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Abstract

In this paper we study the questions of existence and uniqueness of weak and entropy solutions for equations of type
—diva(x, Du) 4y (u) > ¢, posed in an open bounded subset §2 of RN , with nonlinear boundary conditions of the form a(x, Du) -
n + B(u) > ¥r. The nonlinear elliptic operator diva(x, Du) is modeled on the p-Laplacian operator A, (u) = div(|Du|? _2DM),
with p > 1, y and B are maximal monotone graphs in R? such that 0 € y(0) and 0 € B(0), and the data ¢ € Ll (£2) and
v eLl'(39).
© 2006 Elsevier Masson SAS. All rights reserved.

Résumé

Dans ce papier nous étudions les questions d’existence et d’unicité de solution faibles et entropiques pour des équations ellip-
tiques de la forme —diva(x, Du) + y (1) > ¢, dans un domaine borné §2 C R¥, avec des conditions au bord générales de la forme
a(x, Du) - n + B(u) > . Lopérateur diva(x, Du) généralise I’opérateur p-Laplacien A, (u) = div(lDulp_zDu), avec p> 1,y
et B sont des graphes maximaux monotones dans R2 tels que 0 € y(0) N B(0), et les données ¢ et ¥ sont des fonctions Ll
© 2006 Elsevier Masson SAS. All rights reserved.
MSC: 35J60; 35D02
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1. Introduction

Let 2 be a bounded domain in RY with smooth boundary 352 and p > 1, and let a: 2 x RY — R" be a
Carathéodory function satisfying
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(Hj) there exists A > 0 such that a(x, &) - £ > A|€|? for a.e. x € 2 and for all £ e RV,

(Hp) there exists o > 0 and 0 € LP/(.Q) such that |a(x, £)| <o (0 (x) + |£]P~1) for a.e. x € §2 and for all £ € RV,
where p’ = %,

(H3) (a(x, &) —a(x,£))- (51 — &) >0forae. x € 2 and for all £, & e RV, & #&.

The hypotheses (Hj)—(H3) are classical in the study of nonlinear operators in divergence form (cf. [23] or [5]).
The model example of function a satisfying these hypotheses is a(x, &) = |&|?~2. The corresponding operator is the
p-Laplacian operator A, (u) = div(|Du|P~2Du).

We are interested in the study of existence and uniqueness of weak and entropy solutions for the elliptic problem

(s B —diva(x, Du)+y@m)>¢ inS2,
o) a(x, Du) -n+Bw) >y on 452,

where 7 is the unit outward normal on 852, ¥ € L'(3£2) and ¢ € L'(£2). The nonlinearities y and # are maximal
monotone graphs in R? (see, e.g. [12]) such that 0 € y(0) and 0 € (0). In particular, they may be multivalued and
this allows to include the Dirichlet condition (taking S to be the monotone graph D defined by D(0) = R) and the
Neumann condition (taking g to be the monotone graph N defined by N () = 0 for all r € R) as well as many other
nonlinear fluxes on the boundary that occur in some problems in Mechanic and Physics (see, e.g., [16] or [11]). Note
also that, since y may be multivalued, problems of type (Sf;jﬁ) appears in various phenomena with changes of state
like multiphase Stefan problem (cf. [14]) and in the weak formulation of the mathematical model of the so called
Hele—Shaw problem (cf. [15] and [17]).

Particular instances of problem (S;:ﬁ) have been studied in [9,5,3] and [1]. Let us describe their results in some
detail. The work of Bénilan, Crandall and Sacks [9] was pioneer in this kind of problems. They study problem (S(’;:g )

for any y and 8 maximal monotone graphs in R? such that 0 € y (0) and 0 € 8(0), for the Laplacian operator, i.e., for
a(x, &) = £, and prove, between other results, that, for any ¢ € L' (£2) satisfying the range condition

inf{Ran(y)} meas(£2) + inf{Ran(ﬂ)} meas(082) < /qb < sup{Ran(y)} meas(£2) + sup{Ran(ﬁ)} meas(052),
Q

there exists a unique, up to a constant for u, named weak solution, [u, z, w] € WLI2) x LY(2) x L1(382), z(x) €
y(u(x)) a.e.in 2, w(x) € B(u(x)) a.e. in 052, such that

/Du-Dv—}—/zv—}—/wv:/qSU,
2 2 R Q

for all v € W' (£2). For nonhomogeneous boundary condition, i.e. 1 % 0, one can see [18] for ¥ € Ran(8), and
[19,20] for some particular situations of 8 and y .
Another important work in the L!-theory for p-Laplacian type equations is [5], where problem
(D”) { —diva(x, Du)+yum)>¢ in 2,
¢ u=0 on 912
is studied for any y maximal monotone graph in R? such that 0 € y(0). It is proved that, for any ¢ € L'(£2), there
exists a unique, named entropy solution, [u, z] € ’]6”’([2) x L1(£2), z(x) € y(u(x)) a.e. in §2, such that

Jac.ow-onw -+ [nw-v< [onw—v vi=o M
2 2 Q

for all v € L*®°(£2) N Wé "P(£2) (see Section 2 for the definition of 761”’ (£2)). Following [5], problems (S;ibﬂ ) and

(S:;’f ), where id(r) = r for all » € R, are studied in [3] and [1] respectively, for any 8 maximal monotone graph in R?

with closed domain such that 0 € 8(0). It is proved that, for any ¢ € L'(£2) and ¥ € L' (8£2), there exists a unique
u e Zrl’p(Q), and there exists w € L' (3£2), w(x) € B(u(x)) a.e. in 352, such that
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/a(-,Du)-DTk(u—v)+fuTk(u—v)+/wTk(u—v)g/wTk(u—v)+/¢Tk(u—v) Vk >0,
382 Q

2 2 082

forall v e L®(2) N WP(2), v(x) € Bu(x)) a.e. in 4£2.

Our aim is to prove existence and uniqueness of weak and entropy solutions for the general elliptic problem
(Sg,’f;). The main interest in our work is that we are dealing with general nonlinear operators — diva(x, Du) with
nonhomogeneous boundary conditions and general nonlinearities 8 and y. As in [9], a range condition relating the
average of ¢ and i to the range of 8 and y is necessary for existence of weak solution and entropy solution (see
Remark 3.3). However, in contrast to the smooth homogeneous case, a smooth and ¥ = 0, for the nonhomogeneous
case this range condition is not sufficient for the existence of weak solution. Indeed, in general, the intersection of
the domains of 8 and y seems to create some obstruction phenomena for the existence of these solutions. In general,
even if D(B) =R, it does not exist weak solution, as the following example shows. Let y be such that D(y) = [0, 1],
B=R x{0},and let ¢ € L'(2), ¢ <O ae.in 2, and ¢ € L'(3£2), ¥ <0 a.e. in 3. If there exists [u, z, w] weak
solution of problem (Sg:g) (see Definition 3.1), then z € y (u), therefore 0 <u < 1 a.e. in £2, w =0, and it holds that

for any v € WP (2) N L®(2),

/a(x,Du)Dv—i—/zv:/lpv—i—/dw.
2

2 [%} a2

Taking v =u, as u > 0, we get

O</a(x,Du)Du+/zu:/wu+/¢u<0.
2 082 22

2

Therefore, we obtain that f o |Du|? =0, s0 u is constant and

Q/zvzaéwv—i-![qﬁv,

for any v € WP (£2) N L>(£2), and in particular, for any v € W(}’p(.Q) N L*°(£2). Consequently, ¢ = z a.e. in 2,
and ¥ must be 0 a.e. in 952.

The main applications we have in mind is the study of doubly nonlinear evolution problems of elliptic-parabolic
type and degenerate parabolic problems of Stefan or Hele-Shaw type, with nonhomogeneous boundary conditions
and/or dynamical boundary conditions (see [2]). Notice that in all these applications one has D(y) = R, which is
sufficiently covered in this paper.

The results we obtain have an interpretation in terms of accretive operators. Indeed, we can define the (possibly
multivalued) operator B7-f in X := L1(£2) x L'(3£2) as

B = {((v, w), (5, )) € X x X: Ju € T, (2), with [u, v, w] an entropy solution of (S, ).

v+0,w+w

Then, under certain assumptions, BY*# is an m-T-accretive operator in X. Therefore, by the theory of evolution

equations governed by accretive operators (see, [4,8] or [13]), for any (vg, wo) € D(BY-#)X and any (f,g) €
L0, T; LY(£2)) x L'(0, T; L' (3£2)), there exists a unique mild-solution of the problem

V' +B"P(V)s(f,8), V(0)= (v, wp),

which rewrites, as an abstract Cauchy problem in X, the following degenerate elliptic-parabolic problem with nonlin-
ear dynamical boundary conditions

vy —diva(x,Du)=f, vey), in2x(0,7T),
DP(y,p) ywi+a(x,Du)-n=g, wepu), onds2x(0,T),
v(0)=vy inf2, w0 =wy inds2.
In principle, it is not clear how these mild solutions have to be interpreted respect to the problem DP(y, 8). In a next
paper [2] we characterize these mild solutions.
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Let us briefly summarize the contents of the paper. In Section 2 we fix the notation and give some preliminaries.
In Section 3 we give the definitions of the different concepts of solution we use and state the main results. The next
section is devoted to prove the uniqueness results. In the last section we prove the existence results. First, we study
the existence of solutions of approximated problems, next we prove the existence of weak solutions for data in LY
and finally the existence of entropy solutions for data in L'.

