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ABSTRACT. In this paper we study the large time behaviour of solutions of the quasi-
linear parabolic equation with nonlinear boundary conditions

u; = div a(z,Du) in (0,00) X Q
ou
IMa
u(z,0) = up(z) in Q.

€ B(u) on (0,00) x ON

We show that the solutions stabilize as ¢ — co by converging to a constant function.
For some particular boundary conditions we also obtain a decay rate.

INTRODUCTION

Let Q be a bounded domain in RY with smooth boundary 09 and 1 < p < 0.
Consider a vector valued function a mapping € x RV into RY and satisfying

(Hy) ais a Carathéodory function ( i.e., the map & — a(z,£) is continuous
for almost all x and the map = — a(z,£) is measurable for every ¢ ) and there
exists A >0 such that

(a(z,§),§) > AP (1<p<oo)

holds for every ¢ and a.e. z € Q, where (,) means scalar product in R¥. There
is no restriction in assuming that \ = 1.

(Hy) For every ¢ and n € RN, ¢ #1n, and a.e. = € Q it holds

(a(z,§&) —a(x,n),§ —n) > 0.
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(H3) There exists A € R such that
la(z, )] < A(j(z) + [P~
holds for every & € RN with je L, p/ = p/(p—1).

The hypotheses (H;), (Hy) and (Hs) are classical in the study of nonlinear op-
erators in divergence form ( see [16] ). The model example of a function a sat-
isfying these hypothesis is a(z,&) = |£[P72£. The corresponding operator is the
p-Laplacian operator A,(u) = div(|Du|p_2 Du).

The aim of this paper is to study the large time behaviour of solutions for
equations of the form

uy = div a(z, Du) in € x (0, 00)

(I) - 38;: € B(u) on 9N x (0, 00)

u(z,0) = up(xz) in Q.

where 0/0n, is the Neumann boundary operator associated to a, i.e.,

ou
ana T <a($aDu)777>

with 7 the unit outward normal on 0€), Du the gradient of v and [ a maximal
monotone graph in R xR with 0 € $(0) . These nonlinear fluxes on the boundary
occur in heat transfer between solids and gases ( [14] ) and in some problems in
Mechanics and Physics [13] ( see also [9] ). Observe also that the classical Neumann
and Dirichlet boundary conditions correspond to =R x {0} and g = {0} xR,
respectively.

In order to discuss the asymptotic behaviour of solutions of problem (I) we must
be sure such solutions exist. In general, problem (I) is not solvable in the classical
sense and it is necessary to introduce a suitable class of generalized solutions. In
[1], following the idea of entropy solution introduced in [7], we study problem (I)
in the context of Nonlinear Semigroup Theory. We associate to problem (I) an
m-T-accretive operator in L!(€Q). So, for us a solution of problem (I) will be the
mild-solution obtained via the Crandall-Liggett exponential formula. These mild-
solutions have been characterized in [2] by introducing a new class of weak solutions,
namely entropy solutions. We show that any solution of problem (I) converges to
a spatially constant function K, K € f71(0), i.e., |Ju(.,t) — K|y = 0 as t — oo.
For some particular boundary conditions we also obtain a decay rate. Our main
tool is the Lyapunov method for semigroups of nonlinear contractions introduced
by A. Pazy [18].

1. PRELIMINARIES

In this section we give the results about existence and uniqueness of mild-
solutions of problem (I) we need. We start with some notation and definitions
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used later. If Q C RY is a Lebesgue measurable set then Ax(Q) denotes its
measure. The norm in LP(€) is denoted by [.[[,, 1 <p<oo. If k>0 isan
integer and 1 < p < oo, WHFP(Q) is the Sobolev space of functions u on the
open set Q C RN for which D®u belongs to LP(2) when |o| < k, with its
usual norm ||.| - Wé“’p((l) is the closure of D(Q) = C°(Q) in WFP(Q). If
ve LY(Q) and Ay(Q) < oo, we denote by T the average of v, i.e.,

_'—L v(x) dx
U._AN@)/Q (z) da.

