriptscriptstyle V} \leq \overline{M}_{\scriptscriptstyle W} \leq \overline{M}_{\scriptscriptstyle Z} \leq \overline{M}_{\scriptscriptstyle Z+1}$$

$$\overline{M}_{\scriptscriptstyle D} \leq \overline{M}_{\scriptscriptstyle V} \leq \overline{M}_{\scriptscriptstyle W} \leq \overline{M}_{\scriptscriptstyle Z} \leq \overline{M}_{\scriptscriptstyle Z+1}$$

Formas de caracterizar la distribución

Indice polidispersidad
$$\mathbb{I} = \frac{\overline{M}}{\overline{M}_n} \ge 1$$

Distribución más probable $W_X = X(1-p)^2 p^{X-1}$



Configuración y Conformación

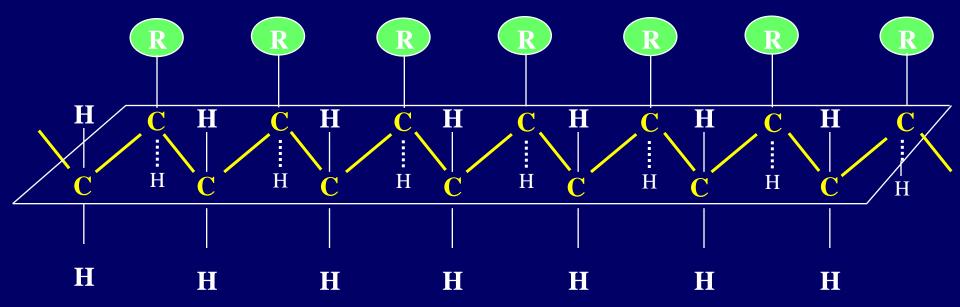
Configuración: ordenamiento espacial de los enlaces de la macromolécula.

Conformación: disposición espacial de la macromolécula.

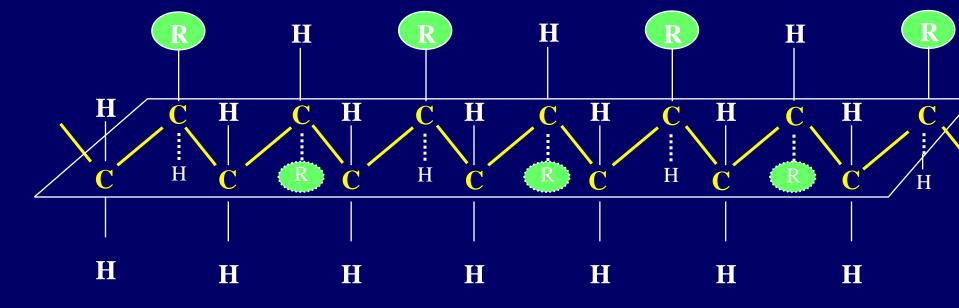
$$CH_2 = C^*HR$$

$$\begin{array}{c} H \\ \downarrow \\ H_2C \end{array}$$

cadenas isotácticas



cadenas sindiotácticas



Configuración y Conformación

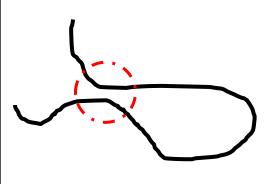
Cadena Rígida

Ovillo Estadístico

Configuración y Conformación

La conformación viene determinada por las interacciones que aparecen en la cadena polimérica:

- Interacciones de **corto alcance**: las que aparecen entre grupos cercanos en la *secuencia*
- Interacciones de largo alcance: las que aparecen entre grupos lejanos en la secuencia, pero que estarán cerca espacialmente.