2. Preliminaries

For 1 < p < 400, LP(£2) and W17 (£2) denote respectively the standard Lebesgue space and Sobolev space, and
Wol’p(.Q) is the closure of D(£2) in W7 (£2). For u € W7 (£2), we denote by u or 7(u) the trace of u on 352 in the

usual sense and by Wl/”,'l’(B.Q) the set T(W1P(£2)). Recall that Ker(z) = Wol’p(.Q).
In [5], the authors introduce the set

T"7(2) = {u: £ — R measurable such that Ty (u) € W' (2) Vk > 0},

where Tj (s) = sup(—k, inf(s, k)). They also prove that given u € TP (£2), there exists a unique measurable function
v: 82 — RY such that

DT (u) =vx{uj<ky Yk>0.

This function v will be denoted by Du. It is clear that if u € WP (£2), then v € LP?(£2) and v = Du in the usual
sense.

As in [3], Zrl "7 (£2) denotes the set of functions u in 717 (£2) satisfying the following conditions, there exists a
sequence u, in WP (£2) such that

(a) u, converges to u a.e.in 2,
(b) DTy (uy) converges to DTy (u) in L'(£2) for all k > 0,
(c) there exists a measurable function v on 92, such that u,, converges to v a.e. in 952.

The function v is the trace of u in the generalized sense introduced in [3]. In the sequel, the trace of u € Zrl P (2)
on 952 will be denoted by tr(x) or u. Let us recall that in the case where u € WP (£2), tr(u) coincides with the trace

of u, t(u), in the usual sense, and the space Tol’p (£2), introduced in [5] to study (D;), is equal to Ker(tr). Moreover,
for every u € ’Z;rl’p(.Q) and every k > 0, T(T (1)) = Ty (tr(u)), and, if p € WHP(£2) NL®(82), thenu — ¢ € Zrl’p(.{?)

and tr(u — ¢) =tr(u) — t(¢).
We denote

vir(Q):= {4; e L'(£2): 3M > 0 such that / lpv] < Ml Yv € W”’(Q)}
2

and

virae) .= {weL‘(ag): 3M > 0 such that /|1//v| <Ml Yo € W”’(Q)}.
082

V1-P(£2) is a Banach space endowed with the norm

Pllyir ) :=inf{M > 0: / [pv| < Mllvllyipo) YV € Wl’p(Q)}7
2

and V-7 (3£2) is a Banach space endowed with the norm

”I/IHVI’I’(B.Q) = mf{M > 0: / H[/Ul < M”U”Wl.p(g) Yv e Wl’p(Q)}.
082

Observe that, Sobolev embeddings and trace theorems imply, for 1 < p < N,

Lp/(.Q) C L(NP/(N—P))/(Q) C VLP(_Q)
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and
LY (32) ¢ LN=DP/(N=p) 302y c V- (382).

Also,
viP(2)=L"2) and V'P032)=L"02) whenp>N,
LI(2)cvi'N(@2) and L102)cV'"N(d2) foranyqg> 1.

We say that a is smooth (see [3]) when, for any ¢ € L°°(£2) such that there exists a bounded weak solution u of

the homogeneous Dirichlet problem
—diva(x, Du) =¢ inS2,
(D) { u=20 onds2,
there exists ¥ € L'(92) such that u is also a weak solution of the Neumann problem
™) —diva(x, Du) =¢ in$2,
a(x,Du) -n=1 on d£2.

Functions a corresponding to linear operators with smooth coefficients and p-Laplacian type operators are smooth
(see [11] and [22]). The smoothness of the Laplacian operator is even stronger than this, in fact, there is a bounded
linear mapping 7' : L L(2) = L1(3£), such that the weak solution of (D) for ¢eL 1(£2) is also a weak solution of (N)
for ¢ = T (¢) (see [9]).

For a maximal monotone graph y in R x R and r € N we denote by y; the Yosida approximation of y, given by
yr=r(I — (I + }y)*l). The function y, is maximal monotone and Lipschitz. We recall the definition of the main

section y© of y

the element of minimal absolute value of y (s) if y(s) # 0,
y2(s) = { +o0 if [s, +00) N D(y) =¥,
—oo if (—oo,s]ND(y)=40.

If s € DY), 1y, ()| < |y°(s)| and y,(s) = ¥°(s) as r — 400, and if s ¢ D(y), |y (s)| — +00 as r — +o0.
We will denote by Py the following set of functions,

Py={q € C*R): 0<q' <1, supp(q’) is compact, and 0 ¢ supp(q)}.
In [7] the following relation for u, v € L1(£2) is defined,

U<Lv if/(u—k)Jréf(v—k)+ and /(u—i—k)*g/(v—kk)* for any k > 0,
2 2 2 2

and the following facts are proved.

Proposition 2.1. Let 2 be a bounded domain in RV .

(i) Foranyu,v e L), if [ouq) < [, vq(u) forall g € Py, then u < v.

(i) Ifu,ve L' (2) and u < v, then lullp < llvllp for any p € [1, +o00].
(iii) Ifv e LY(2), then {u € L' (§2): u < v} is a weakly compact subset of L' (£2).
3. The main results

In this section we give the different concepts of solutions we use and state the main results.

Definition 3.1. Let ¢ € L' (£2) and y € L'(3£2). A triple of functions [u,z, w] € WHP(2) x L'(2) x L'(082) is a
weak solution of problem (S(’;,’{z) if z(x) € y(u(x)) a.e. in £2, w(x) € B(u(x)) a.e. in 952, and

/a(x,Du)~Dv+/zv+/wv=/1//v+/¢v, 2)
Q Q 082 a2 Q

forall ve L®(2) N WhP(02).
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In general, as it is remarked in [S], for | < p <2 — %, there exists f € L1(£2) such that the problem

1,1
ueE Wloc

(£2), u—A,w)=f inD(),

has no solution. In [5], to overcome this difficulty and to get uniqueness, it was introduced a new concept of solution,
named entropy solution. As in [3] or [1], following these ideas, we introduce the following concept of solution.

Definition 3.2. Let ¢ € L!(£2) and ¢ € L!(32). A triple of functions [u, z, w] € 7,7 (£2) x L'(22) x L' (382) is an
entropy solution of problem (S;:ﬁ) if z(x) € y(u(x)) a.e. in £2, w(x) € B(u(x)) a.e. in 352 and

/a(x,Du)~DTk(u—v)+/sz(u—v)+/wTk(u—v)</wTk(u—v)+f¢Tk(u—v) Vk >0, (3)
Q 2 02 982 Q
forall v e L®(2) N WP ().

Obviously, every weak solution is an entropy solution and an entropy solution with u € W17 (£2) is a weak solution.

Remark 3.3. If we take v = Tj,(u) &= 1 as test functions in (3) and let 2 go to 400, we get that

/z+/w=/1/f~l—/¢.
2 EYe) EYe) Q
Then necessarily ¢ and 1 must satisfy

- +
Ry’ﬁ</w+/¢<ny,ﬁ,
982 2

where

R;ﬂ = sup{Ran(y)} meas(£2) + sup{Ran(ﬂ)} meas(dS2)
and

R, 5= inf{Ran(y)} meas(£2) + inf{Ran(B) } meas(9£2).

We will write R, 5 := R, 5, R gl when R, <R} 5.

Remark 3.4. Let ¢ € v9ir(2) and Ve V3P (3£2). Then, if [u, z, w] is a weak solution of problem (Sg:i), it is easy
to see that

/a(x,Du)~Du+/zu+/wu:/Wu+f¢u.

Q Q 882 082 2
Moreover, if D(y) # {0} and D(B) # {0}, it follows that z € vir(2), we VP (3£2) and

/a(x,Du)~Dv+/zv+/wv=/1//v+/¢>v,
082

2 2 82 2

for any v e WP (£2).
In fact, let v € WP (£2) and take T (Jv|) % T, (u) as test function in (2). Then, letting r go to 0, there exists M| > 0
such that

21Tk (jvl) + / wI Tk (Jv]) < Mol
{xe2: u(x)£0} {x€082: u(x)#0}

Letting now k go to 400, applying Fatou’s Lemma, we get

l2llv] + / wllv] < Mol o)-
{xe2: u(x)#£0} {x€d82: u(x)#0}
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If B(0) is bounded, there exists M, > 0 such that

lwllv] < M2||U||W1vl)(9)~
{x€082: u(x)=0}
In the case $(0) is unbounded from above (a similar argument can be done in the case of being unbounded from
below) let us take Tx (|v])S, (1) as test function in (2), where S, (s) := %X[—r,O] (s) + X[0,+00[ (), then, letting r go
to 0, there exists M, > 0 such that
U)Tk(|U|) < M2||U||W1-p(g),
{x€082: u(x)=0}
and consequently, since 8(0) must be bounded from below (because D(8) # {0}), there exists M3 > 0 such that

|w|Tk(|U|) < M3||U||W|vl’(9)-
{x€082: u(x)=0}
Letting now k go to 400, applying Fatou’s Lemma, we get

|w||v| g M4”v||Wl,p(Q).
{xed2: u(x)=0}
Similarly, there exists Ms > 0 such that

l2llv] < Msllvllyio -
{xef2: u(x)=0}

We shall state now the uniqueness result of entropy solutions. Since every weak solution is an entropy solution of
problem (S};’i), the same result is true for weak solutions.

Theorem 3.5. Let ¢ € L' (2) and € L' (382), and let [uy, z1, w1] and [uz, 22, wa] be entropy solutions of problem
(S;:f;). Then, there exists a constant ¢ € R such that

Uy —ur=c a.e.inS2,

721—220=0 a.e. in$2.

w; —wr2=0 ae inods2.

Moreover, if ¢ # 0, there exists a constant k € R such that z1 = zo = k.
Respect to the existence of weak solutions we obtain the following results.

Theorem 3.6. Assume D(y) =R and R;,ﬂ < R;’ﬁ. Let D(B) =R or a smooth.

(i) Forany ¢ € VVP(2) and € VP (382) with

/¢+/1/f€73y,ﬁ, “)
2 e

there exists a weak solution [u, z, w] of problem (ngi)‘
(i1) For any [u1, z1, w1] weak solution of problem (S(’;;ﬁ//l), o1 € Vl’P(.Q) and Y € VI’P(B.Q) satisfying (4), and

any [uz, z2, wa] weak solution of problem (S(J;z’ﬁ//z), ¢ € VIP(2) and yn € VI-P(382) satisfying (4), we have

that
/(Zl -z + /(wl —w)t < /(Wl — YT+ /(¢1 — )t
2 FY?, FY?, 2
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In the case R; g= R}f e that is, when y (r) = B(r) = 0 for any r € R, existence and uniqueness of weak solutions
are also obtained.

Theorem 3.7. For any ¢ € V1P (2) and € V-P(382) with

/¢>+/w=0, 5)
2 082

there exists a unique (up to a constant) weak solution u € whr() of the problem

—diva(x, Du)=¢ inS2,
a(x,Du) -n=1 on 052

in the sense that
/a(x,Du)~Dv=/wv+/¢v,
2 482 2
forallve WHP(2).

In the line of Proposition C(iv) of [9] given for the Laplacian operator, as a consequence of Theorem 3.6 we have
the following result.

Corollary 3.8. a is smooth if and only if for any ¢ € VV-P(2) there exists T(¢p) € VIP(982) such that the weak
solution u of

—diva(x, Du)=¢ inS2,
u=20 on 052,

is a weak solution of

—diva(x,Du)=¢ inS2,
a(x,Du) - n=T(¢p) onads2.

Moreover, the map T : V'P(2) — VI-P(382) satisfies

/ (T - T@)* < / (1 — )"
2

2

forall g1, ¢ € VIP(£2).

In the case ¥ = 0 we have the following result without imposing any condition on y, in the same line to the one
obtained by Bénilan, Crandall and Sack in [9] for the Laplacian operator and L'-data.

Theorem 3.9. Assume D(8) = R or a smooth. Let R;’ﬂ < R;ﬂ.

(i) Forany ¢ € VLP(2) such that fQ ¢ € Ry g, there exists a weak solution [u, z, w] of problem (S(’;:g), with 7 << ¢.

(ii) For any [uy, z1, wi] weak solution of problem (Sgl’ﬂo), ¢ € v5ip($2), fQ ¢1 € Ry, g, and any [uz, 22, wa] weak
solution of problem (S;;z’fgo), ¢ € vir2), f_Q ¢2 € Ry g, we have that

/(Zl -z + /(wl —w)t < /(cbl — )7
2 FY?, Q

For Dirichlet boundary condition we have the following result.
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Theorem 3.10. Assume D(B) = {0}. For any ¢ € VV-P(2), there exists a unique [u, z] = [ug,y,2¢,y] € Wé’p(.Q) X
VLP(2), z € y(u) ae. in 2, such that

/a(x,Du)-Dv+/zv=/¢v,
Q Q Q
forallve WyP ().
Moreover, if ¢1, 2 € V5P (2), then

f(zlﬁmlfl —Z¢2,1/;2)+ < /(¢1 — )t (6)
2 2

Let us now state the existence results of entropy solutions for data in L!.

Theorem 3.11. Assume D(y) =R, and D(B) = R or a smooth. Let also assume that, if [0, +oo[ C D(B),
lim y°k)=+o00 and lim B°(k) = +oo, (7
k— 400 k—+00
and if 1—00,0] C D(B),

lim y%k)=—o00 and lim B°(k) = —oc. (®)
k——o00 k——o00
Then,

() forany ¢ € L' (2) and W € L' (382), there exists an entropy solution [u, z, w] of problem (S();:i).
(ii) For any [u1, z1, w1] entropy solution of problem (S(Zl"i//l ), ¢1 € L), Y € LI(S.Q), and any [uz, 7o, wa] en-

tropy solution of problem (S(Zz’ﬁ/fz), ¢ € LY(2), Y, € L1 (892), we have that

/(a _ ot 4 /(wl —wt < /(% )t + /(¢1 — gt
2 082 082 2

Taking into account Theorem 3.11 and Corollary 3.8 we have the following result.
Corollary 3.12. a is smooth if and only if for any ¢ € L' (82) there exists T(¢) € L'(982) such that the entropy
solution u of

—diva(x, Du)=¢ inS2,
u=0 on 082,

is an entropy solution of

—diva(x, Du)=¢ in$2,
a(x,Du) - n=T(¢p) onads2.

Moreover; the map T : L' (2) — L' (882) satisfies

/ (T@1) - Td)* < / (1 — )",
2

2
forall g1, ¢ € LY(2), and T(VP(2)) c VP (3 82).

In the homogeneous case without any condition on y we also obtain the following result.

Theorem 3.13. Assume D(B) = R or a is smooth. Let also assume that, if [0, +o0o[ C D(y)N D(B) the assumption (7)
holds, and, if 1—o00,0] C D(y) N D(B) the assumption (8) holds. Then,
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(1) forany ¢ € LY($2), there exists an entropy solution [u, z, w] of problem (Sg;:g), with 7 K ¢.
(ii) For any [u1, z1, w1] entropy solution of problem (Sy’/3 ), ¢1 € L1(£2), and any [uz, z2, wa] entropy solution o
¢1,0
problem (S;fo), ¢ € L! (£2), we have that

/m—mﬁ+/mrwm+§ﬁm—mﬁ.
2 082 22

As we mention in Remark 5.9, different conditions to (7) and (8) can be used in order to get Theorems 3.11
and 3.13.
We also obtain the following result given by Bénilan et al. in [5] for Dirichlet boundary condition.

Theorem 3.14. Assume D(B) = {0}. For any ¢ € L' (£2), there exists a unique entropy solution [u, z] of

—diva(x, Du)+y@m)>¢ inS2,
u=~0 on 452,

in the sense given by Bénilan et al. in 5] (see (1) in the Introduction).
4. Proof of the uniqueness result

This section deals with the proof of the uniqueness result Theorem 3.5. We firstly need the following lemma.

Lemma 4.1. Let [u, z, w] be an entropy solution of problem (Sg:i). Then, for all h > 0,
A / |Dul? <k / vl +k / 1.
{h<|u|<h-+k} 32N {|u|=h} 20{|ul=h}
Proof. Taking 7}, (u) as test function in (3), we have
/a(x, Du) - DTy (u — Ty (w)) —l—/sz(u — Tr(w) + / wTi(u — Tp(w))
2 2 902

</wn@—nw»+/¢n@—nw»
082 2

Now, using (Hj) and the positivity of the second and third terms, it follows that

A / |Dul? <k / V| +k / lpl. O
{h<lul<h-+k} 920{jul>h) 20{lul>h)

Proof of Theorem 3.5. Let [u1, z1, wi] and [u2, z2, w2 ] be entropy solutions of problem (S;:i). For every h > 0, we
have that

fa(x,Dul) DTy (ur — Ty (u2)) +/21Tk(u1 — Ty (uz)) + / w1 Tk (w1 — Th(u2))

2 2 982

</1/ka(141 —Th(uz))-l-/d)Tk(ul — Ty (u2))
2

a2

and
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/a(x, Du3) - DTy (uz — Ty (u1)) +f22Tk(u2 — Ty (uy)) + f wa T (u2 — Ty (u1))

2 2 a2

</l/ka(uz—Th(ul))+/¢Tk(uz—Th(ul))~
952 2

Adding both inequalities and taking limits when & goes to 0o, on account of the monotonicity of y and g, if