Este tipo de interacciones dan lugar al llamado efecto de **volumen excluido** que suele ser más importante en disolución

Se llama estado Θ al estado conformacional del polímero no perturbado, donde el efecto de volumen excluido se minimiza

$$\Delta G_{mezcla} = RT \left[n_1 \ln(n_1/n) + n_2 \ln(n_2/n) \right]$$

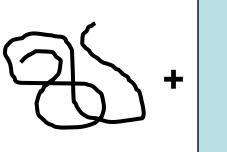
$$\frac{ideal}{\Delta S = -\Delta G / T}$$

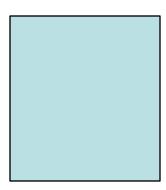
$$\begin{array}{c} \textit{disolución} \\ \textit{de polímeros} \end{array} \longrightarrow V_1 <<< V_2 \end{array} \longrightarrow$$

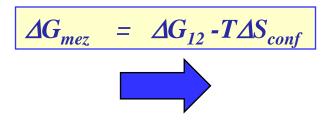
grandes desviaciones respecto al comportamiento ideal!

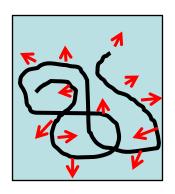
$$\Delta H \neq 0 \ \Delta V \neq 0 \ \Delta S \ll \Delta S_{ideal}$$

Teoría Flory-Huggins



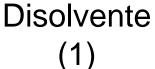


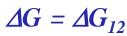


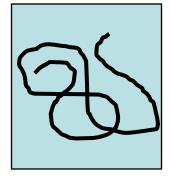


Polímero (2)

interacciones







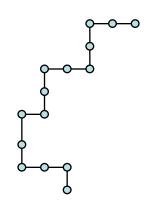
$$\Delta G = -T\Delta S_{conf}$$

 $\Delta S_{conf} = k \ln \Omega(1,2) - k \ln [\Omega(1)\Omega(2)]$

Modelo Reticular

Modelo reticular

polímero



soluto convencional

$N_0 = n^o$ total de celdillas

 $N_1 = n^o$ moléculas disolvente

 $N_2 = n^o$ moléculas soluto

Z índice coordinación de la red

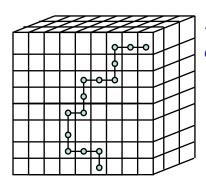
1 molécula de dte en 1 celdilla

1 molécula de sto en r celdillas

$$r = \frac{V_{\text{molar pol}}}{V_{\text{molar disolv}}}$$

$$N_0 = N_1 + rN_2$$

 $\Delta S_{conf} = k \ln \Omega(1,2) - k \ln[\Omega(1)\Omega(2)]$



 $\Omega(1,2)$ = n^o modos posibles de colocar N_2 moléculas en el retículo, con la restricción de que cada una de ellas ocupe r celdillas concatenadas

Para la cadena polimérica j+1

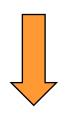
Primer eslabón N_o -jr Segundo eslabón $z(1-p_j)=z(1-jr/N_o)$ Tercer eslabón $(z-1)(1-p_j)$ Cuarto eslabón $(z-1)(1-p_j)$

 $\Omega_{j+1} = (N_0 - jr)z(z-1)^{r-2}(1-p_i)^{r-1}$

Para N₂ cadenas poliméricas

$$\Omega(1,2) = \frac{1}{N_2!} \prod_{j=1}^{N_2} \Omega_j$$

$$\Delta S_{conf} = S_{disolución} - S_{componentes\ puros} = k \ln \Omega(1,2) - k \ln[\Omega(1)\Omega(2)]$$



Modelo reticular
$$\Omega(1,2) = \frac{1}{N_2!} \prod_{j=1}^{N_2} \Omega_j$$

$$\Delta S_{conf} = -k [N_1 ln(N_1/N_0) + N_2 ln(rN_2/N_0)]$$

Si r = 1Ideal!!!

$$\phi_1 = \frac{N_1 V_1}{N_1 V_1 + N_2 V_2} = \frac{N_1}{N_1 + N_2 r} = \frac{N_1}{N_0} \qquad \phi_2 = \frac{N_2 V_2}{N_1 V_1 + N_2 V_2} = \frac{r N_2}{N_0}$$

$$\Delta S_{conf} = -k [N_1 \ln \phi_1 + N_2 \ln \phi_2]$$

$$\Delta G_{12} = \Delta W_{12} \cdot número de contactos$$

 ΔW_{12} = Energía libre asociada al proceso de formación de un contacto P-D $\frac{1}{2}(1-1+2-2) \longrightarrow 1-2$

número de contactos:

Celdas ocupadas por polímero x celdas contiguas x fracción ocupada por dte.

$$N_2 r \cdot z \cdot \phi_1$$

$$\chi_{1} = par\'{a}metro\ emp\'{irico}$$

$$de\ interacci\'{o}n\ P-D$$

$$\chi_{1} = z \cdot \Delta W_{12} / kT$$

$$N_{2}r\phi_{1} = N_{2}rN_{1}/N_{0}$$

$$\Delta G_{12} = \Delta W_{12} \cdot N_{2} \cdot r \cdot z \cdot \phi_{1}$$

$$\Delta G_{12} = \chi_{1} \underbrace{kT} \cdot N_{2} \cdot r \cdot z \cdot \phi_{1}$$

$$\Delta G_{12} = k T \chi_1 N_1 \phi_2$$

$$\Delta G_{\rm M} = \Delta G_{12} - T\Delta S_{\rm conf}$$

$$\Delta G_{12} = k T \chi_1 N_1 \phi_2$$

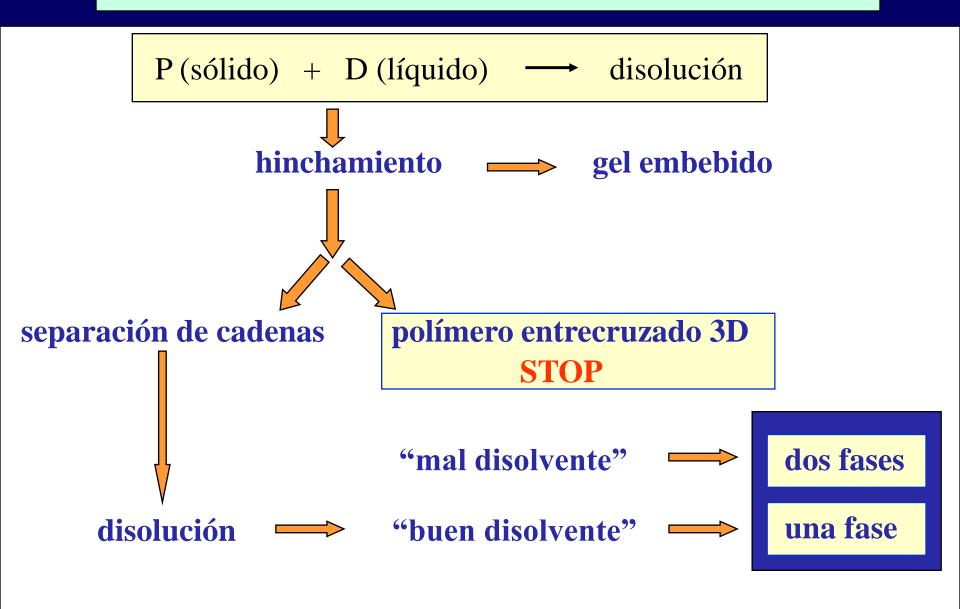
$$\Delta S_{conf} = -k(N_1 ln \phi_1 + N_2 ln \phi_2)$$

$$\Delta G_{\mathbf{M}} = \mathbf{k} \, \mathbf{T} \chi_1 \mathbf{N}_1 \, \phi_2 + \mathbf{T} \, \mathbf{k} (\mathbf{N}_1 \mathbf{ln} \phi_1 + \mathbf{N}_2 \mathbf{ln} \phi_2)$$

$$\begin{split} \Delta \mu_i = & \left(\frac{\partial \Delta G_M}{\partial n_i} \right)_{P,T,n_j} \\ \Delta \mu_1 = & \left(\frac{\partial \Delta G_{12}}{\partial n_1} \right)_{P,T,n_2} - T \left(\frac{\partial \Delta S_M^{conf}}{\partial n_1} \right)_{P,T,n_2} \\ \Delta \mu_1 = & RT \left(In \phi_1 + \left(1 - \frac{1}{r} \right) \phi_2 + \chi_1 \phi_2^2 \right) \\ & \text{configuracional} \quad \text{energética} \end{split}$$