Ik 1=/a(x, Duy) - DTy (u1 — T (u2)) +/a(x, Duy) - DTy (uz — Tiy(u1)),
2 2
we get

limsup Ij x < —f(11 —22) T (uy —uz) — /(wl —w2) Ty (ur —uz) <O0. 9
2 FYe)

h—o0
Let us see that
liminf/, x >0 for any k. (10)
h—o0

To prove this, we split

Ih,k = Ihl,k + I/’%,k + I}?,k + I;:,k’

where
Iy = / (a(x, Duy) — a(x, Duo)) - DTk (uy — un),
{lurl<h, |uz|<h}
I}y = / a(x, Duy) - DTy (uy — hsign(uz)) + / a(x, Dus) - DTy (uz — uy)
{lur|<h, Jus|>h} {lur|<h. lus|>h}
> / a(x, Duy) - DTy (u2 — uy),
{lur|<h. luz)>h}
Ii,k = / a(x, Duy) - DT (uy —uz) + / a(x, Du») -DTk(ug —h sign(ul))
{lur|=>h, luz|<h) {lur|=h, lua|<h)
> f a(x, Duy) - DTy (u1 — u2)
{lur|>h, Jua|<h}
and
L= f a(x, Duy) - DTy (uy — h sign(uy))

{lur|Zh, luz|Zh}

+ / a(x, Duy) - DTy, (u2 —h sign(ul)) >0.
{lur|Zh, |uz|>h}
Combining the above estimates we get

Ih,k 21}’},k+L}1,k+Li,k’ (11)
where
Lll'l,k = / a(x, Duy) - DTy (uz — uy),
{luil<h, |uz|Z=h}
L%,k = / a(x, Duy) - DT (u1 — up)

{lur|Zh, Juz|<h}
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and / }: ¢ 1s nonnegative and nondecreasing in h. Now, if we set
C(h,k):={h <|uy| <k+h}n{h—k<luz| <h},
we have
L7 .| < / |a(x, Duy) - (Duj — Duy)|
{lur—uz|<k, lur|=h, |uz|<h}
< / |a(x, Duy) - Du1| + / |a(x, Du,) - Du2|.
C(h.k) C(h,k)

Then, by Holder’s inequality, we get

AL/ 1/p 1/p
st [ o) ([ )"+ [ o))

C(h,k) C(h,k) C(h,k)
Now, by (Hy),
N , AP
(f |a<x,ou1>l”) <( / “”(9<x>+wm|”“>”)
C(h,k) C(h,k)
| , 1/p'
<oz/ﬂ<nem;+- / |Duup) .
{h<luil<k+h}

On the other hand, by Lemma 4.1, we obtain

|me<§( [ i | MQ

{h<|uy|<k+h} {lur|=h} {lur1=h}
and
k
Dol < 5 )+ / MQ
{h—k<|uz|<h} {luz| =h—k} {luo| =h—k}

Then, since ¢ € L' (£2), ¥ € L' (9£2) and having in mind that

lim meas{x € 2: |u;(x)|>r}=0
r——+00

and

lim meas{x € 302: |u;(x)| >r}=0,

r—-+o0
since u; € Zr]’p(Q), we obtain that

hllfgo L%’k =0
Similarly, limp,_, oo L}l’ « = 0. Therefore by (11), (10) holds. Now, from (10), (9) and (11), we have that

lim f (a(x, Dup) —a(x, Dug)) -DTy(uy —up) =0.
h—+00

{lurl<h, luz|<h}
Therefore, for any & > 0, DT (1) = DT (u2) a.e. in £2. Consequently, there exists a constant ¢ such that

U —ur=c ae.inSs2.
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Moreover, by (9) and (10), we have

/(21 —22)Ti(uy — up) + f(wl —w) T —up)=0 Vk>D0, (12)
Q 0

from where it follows that
(U)] - wZ)X{ul—u27é()} = O a.c. in 89,

and

(21 — 22) X{u;—up20; =0 a.e.in £2.

Then, if ¢ # 0 it follows that w; = wy, and z| = 2.

In order to see that z; = z» in the case ¢ =0, we take T, (u1) — ¢ and T (u1) 4+ ¢, ¢ € D(82), as test functions
in (3) for the solution [u1, z1, wi] and [u1, 22, wa], respectively, adding these inequalities and letting # go to 400, if
k> l¢lloo, we get

lim Jy + /(Zl —22)9 <0,
h— 00
2

where

Ik =/a(x, Duy) - [DTi(u1 — Ty (u1) + @) + DTi(u1 — T (u1) — ¢) |
2

= / a(x, Duy) - [DTy(uy — T (u1) + @) + DTy (u1 — Ti(u1) — @) ].
{lur]>h}

Then, using Holder’s inequality and Lemma 4.1, we obtain that

lim Jp =0.
h—o0
Hence
/m(p < /zz(ﬂ-
Q Q
Similarly,
/zw < /ZNP-
Q Q

Therefore z; = z».

If ¢ # 0, following the arguments of Lemma 3.5 of [6], we have that z; = z, is constant. In fact, let j(r) =
for y%(s) ds, therefore, ¥ = 8j, the subdifferential of j. Now, z1(x) € ¥ (u1(x)) Ny (u1(x) + ¢) ae. x € §2, con-
sequently, j(uj(x) +c¢) — j(u1(x)) = czi(x) a.e. in §2. Moreover, if ¥ (R) is bounded, j is Lipschitz continuous,
J(Tiuy) +¢), j(Ti(uy)) € WhP(2) and V(j (Ti (u1) +¢) — j (T (u1))) = 0 a.e. in 2. The above identity is obvious
when |u1| > k, and in the case |u1| < k, we have V(j (1 +¢) — j(u1)) = 0. Therefore j(Ti (1) + ¢) — j(Tr(uy1)) is
constant (this constant, in fact, does not depend on k) and consequently cz; is constant. As ¢ # 0, z; is constant. In
the case y is not bounded, we work, again as in Lemma 3.5 of [6], truncating y .

Finally, in order to see that w; = w;, we use the fact that we can take as test function in (3), for the corresponding
(S(Z,’f;), v="Ty(u;) £ ¢, forany ¢ € WLP(£2)N L®(£2). Then, since u; = us + ¢ and 7| = 72, we get

/w]¢=/w2§0.

82 982

Therefore w; =w,. O
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5. Proofs of the existence results

In this section we give the proofs of the existence results. In order to get the existence of weak solutions, the main
idea is to consider the approximated problem

(Sym,na/sm,n ) —diva(x, Du) + Y n() > ¢y in £2,
Gns Vi a(x, Du) -0+ Bm.n(u) 3 Y on 452,

where y;, » and B, , are approximations of y and B given by

1,1
Ymn(r) =y )+ —r" ——r
m n
and
. 1 _
Bman(r) =pr) + —r" ——r
m n
respectively, m, n € N, and we are approximating ¢ and i by
Omn = sup{inf{m, #}, —I’l}
and
Ymn = Sup{inf{m, v _n}
respectively, m, n € N. For these approximated problems we obtain existence of weak solutions with appropriated
estimates and monotone properties, which allow us to pass to the limit.
5.1. Approximated problems

Proposition 5.1. Assume D(y) = D(B) =R. Let m,n € N, m < n. Then, the following hold.

(i) For ¢ € L°°(2) and ¢ € L*(382), there exist u = Uy ymn € WhP(2) N L®(R), z = Zp,rmn € L(R2),
2(x) € y(u(x)) a.e. in 2, and w = Wy y,mn € L*(082), w(x) € B(u(x)) a.e. in 382, such that [u, z + %M+ -

l - L + _ l -1 . ym,nvﬁm,n
U, WAt -~ u~ ] is a weak solution of(def ).

Moreover, if M := ||¢|loo + 1V llcos

—nM <u<nM,
—0(=nM) <z <y’ (M),
and there exists c(§2, N, p) > 0 such that

c($2,N, p)
————(lellyrre) + 1V lvirae)-

(i) If my <my <ny <ny, @1, 92 € L(2), Y1, Y2 € L(082) then

/(Z¢1J/f1,m1,n1 - Z¢2,1//2,m2,ﬂz)Jr + /(w(blelvml,nl - w(/)z,tﬁz,mz,nz)Jr < /(wl - ’»”2)+ + /(¢1 - ¢2)+-
2 052 982 2

—1
”Du”IZP(Q) <

Proof. Observe that %s+ — %

Let us take

-_1 1 _ = — (Ll _Iye+ 1
§ _ms+(m n)s _(m ”)S +ns'

¢ > sup{nM,y,(nM), —y,(—nM), B.(nM), —B,(—n M)},

where y, and B, are the Yosida approximations of y and B, respectively. For r € N, it is easy to see that the operator
B, WP (22) - (WP (£2)) defined by
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(Bru,v):/a(x,Du)~Dv+/Tcr(y,(u))v+1/|u|p72uv+l/Tcr(u+)v—E/Tcr(uf)v
r m n

2 2 2 2 2
1 1 _
+fTc,(ﬁr(u))v+Z/Tc,<u+)v—;/Tc,(u )v—/wv—qu,
082 082 082 082 2

is bounded, coercive, monotone and hemicontinuous. Then, by a classical result of Browder [21], there exists u, =
Up yr.mnr € WHP(£2), such that