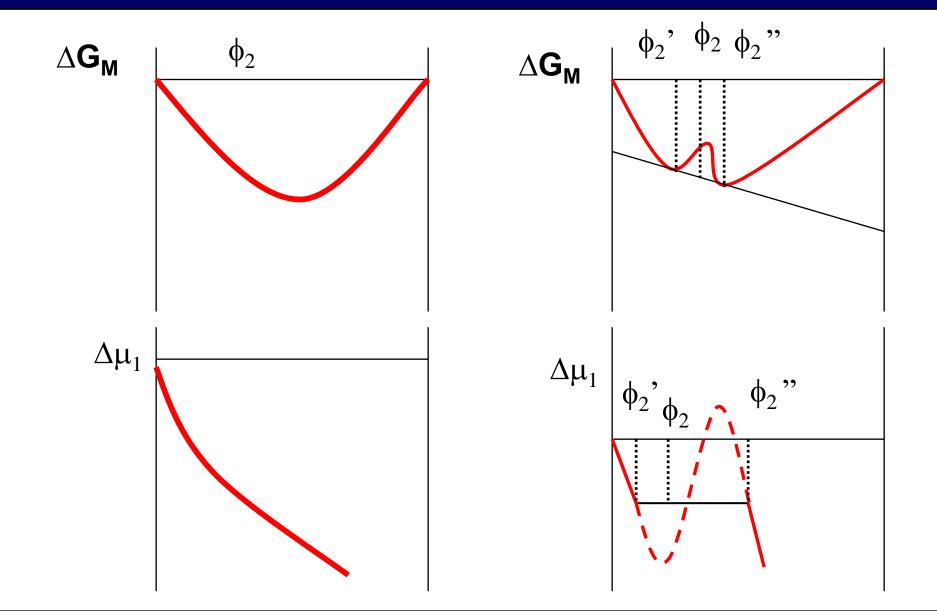
En un polímero polidisperso r se sustituye por \overline{r}

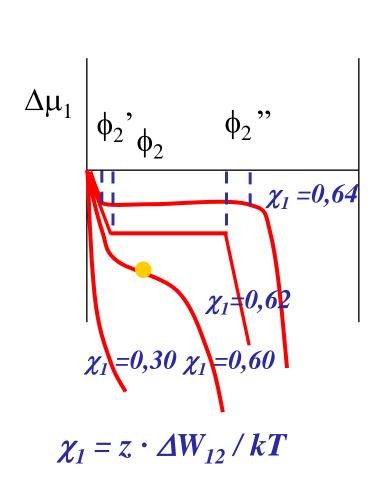
$$\Delta \mu_1 = RT \left(\ln \phi_1 + \left(1 - \frac{1}{\overline{r_n}} \right) \phi_2 + \chi_1 \phi_2^2 \right)$$

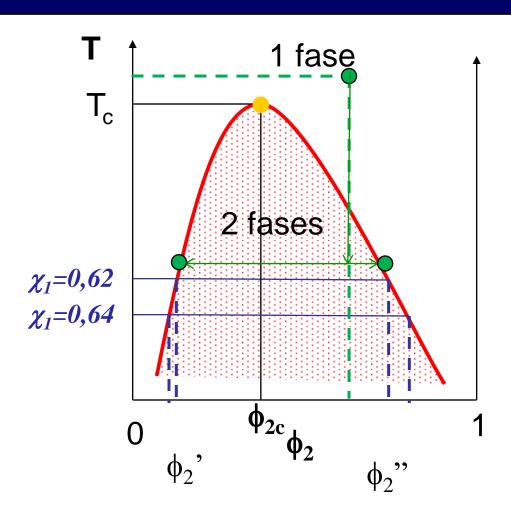


$$\Delta G_{\scriptscriptstyle M} = k_{\scriptscriptstyle B} T \chi_{\scriptscriptstyle 1} N_{\scriptscriptstyle 1} \phi_{\scriptscriptstyle 2} + T k_{\scriptscriptstyle B} (N_{\scriptscriptstyle 1} \ln \phi_{\scriptscriptstyle 1} + N_{\scriptscriptstyle 2} \ln \phi_{\scriptscriptstyle 2})$$

$$\Delta \mu_1 = RT \left(\ln \phi_1 + \left(1 - \frac{1}{\overline{r}_n} \right) \phi_2 + \chi_1 \phi_2^2 \right)$$