/a(x,Dur)~Dv+/TL~,(yr(ur))v+%/Iurl”_zuerr%/Tc,((urfr)v— %/Tc,((ur)_)v
2 2 2
1 1
+/Tcr(ﬁr(ur))v+n_/l/ cr((ur) )U_;/ cr((”r) U—/wv+/¢v (13)

82 a2 82

forall ve WP (£2).
Taking v = Ty ((u, —mM)™) in (13), misleading nonnegative terms, dividing by k, and taking limits as k goes to 0,
we get

1 1
— / T, (u,)sign™ (u, —mM) + — / T, (u,)sign™ (u, —mM)
m m

082
< f ¥ sign® (u, —mM) +f¢sign+(u, —mM).
982 2
Consequently

/(Tc, (uy) — mM) sign® (u, —mM) + f(Tcr (uy) — mM) signt (u, — mM)

2 482
< /(mw —mM)signt (u, — mM) + /(md) —mM)signt (u, —mM) <0
982 2

Therefore, since m < n,
u,(x) <nM ae.in 2.
Similarly, taking v = Ty ((u, +nM)™) in (13), we get
ur(x) > —nM ae.in $2.
Consequently,
lurlloo <M, 14
and (13) yields

/a(x,Dur)-Dv+/yr(ur)v+lflurl”_zurvjtl/zﬁv—%/ur_v
2 2 Q
/,Br(u,)v—i— /u v——/u v—/tpv—i—/q&v (15)

a2

forall v e Wl-r ().
Taking v = Ty ((u,)™) in (15), disregarding some positive terms, dividing by k and letting k go to oo we get that

%/Mj+/yr(ur)++/ﬂr(ur)+</¢++fw+, (16)
2 2 a2 2 982
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and, similarly, taking Ty ((u,)~) we get
1 _ _ _ _ _
;/”r +[Vr(ur) +/,Br(ur) </¢ +/1ﬂ . 17)
Q Q AR Q FY;

Taking v =u, — m /. 95 Ur as test function in (15) and having in mind that

1 1
/?W”< mw@m/‘)Z/@W”*ﬁﬁ&aafﬁyxm‘axaﬂfm)”L
a2 02 a2
. 1 1
/Vr(“r)(ur— m[“r) —/(Vr(%)‘)’r(m/’h))(“r— m/ur)
Q 2 Q Q 2
1 1
B / yr(Mr)(meas(a.Q) /ur B meas(£2) fm)
Q 2 Q
S 1 1
- _/yr(ur)(meas(aﬂ) /ur B meas(£2) /ur>
Q a2 Q

and working similarly with the other terms, we get

1 1
Af”h”</¢@“ﬁ£&ﬂ5fm>*/w@“7£ﬁasfm>
Q 2 882 982 882
( )( 1 1 >
—/J/r i meas(£2) /u, B meas(052) /ur
Q Q 882
o (s [ s [ )
- Mr Uuyr — Ur
m meas(£2) meas(dS2)
Q Q 982
S (s [~ e [ )
+—fu |\ ———— | up— ——< | us ).
n meas(£2) meas(052)
Q Q 92

Now, by Poincaré’s inequality and the trace theorem, there exists ¢y = ¢1(§2, N, p) > 0 such that

1
/¢’<Mr - m/%) <Cl||¢||V1,p(9)||Dur||LP(.Q),
2 a2

and

1
/w<u, - m/ﬂr) <ctll¥llyipe o)l Durllir @)
002

Y,
On the other hand, by (16) and (17),

[ [ e | ) = [ (e [~ ey | )
- Vr(ur) N Up = ——————~ Ur ) — — U, \ —— =< Uy — ——————— Uy
meas(£2) meas(052) m meas(£2) meas(052)
Q Q Y, Q Q Y,
o (e [ v e | )
- [~ |
n " \ meas(£2) meas(952)
Q Q 982
. e
</|W|+/|¢|> meas(.Q)/ur_meas(a.Q) /u,
02 Q Q 2

Moreover, applying again the generalized Poincaré inequality, there exists c; = c2(§2, N, p) > 0 such that
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1
‘meas(.Q) / meas(9$2) /u,

< SR —
meas(Q)l/P meas(.Q) Lr(2) meas(9£2) Lr(@)
30
< || DuyllLr(2)-
Therefore, there exists ¢3 = ¢3(§2, N, p) > 0, such that
||DMr||Lp(_Q) (||¢||V1 p@)+ 1¥lviree) (18)

As a consequence of (14) and (18) we can suppose that there exists a subsequence, still denoted u,, such that

u, converges weakly in W7 (2) tou € WP (2),
u, converges in L9(£2) and a.e. in £2 to u, for any ¢ > 1,
u, converges in L?(9£2) and a.e. to u,
with
—nM <u<nM. (19)

Taking into account (19), we get that |y, (u,)| is uniformly bounded. Consequently, we can assume that y; (u,) —
z € L°°(82) weakly*, moreover

—y(=nM) <z <y (nM).

Since u, — u in L1(2), applying [9, Lemma G], it follows that z(x) € y (u(x)) a.e. on £2.

On the other hand, since B, (u,) is also uniformly bounded, we can assume that 8, (u,) — w € L>°(32) weakly™*.
Again, applying [9, Lemma G], it follows that w(x) € B(u(x)) a.e. in 952.

Let us see now that {Du, } converges in measure to Du. We follow the technique used in [10] (see also [3]). Since
Du, converges to Du weakly in LP(£2), it is enough to show that {Du,} is a Cauchy sequence in measure. Let ¢t and
€ > 0. For some A > 1, we set

C(x, A, 1) :=inf{(a(x,§) —a(x,m) - ¢ —m: [E| <A, Inl <A, |§—nl>1}.

Having in mind that the function ¥ — a(x, ¥) is continuous for almost all x € £2 and the set {(§, n): || < A, |n| < A
|& — n| >t} is compact, the infimum in the definition of C(x, A, 7) is a minimum. Hence, by (H3), it follows that

C(x,A,t) >0 foralmostall x € £2. (20)
Now, for r, s € N and any k > 0, the following inclusion holds

{IDu, — Dug| >t} c {|Du,| > A} U{|Dug| > A}y U {lu, —us| > k*} U{C(x, A, 1) <k} UG, (3))
where

G= {|ur —us| <k, C(x, A, t) >k, |Du,| <A, |Dug| < A, |Du, — Duy| >t}.

Since the sequence Du, is bounded in L”(§2) we can choose A large enough in order to have

meas({|Dur| >A}U{|Du‘Y|>A}) < Z forallr,s e N. 22)
By (20), we can choose k small enough in order to have
meas({C(x, A, 1) <k}) < 2. (23)

On the other hand, if we use Ty (4, — uy) and Ty (u, — uy) as test functions in (15) for u, and u, respectively, we obtain
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1 _ 1
/a(x, Duy) - DTy (uy — us) + / Vr(up) i (uy — ug) + ; / |ur|? 2Mer(Mr —ug) + E / uka(ur — uy)
2

2 2 2
- l/\M;Tk(ur —ug) + / Br (upr)Tic(uy — us) + l / uka(ur —Ug) — l / M;Tk(ur — Uy)
n m n
2 982 982 a2
= [ vt —uo+ [ onw — o, 4
082 2

and

1 _ 1
_/a(xa Dug) - DTy (uy — us) — / vsus) Ti(uy — ug) — ; / |us|p 2MsTk(Mr —Ug) — E/uka(ur — Uy)
2

2 2 2
+ l/AM;Tk(ur —Ug) — [ Bs (us) Ty (uy — ug) — l / uka(ur —ug) + l / M;Tk(ur — Uy)
n m n
2 082 a2 982
= [ on o = [ 6700, 25)
082 2

Adding (24) and (25) and disregarding some positive terms, we get

/(a(-xv Du;) — a(x, DMA)) DTy (uy — uy) < _/(Vr(ur) - Vs(us))Tk(ur — uy)

2 Q2
1 _ 1 _
- /(;W’ Py — —ug | %) Tic(ur — u;) — /(ﬁr(ur) — By (ug)) Tic(ur — us).
2 a0
Consequently, there exists a constant M independent of r and s such that
/(a(x, Du,) —a(x, Dux)) -DTi(uy —ug) < kM.

2

Hence

meas(G) < meas({|u, —ug| < k2, (a(x, Du,) —a(x, Dus)) -D(uy —ug) > k})

1
< % / (a(x, Du,) —a(x, Duy)) - D(uy — uy)
{lur_”a"<k2}
1 L e
= % (a(.x, Dur) - a(.x, Dug‘)) ~DTk2(Mr — I/ls) < z k M g Z (26)

2

for k small enough.
Since A and k have been already chosen, if ry is large enough we have for r, s > rg the estimate meas({|u, — us| >
k) < %. From here, using (21)—(23) and (26), we can conclude that

meas({|Du, — Dug| > t}) <e forr,s >ry.
From here, up to extraction of a subsequence, we also have a(-, Du,) converges in measure and a.e. to a(-, Du).
Now, by (Hy) and (18),
a(-, Du,) converges weakly in LY (2)Y toa(-, Du).