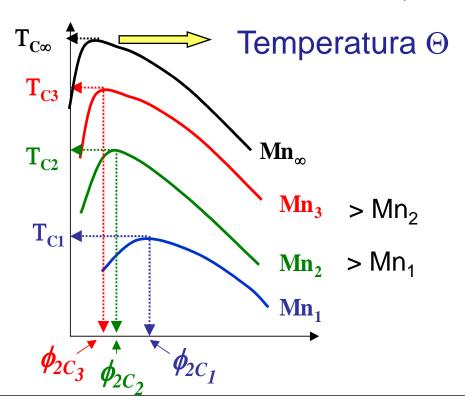
Punto Crítico

$$\frac{\partial \Delta \mu_1}{\partial \phi_2} = 0$$

$$\frac{\partial^2 \Delta \mu_1}{\partial \phi_2^2} = 0$$

$$\phi_{2c} = \frac{1}{1 + \sqrt{\overline{r}_n}}$$

$$\chi_{1c} = \frac{1}{2} \left(1 + \frac{1}{\sqrt{\overline{r}_n}} \right)^2$$

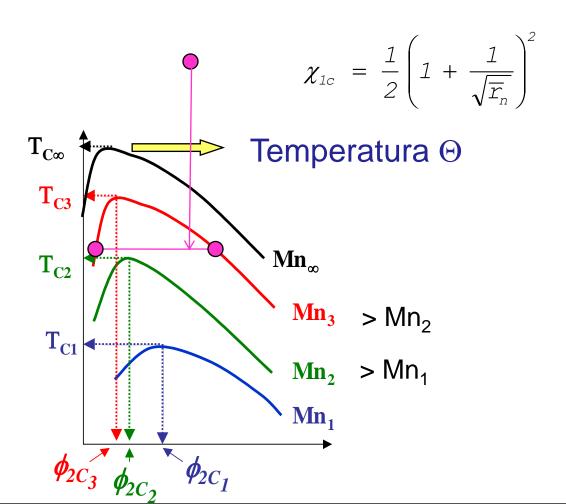


Temperatura Θ

Polímero	Disolvente	⊕ (° C)
Caucho natural	2-pentanona	21
Poliisobutileno	tolueno	-13
Poliisobutileno	benceno	24
Polietileno	1-dodecanol	137,3
Polioxietileno	metilisobutilcetona	50
Poliestireno (atáctico)	ciclohexano	34,8
Poliestireno (atáctico)	cicloexanol	83,5
PMMA (atáctico)	acetato de butilo	-20
PMMA (atáctico)	trans-decalina	23,5
PMMA (atáctico)	n-propanol	84,4
PMMA (sindiotáctico)	n-propanol	85,2
Polidimetilsolixano	n-hexano	-173,2
Polidimetilsiloxano	butanona	19,8
Polidimetilsiloxano	bromobenceno	78,3
Amilopectina	agua	25

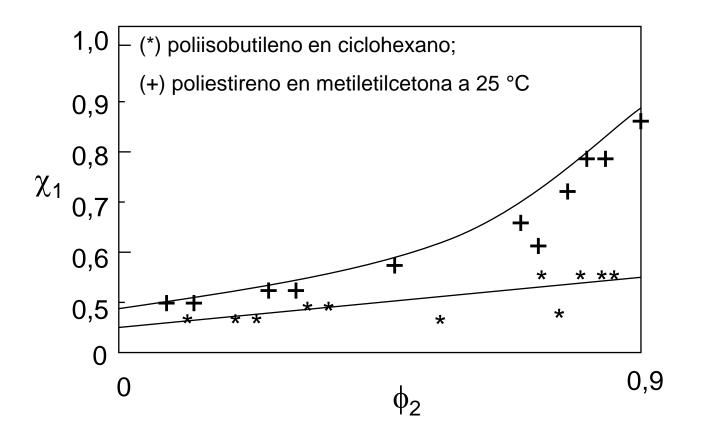
Punto Crítico

$$\phi_{2c} = \frac{1}{1 + \sqrt{\overline{r}_n}}$$



Limitaciones de la teoría F-H

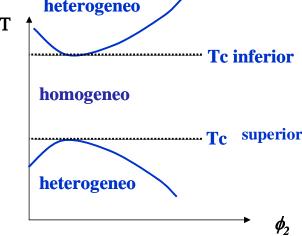
• el parámetro de interacción depende de la concentración de polímero, especialmente si hay interacciones polares

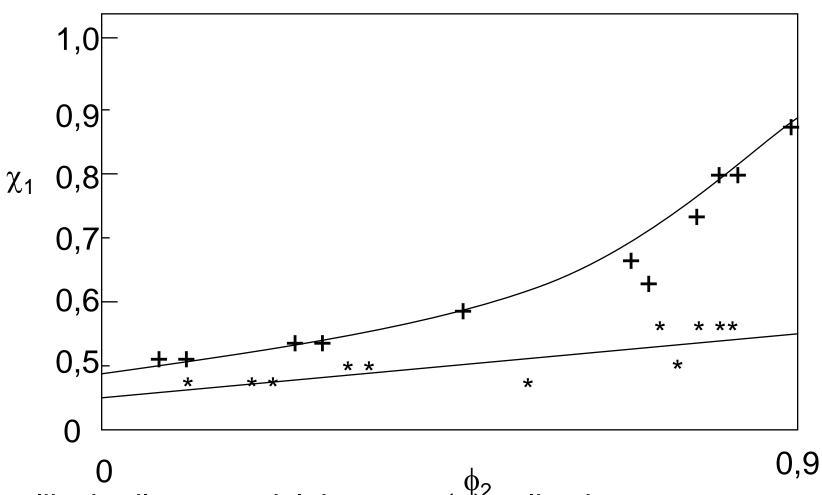


Limitaciones de la teoría F-H

- el parámetro de interacción depende de la concentración de polímero, especialmente si hay interacciones polares
- La teoría de Flory-Huggins no es válida para disoluciones diluidas donde la densidad de eslabones no es uniforme y falla el cálculo de ΔS_{conf}
- La teoría de Flory-Huggins supone que las disoluciones son endotérmicas $(\chi_I > 0)$ pero hay casos de disoluciones exotérmicas

• La teoría de Flory-Huggins no tiene en cuenta la existencia de sistemas con temperatura crítica inferior heterogeneo





(*) poliisobutileno en ciclohexano; (+) poliestireno en metiletilcetona a 25 °C

¿ cómo comprobar la validez de la teoría F-H ?

determinación experimental del potencial químico:

Pv, presión osmótica, etc...

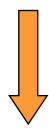
determinación del parametro $\chi_1 = f(T) \neq f(\phi_1)$

Valores del parámetro de interacción χ₁ a 25 °C a dilución infinita.

Polímero	Disolvente	χ1
Caucho natural	Benceno	0,42
Poli(dimetil siloxano)	Clorobenceno	0,47
Poliisobutileno	Ciclohexano	0,43
Poliisobutileno	Benceno	0,50
Poliestireno	Ciclohexano	0,505
Poliestireno	Metiletilcetona	0,47
Poli (metacrilato de		
metilo)	Cloroformo	0,377
Poli (metacrilato de	4-heptanona	0,509
metilo)		

F-H funciona cualitativamente para disoluciones no muy diluídas

 $\Delta S_{configuracional\ del\ modelo} \neq \Delta S_{real}$



$$\Delta H_{mezcla} \neq 0$$

 $\Delta H = f$ (interacciones P-D, rotura interacciones P-P + D-D)

Calor de mezcla: P(s) + D(l) → disolución de polímero líquida

$$\Delta G = \Delta G_{12} - T \Delta S_{conf}$$

$$\Delta G_{mez} = \Delta G_{12} - T \Delta S_{conf}$$

Teoría Flory-Huggins

Termodinámica estadística

+

Modelo reticular

 $\Omega = n^o$ modos disponer el sistema (estados igualmente probables)