Finally, letting » — 400 in (15), we prove (i).
In order to prove (ii), we Write U1, = Ug, vy, my,ny,r A0d U2 = Uy Wy my,ny,r- Laking T ((uy , — uz,r)+), with r
large enough, as test function in (15) for uy ,, m =m; and n = ny, we get
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79

1 _
/a(xv Dul,r) 'DTk((ul,r - ’42,r)+) + / Vr(ul,r)Tk((ul,r - ’42,r)+) + ; / |ul,r|p 2ul,er((ul,r - u2,r)+)
2

2 2

1 1 _
+ o / ufer((ul,r —uz) ) — o / ML,Tk((Ml,r —uz)t)+ / Br (1, ) Ti (w1, —uz))
2 2 a0

1 1
+ m_l / uT’er((qu — uz,r)+) - Z / ul_)er((Ml,r - u2,r)+)

02 082

Z/%Tk((ul,r —uz,r)+)+f¢1Tk((u1,r —uz,)7"),
00 2

and taking T (u1,, — Mz’r)+ as test function in (15) for u3 ,, m = my and n = ny, we get

—/a(x, Duz ) - DTy ((uy,r —uz,)%) — / Vr (o) T (w1, — ua)™)

2 2

1 _ 1 1 _
- / 2, 1P 2ug  Te(ur r — uz,)*) = p / ud, Te(rr —u2,) ")+ . / uy, Te((ur, —u2,)")
2 2 2

1 1
- /,Br(MZ,r)Tk((Ml,r —uz)t) = . / i, T, —u2)™) + " / uy, Ti (1 —uz,)™)

982 952 982
- / 1pZTk((lftl,r - u2,r)+) _/¢2Tk((ul,r - u2,r)+)-
a2 2

Adding these two inequalities, misleading some nonnegative terms, dividing by k, and letting k — 0, we get

/ () — 7o (uan)) ™ + / (B () — Brlus)) / (W1 — )" + / (1 — ¢)*

2 92
Therefore, taking into account the above convergence, (ii) is obtalned. O

In the homogeneous case without any condition on y we obtain the following result.

Proposition 5.2. Assume D(B) =R. Let m,n € N, m < n. Then, the following hold.

27

(i) For ¢ € L*°(82), there exist u =ty m p € WLP(2) NL®(R2), z = Zg.mn € L(82), z2(x) € y(u(x)) a.e. in £2,

1

and w = wg mn € LX(082), w(x) € B(u(x)) a.e. in 382, such that [u, z + %Lﬁ - %u‘, w + %u"’ —u

weak solution of problem (Sp'0 Y. Pim. ™), and z K ¢.
() If mi <my <ny<ny, ¢, ¢2 € L%°(82), then

/(Z¢1,n11,111 - Z¢2,m2,n2)+ + /(w(f’lamls"l — w¢2,m2,n2)+ < /(¢1 — ¢2)+.
2 382 2

Proof. Following the proof of Proposition 5.1 there exists u, = u¢ u.n,r € WP (£2), such that

lurlloo < nli@lloo,

1 1 _
/a(x Duy) - Dv + - /|ur|p u U+/Vr(ur)v+ /uj(ur_v)_—/urv
n

2 2

/ﬁr(ur)v+ fu v——[u v_/¢v

82

and

for all v e WI’P(.Q).

lisa

(28)
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We can finish the proof as in Propositions 5.1 if we prove that y, (u,) is weakly convergent in L'(£2). Taking
v=q(yr(ur)), q € P, as test function in (28) we have that, after misleading nonnegative terms,

/yr(ur)Q(yr(ur)) </¢Q(Vr(ur)),
2

2

which implies, Y, (u,;) < ¢. In particular, see Proposition 2.1, ||y (4;)|lco < [|@]lco and yy(u,) — z € L*°(£2) weakly
in L'(2),withz < ¢. O

Remark 5.3. Observe that if D(8) = {0}, for any y, if we rewrite the proof of Proposition 5.2, using Wé P (£2) instead
of WhP(R2), we find u = g mn € WP (2) NL®(R2), 2= 2 mn € L®(2), 2(x) € y (u(x)) a.e. in £, such that

1 1
/a(X»DU)'DU-i-/ZU—i-—/quv——/u‘v=/¢v,
m n
2 Q Q Q

2

forall v e W(}’p(.Q). Moreover, if m; <mp <ny < ny, ¢1, ¢y € L°(£2), then

/(Z¢1,w1,m1,n1 - Z¢2,wz,mz,nz)+ < /(¢1 - ¢2)+~
2 2

Proposition 5.4. Assume D(y) =R and a smooth. Let m,n € N, m < n. Then, the following hold.

(i) For ¢ € L*™(£2) and € L™ (352), there exist u = Uy y,mn € WLP(2) N L®(R), z = Zp,y.mn € L(82),
2(x) € y(u(x)) ae. in 2, and w = wy y.mn € L'(32), w(x) € Bu(x)) a.e. in 382, such that [u, z + %u"" -
%u‘, w—+ %u*‘ - %u‘] is a weak solution of (S;;’:’l’/;”ﬁm’”).

Moreover, there exists c(§2, N, p) > 0 such that

1 c($2,N, p)
”Du”it’(()) < f(”(b”vlvp(g) + 1V lviree)-

(i) If my <mp <ny<ny, 1, 92 € LX(R), Y1, Y2 € L(952) then
/(Z¢1J//1,m1,'11 - Z¢2,¢2Jﬂ2,n2)+ + /(w¢1,¢wn1,n1 - w¢2,¢2,l712,n2)+ < /(1/[1 -yt + /(451 — )"
2 082 02 2

Proof. Applying Proposition 5.1 to 8, the Yosida approximation of 8, there exists u, = ¢ v mnr € whr@)n
L>*(2) and z, = 2¢,y.mn.r € L=(82), 2 € y(u,) a.e. in §2, such that

1 n 1 _ 1 " 1 _
a(x,Du,)-Dv+ | zzv+ | Brup)v+— fuv——Juv+— fuv—— [ u v
m n m n

2 2 a0 2 2 a0 e
:/Wv—k/qbv, (29)
a0 2

for all v € WP (£2). Moreover, |u,| is uniformly bounded by nM, M := ||¢|loc + |V |l o>
—y%(=nM) <z <y (M),

fzf+/w,i<fwi+/¢i.
2 a0 A Q
Letnow i € L*°(2) and Z € y (), z € L*°(§2), be such that 1 is solution of the Dirichlet problem (see Remark 5.3)

and

{ —diva(x, D) + 2+ it —li=¢ ing,
u=0 on 052.
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Since a is smooth, there exists 1/} e L1(3£2) such that

/a(x D) - Dv—l—/zv—i——/u v——/u v—/tﬁv—i—/q)v 30)
2 2

for any v € WP (2) N L®(£2).
Taking v = g (B, (u, — 1)), g € Py, as test function in (29), and g (B, (u, — 1)) as test function in (30), and adding
both equalities we get, after misleading nonnegative terms, that

/IBr (ur)Q(,Br(ur)) < /('ﬂ - 1/})‘] (ﬁr(”r))a
052 982

ie., Br(uy) Ky — 1/A/, which implies (see Proposition 2.1) that
Br(uy) — we L' (32) weakly in L'(052).

Now, arguing as in the proof of Proposition 5.1, we obtain (i).
To prove (ii), Proposition 5.1 implies, denoting u; = ugp; y; m;.n;,r A0 Zi r = 2; Wi mpni > i = 1,2,

/ (21— 22" + / (Brur.r) = Br(u2)) " / W1 —v2)" + / (@1 —d2)". 3D
2 082
Taking limits in (31) when r goes to +oc0, (ii) holds. O

In the case ¢ = 0, we have the following result.
Proposition 5.5. Assume a smooth. Let m,n € N, m < n. Then, the following hold.

(i) For ¢ € L*°(82), there exist u =ty m n € Whr(2)NL®(R2), z= Zpmn € L(82), z(x) € y (u(x)) a.e. in £2,
and W = W¢ mn € LY(892), w(x) € B(u(x)) a.e. in 382, such that [u, z + %u — lu_ w+ n%u"’ — %u‘] isa

weak solution of problem (Sg;”’ in-Fm, ™), with z K ¢.
(i) Ifmy <mp <np <ny, @1, ¢o € L(R2), then

v/(z¢1,m1,n1 _Z¢2Jn2,n2)+ + /(w¢1,m|,n| - w¢2,m2,n2)+ < /(¢1 —¢2)+~
Q 892 2
5.2. Existence of weak solutions

Proof of Theorem 3.6. We approximate ¢ and i by
Pm.n = sup{inf{m, b}, —n}

and

Yim,n = sup{inf{m, ¥}, —n},
respectively. We have, ¢, € L%(82), Ym0 € L°°(352), are nondecreasing in m, nonincreasing in n, [|¢p.nll; (Q)
||¢||L,,/(Q) and ”Wm,"”u”(ag) 1Yl 02) Then, if m < n, by Propositions 5.1 or 5.4, there exist u, , € whr2)yn

L®(R), zmn € L¥(R), Zmn(¥) € ¥ (U n () 2. in 2 and wypy € L'OR2), Wi n(x) € Bl n(x)) ae. on 92,
such that

/(D )D+/ +/ +1/+ 1/‘+1/+ 1/‘

ax, Du . v v w v — Uy yU— — u v — u vV— — u v
m,n Zm,n m,n m m,n n m,n m m,n n m,n
2 2

382 2 2 982 a2

Z/wm,nv'i‘/(pm,nvs (32)
982 2
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for any v € W17 (£2). Moreover,
fzrj;,ﬁ/wiin </¢i+/wi (33)
2 Y, 2 Yo,

2, N,
%(”‘ﬁ”vlvﬂﬂ) + 1Y lyiree))- (34)

Fixed m € N, by Propositions 5.1 or 5.4 (ii), {z, ,,}n . and {w,, ,}°2 = are monotone nonincreasing. Then, by (33)
and the Monotone Convergence Theorem, there exists Z,, € L! (£2), Wy, € L! (0£2) and a subsequence n(m), such that

R 1
”Zm,n(m) —Zmll1 € —

and

| Duyy n”LP(Q) <

and
”wm,n(m) - wm ”l < —

Thanks again to Proposition 5.1 or 5.4(ii), Z,, and w,, are nondecreasing in m. Now, by (33), we have that f o |Zm | and
fa o |W,| are bounded. Using again the Monotone Convergence Theorem, there exist z € L'(£2) and w € L'(382)
such that

Zm converges a.e. and in L! (2)toz

and

W,, converges a.e. and in L! (082) to w.
Consequently,

Zm = Zm.n(m) converges to z a.e. and in LY(2) (35)
and

Wy 1= Wy, n(m) CONverges to w a.e. and in L'(3%). (36)

If we set uy, := U, n(m)> Pm = Gm,n(m) A0 Yy = VY n(m), then we have

1 + 1 _ 1 + 1 _
a(x, Duy,)-Dv+ | zpv+ wmv+ mv——n(m) va+z umv——n(m) U, v
_Q k7 082

a2
/l/fmv-i-/(f)m (37)

for any v € WP ().
As a consequence of (34),

1
S — / Unm is bounded in W7 (£2). (38)
meas(052) m

Let us see that

_— / um: m e Nt is a bounded sequence. 39)
meas(052)
082

If (39) does not hold, then, extracting a subsequence if necessary, we can suppose that |, 90 Um converges to +00
(or —oo, respectively). Suppose first that 40 Um converges to +-00. Hence, by (38) we have

u, converges to + oo a.e. in £2, and a.e. in 952.
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Moreover, since for m large enough

ur;<<um_;/um>_+(;/um)_:<um_;/‘um>_v
meas(052) meas(052) meas(0£2)
02 a0 2

by (38), we get

{ / um} is bounded
meN
Glos

and, similarly,

{/u,;} is bounded.
meN
2

In the case |, 90 Um converges to —oo, we similarly obtain that

u,, converges to — oo a.e. in §2, and a.e. in 952,

{ / ujn'} and { / uj;} are bounded.
meN meN
EYe 2

Therefore, we have z = sup{Ran(y)} (z = inf{Ran(y)}, respectively) and w = sup{Ran(8)} (w = inf{Ran(B)}, re-
spectively). Now, taking v = 1 as test function in (37), we get

(I S B S B S
m i = n(m) tn m Uy — n(m) Uy = Om~+ | Ym— [ 2m— | Wn,
2 2 082 982 2 082

2 082

and

and we get a contradiction with (4). Hence, (39) is true. By (38) and (39), we have {|lumly1.r()}m is bounded.
Therefore, there exists a subsequence, that we denote equal, such that

um — u  weakly in Wh?(£2),

Uy —u in LP(£2) and a.e. in 2,

Uy, —u in LP(0£2) and a.e.in 952.

Moreover, arguing as in Proposition 5.1, it is not difficult to see that {Du,,} is a Cauchy sequence in measure. Then,
up to extraction of a subsequence, Du,, converges to Du a.e. in §£2. Consequently, we obtain that

a(-, Du,,) converges weakly in L”,(.Q)N and a.e. in £2 to a(-, Du).

From these convergences, we finish the proof of existence.
The proof of (ii) is a consequence of the existence result, Propositions 5.1(ii) or 5.4(ii), and the uniqueness re-
sult. O

Remark 5.6. For positive data ¢ and v, it is not necessary the assumption D(y) = D(8) = R, that is, we can improve
the above result in the following way. Assume [0, +o0o[ C D(y) and R;f g > 0. Let [0, +o00[ C D(B) or a smooth.

Forany 0 < ¢ € V"7 2) and 0 < ¥ € VI-7(382) with fﬂ 1) +f39 v < R;ﬂ, there exists a weak solution of problem

(Sg,’f;). A similar result holds for nonpositive data.

Proof of Theorem 3.7. Let us approximate ¢ by ¢, = Tp,,(¢) — —meal(.(z)“m and ¥ by Ym = Ty (), where o =
Jo Tn(®) + [0 Tn (). Observe that

Iim «a,=0 (40)

m—+00
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and
/¢m+/¢m =0. 41)
Q 382
By Proposition 5.1, there exist u,, € WP (£2) N L>®(§2) such that
1 1
/a(x’Dum) - Dv + Zf“mv'i' n_/l/umvz / wmv+f¢mv’ (42)
Q Q 382 a2 Q

for any v € WhP(2).
Taking v = u,, as test function in (42), using (40) and the Poincaré inequality, it is easy to see that

1 . .
{0~ ey [ ] s boundedin W1 (@) @)
082

Let us also see that

1
_— f um: m € Nt is a bounded sequence. 44)
meas(052)
982

If (44) does not hold, then, extracting a subsequence if necessary, we can suppose that . 95 Wm converges to +0o (or
—00, respectively). Suppose first that |, 9 Wm converges to +00. Hence, as in the proof of Theorem 3.6, we have

{/u,‘n} is bounded.
meN
2

Now, taking v = m in (42) and using (41), it follows that

lim U, =—+00,
m—400

2

which is a contradiction. Similarly, we get a contradiction in the case [, 90 Wm converging to —oo. Hence, (44) is true.
By (43) and (44), we have {||u, || Wl,p(g)}m is bounded, and we can finish as in the proof of Theorem 3.6. O

Remark 5.7. Taking into account the arguments used in Remark 3.4, we get that [u, z, w] in the above results (includ-
ing also the case B = D) satisfies

—1
[zt [rwoi< [1gvr+ [ 1ol + (gl + 1Dulfria)IDvr@
2 082 2 082

forall v e W”’(.Q), and

L _e(2,N,p)
1Dl 7y < === (18llvioie) + 1V lvioge)).

for some c(§2, N, p) > 0.

Taking 8 = D, y(r) =0 for all » € R, and a smooth in Theorem 3.6, by Remark 5.7, it follows Corollary 3.8.
The proof of Theorem 3.9 follows in a similar way to the proof of Theorem 3.6 taking into account Propositions 5.2
and 5.5. Finally, on account of Remark 5.3, it follows Theorem 3.10.

5.3. Existence of entropy solutions

Proof of Theorem 3.11. Observe that, under the assumptions of the theorem, we have R, g = R. We divide the proof
in several steps.
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Step 1. Let us approximate ¢ by ¢, := T;,(¢) and by ¥, := T;, (). Then, by Theorem 3.6, there exist u,, €
WhP(2), 2 € VIP(2), z2n(x) € y(um(x)) ae. in 2, and w,, € VEP(382), win(x) € B(um(x)) a.e. on 352, such

that
/a(x Duy,) - Dv+/zmv+/wmv—/lﬂmv+f¢m (45)
Q Q Y, FYe;

for any v € whr ().

Moreover,

/z$+/w$</wi§+/¢$ (46)
Q Y] FYe; Q
[z =zl [ o= wnt < [ 100 =l + [ 162~ 6.
Q ) Y, Q

Consequently

m — 7z in LY (),
wy, — w  in L'(00). 47
Taking v = Ty (u,) in (45), we obtain

A/!Drk<um>|"<k(||¢n1+||w||1), VK eN. 48)

By (48), we have {7} (u,,)} is bounded in W7 (£2). Then, we can suppose that there exists o € W17(£2) such that
Ty () converges to o weakly in whr (),
T () converges to oy in L?(§2) and a.e. in §2

and
Ty () converges to oy in LP(362) and a.e. in 2.

Step 2. Let us see that u,, converges almost every where in §2.
If D(B) is bounded from above by ry, using the Poincaré inequality and (48),

<o+)P < lim] /(Tk<(um>+>>1’*
iminf | —————

2
c . . i 1/p\ p*
<k7hmmlnf(/Tk((um) )+(f|DTk((uzn) )| ) )
982 2

C 1/p\ P*
le*(rl meas(082) + <—”¢”1 —)i: ”w”lk) ) Vk > 0,

meas{x € 2: o (x) =

X

where p* = N and C is independent of k and m.

If D(B) is unbounded from above, then, we are supposing limg_, 40 ¥°(k) = +o00. Therefore, for k > 0 large
enough (in order to have y°(k) > 0), by (46) we have

O¢~+
meas{x € 2: of (x) =k} = / r o ) 1 lirnninf/ YO (T (um) )
2

yO(k) yO(k)
{xe.Q' o (x)=k}}

O(k) (llplls + ).
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Consequently, in any case, there exists g(k) > 0, limy_, o g(k) = 0, such that
meas{x € 2: o' (x) =k} <g(k) Vk>0. (49)

Similarly, if D(B) is bounded from below or assumption (8) holds, we can prove that there exists g(k) as above
such that

meas{x €82: 0, (x)= k} <glk) Vk=>D0. (50)

Note that we have proved (49) and (50) in any case. Consequently, there exists g(k) > 0 with limy_, ;o0 g(k) =0,
such that

meas{x € 2: |ox(x)| =k} < g(k) Vk>0.
Therefore, if we define u(x) = or(x) on {x € £2: |ox(x)| < k}, then
u,, converges to u a.e. in £2, (&29)]

and we have that

T (1) converges weakly in WP (§2) to Ty (u),
T () converges in LP(£2) and a.e. in §2 to Ty (u)

and
Ty (i) converges in LP(962) and a.e. in 982 to Ty (u).

Consequently, u € 717 (£2).

Arguing as in Proposition 5.1, it is not difficult to see that {Du,,} is a Cauchy sequence in measure. Similarly, we
can prove that DT (u,,) converges in measure to DT (u). Then, up to extraction of a subsequence, Du,, converges
to Du a.e. in £2. Consequently, we obtain that

a(~ , DTk(um)) converges weakly in Lp/(.Q)N and a.e. in £2 to a(- , DT}, (u)). (52)

Step 3. Let us see now that u € 7;}”(9). On the one hand we have that u,, — u a.e. in §£2. On the other hand,
since DTy (u,,) is bounded in L?($2) and DTy (u,,) — DTy (u) in measure, it follows from [5, Lemma 6.1] that
DTy (u,,) — DTy (u) in L' (£2). Next, let us see that u,, converges a.e. in 352. Let suppose first that D () is bounded
from above by ry, then, by (48), there exists a constant C3 such that

f/ Ti ()™ N meas(9£2)

X Vk > 0.
k k

+
c ot () — % i
meas{x € 92: o, (x) =k} < / - < lm}nm
02 982
If D(B) is unbounded from above, then, we are supposing limi_, 1 ,BO(k) = +o00. Therefore, for k > 0 large
enough (in order to have (k) > 0), by (46) we have

0/ .+ 1
/ P ;‘f)k(k(; ) < s mint / BO(Tic () ™))
082

meas{x €052: J,j'(x) = k} =

{(xedf2: o) (x)=k}}

b
\ﬁo(k)(llqﬁlll ).

We work similarly if D(B) is bounded from below or assumption (8) holds, and, in any case, there exists g (k) > 0,
limy_, o0 (k) = 0, such that

meas{x € 02: |ox(x)| =k} < gk) Vk>0.
Hence, if we define v(x) = Tr(u)(x) on {x € 082: |Tx(u)(x)| < k}, then
u,, converges to v a.e. in 2. (53)

Consequently, u € ’erl’p(.Q).
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Since z;, (x) € y (U (x)) a.e. in £2 and wy, (x) € B(u,(x)) a.e. in 982, from (47), (51), (53) and from the maximal

monotonicity of y and 8, we deduce that z(x) € y (u(x)) a.e. in 2 and w(x) € B(u(x)) a.e.in 952.

Step 4. Finally, let us prove that [u, z, w] is an entropy solution relative to D(8) of (S};”i). To do that, we introduce

the class F of functions S € C>(R) N L*®(R) satisfying
S0)=0, 0<S <1, S(s)=0 fors large enough,
S(—s)=—S(s), and S"(s)<0 fors>0.
Letve WhP(2) NL®(2), v(x) € D(B) a.e.in 982, and S € F. Taking S(u,, — v) as test function in (45), we get

/a(x,Dum)-DS(um—v)+/zmS(um—v)—i—/me(um—v)

Q Q Y,
= / Y S (Um —v)+/¢mS(um —v). (54)
a0 Q
We can write the first term of (54) as
/a(x, Duy,) - Duy S (U — v) —/a(x, Du,,) - DvS'(u,, — v). (55)
Q Q

Since u;, — u and Du,, — Du a.e., Fatou’s Lemma yields

/a(x, Du) - DuS' (u —v) < liminf/a(x, Duy,) - Duy S (uy, — v).

2 e 2
The second term of (55) is estimated as follows. Let 7 := ||v]0o + || Sllco. By (52)

a(x, DT uy) — a(x, DT,u) weakly in L? (£2). (56)
On the other hand,

|DvS' (um —v)| < |Dv| € LP(£2).
Then, by the Dominated Convergence Theorem, we have

DS (uy —v) — DvS'(u —v) in LP(2)V. 57

Hence, by (56) and (57), it follows that
lim [ a(x, Duy) - DvS (uy, —v) =/a(x, Du) - DvS'(u — v).
m—00

2 2

Therefore, applying again the Dominated Convergence Theorem in the other terms of (54), we obtain

/a(x,Du)-DS(u—v)+/zS(u—v)+/wS(u—v)</¢S(u—v)+/¢$(u—v).
2 2 a2 982 2

From here, to conclude, we only need to apply the technique used in the proof of [5, Lemma 3.2].
The proof of (ii) is a consequence of the existence result, Theorem 3.6(ii), and the uniqueness result. O

Theorems 3.13 and 3.14 follows in a similar way taking into account Theorems 3.9 and 3.10 respectively.

Remark 5.8. In Theorem 3.11, if the data ¢ and ¥ are nonnegative (nonpositive, respectively), then assumption (8)
((7), respectively) is not necessary. That is, only assuming [0, +oo[ C D(y), [0, 4+oo[ C D(B) or a smooth, and
assumption (7) if [0, +o0o[ C D(B), forany 0 < ¢ € L'(£2)and 0 < Ve L! (0£2), there exists an entropy solution of
problem (S;:i). A similar result holds for nonpositive data.
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Remark 5.9. In Theorems 3.11 and 3.13, it is not difficult to see that (7) can be substituted by one of the following
assumptions,

(7) 0 <a <1, r9>0:y0(r) > r® Vr > ro,
(7)) 30 <a <1, r9>0: BO4r) = r® Vr > ry;

and (8) can be substituted by one of the following assumptions,

®) 0 <a<1,rg>0:y00r) < —(—r)* Vr < —ro,
(8" 0 <a<1,r9>0: BOr) < —(—=r)* Vr < —ry.

5.4. Some extensions

Following the ideas developed in this work, it is possible to find a larger class of entropy solutions when 8 is only
assumed to have closed domain.

Definition 5.10. Let ¢ € L'(£2) and ¢ € L!(32). A triple of functions [u, z, w] € T, 7 (22) x L1(£2) x L1(382) is
an entropy solution relative to D(B) of problem (S;:ﬁ) if z(x) € y(u(x)) a.e.in £2, w(x) € B(u(x)) a.e. in 32 and

/a(x,Du)~DTk(u—v)+/sz(u—v)+/wTk(u—v)
Q Q 02

</wnw—w+/¢nw—m VE >0, (58)
082 2

forall ve L®(2) N WhP(2), v(x) € D(B) a.e.in 3£2.
For this concept of solution we can prove the following result.

Theorem 5.11. Assume D(B) is closed and D(B) C D(y). Let also assume that if [0, +oo[ C D(B) the assump-
tion (7) holds, and if 1—o0, 0] C D(B) the assumption (8) holds. Then,

(i) for any ¢ € L'(£2) and /S L'(382) there exists an entropy solution [u,z, w] = [ug y,2¢ v, We v relative
to D(B) of problem (Sg:f;). Moreover,

BO(inf D(B)) < w < B2(sup D(B))

fzi+/wi</wi+f¢i.
Y, Q
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(i) Given ¢1, ¢ € L' (82) and Y1, ¥r € L' (382),

f(z¢1’¢1 - Z¢>2,1/,2)+ + /(w¢1,1/fz - w¢z,¢z)+ < /(Wl -y + f(¢1 -7
2 082 982 2

and

(iii) For any [u1, 21, w1] entropy solution relative to D(B) of problem (Sg;ﬁm ), $1 € L), Y € LY(9$2), and any
[u2, z2, wo] entropy solution relative to D(B) of problem (S;z’ﬁpz), ¢ € L), Y € LY(8£2), we have that

/(Zl -2t < /(lﬁl M +/(¢1 — ¢
2 992 2
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Remark 5.12. In general, for this concept of solution we have not uniqueness of w, as the following example shows.
Let y and B be such that y (0) = [0, 1] and B(0) = ]—o00,0] and let 0 < ¢ < 1 and i < 0. Then, for any w such that
¥ <w <0, [0, ¢, w] is an entropy solution relative to D(B).
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