We use some terminology and notations from classical topological dynamics. For
a continuous semigroup (7'(t));>o on a metric space X, the orbit or trajectory of
u € X is the set

Y(w) =A{Tt)u :t >0}

and the w-limit set of u is

wu)={veX : v= lim T(t,)u for some sequence t,, — co}.
n—oo

This set is possibly empty. Now, it is well-known that if ~(u) is relatively compact,
then w(w) is a non empty, compact and connected subset of X. Furthermore,
w(u) is positive invariant under T'(t), i.e., T(t)w(u) = w(u) for any t > 0. An
equilibrium or stationary point w € X is a point such that v(u) = w(u) = {u}, or
equivalently, T'(t)u = u for all ¢ > 0.

As we said in the introduction, our abstract framework is the Theory of Nonlinear
Semigroups. We refer the reader to [2], [4], [6] and [11] for background material on
nonlinear contraction semigroups.

Ph. Bénilan and M. Crandall introduce in [5] the concept of completely accretive
operator, whose precedents are the results of Brézis- Strauss [10] on semilinear
elliptic equations ( see also [4] ). This type of operators, in the particular case of
L'(Q) with ©Q bounded, can be defined in the following way: An operator A in
LY(Q), possibly multivalued ( i.e., A C L*(2) x L}(Q) ), is said to be completely
accretive if one of the following conditions is satisfied:

1. For A >0, (u,v),(u,0) € A and j € Jy,

(1) [itu=iy< [ =i+ ro- o).
Q Q

where

Jo = {convex lower-semicontinuous maps j : R — [0,00] satisfying j(0) = 0}.

2. For (u,v),(4,0) € A and p € Py,
(1.2) /p(u—f&)(v—ff)) >0,

Q

where

Po={peC®R) : 0<p <1, supp(p’) is compact, and 0 & supp(p)}.
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Remark that if A is a completely accretive operator in L*(2) and 1 < ¢ < oo,
then the restriction A, of A to LI(Q) is T-accretive in L9(2). Consequently,
the corresponding resolvent Jy = (I + AA,)~! is an order preserving contraction
in L9(Q). If a completely accretive operator A in L1(Q) satisfies the range
condition: “there exists A > 0 such that R(I+ \A) is dense in L'(Q)”, then the
closure A of A is an m-T-accretive operator in L'(Q). So, by Crandall-Liggett’s
Theorem, the operator A generates, on the closure of its domain, a semigroup of
order-preserving contractions given by the exponential formula

ettu = lim (I + EZ)_"u for uw e D(A).
n

n— o0

This semigroup solves the corresponding initial value problem for the operator A

(1.3) u' + Au >0, u(0)=u.

The function u(t) := e~ *4ug is called the mild-solution of problem (1.3).

From now on, 2 will be a bounded domain in RY with smooth boundary 052
of class C1', 1< p < N, a is a vector valued map from QxRY into RV satisfying
(Hy) - (H3) and g is a maximal monotone graph in R x R with 0 € 3(0).

In order to study problem (I) from the point of view of Nonlinear Semigroup
Theory we introduce a nonlinear completely accretive operator A in  L'(Q)
associated with the formal expression

—div a(z, Du) + nonlinear boundary conditions.

Since ( is a maximal monotone graph in R x R with 0 € §(0), there exists a
convex lower semicontinuous (l.s.c.) function j on R, j(0) = 0, such that g = 0j.

Consider @ : W(€) — [0, +00], defined by
B(u) = { Joqi(u) i j(u) € L1(0Q)
T oo i) ¢ L(O9).

It is well-known ( cf. [9] ) that & is a convex ls.c. function in W?(Q). Moreover
@ >0 because j > 0. Now let us define the operator Ag in L'(Q) by:

(u,v) € Ag if and only if uwe WHP(Q)N L>*(Q), v e L'(Q) and

2(w) > @)+ [

v(w—u)—/ (a(z, Du), D(w—u)) for every w € WP (Q)NL>(Q).
Q Q

Here and below the integrals over (2 are with respect to Lebesgue measure Ay
and the integrals over 02 are with respect to the area measure p on 0f2.

In the following theorem we summarize all the results we need about Ag given
in [1].

Theorem 1.1. The operator Ag satisfies the following statements:
(1) Ap is univalued, i.e., if (u,v) € Ag, then

v=—diva(z,Du) in the sense of distributions.
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(i1) Ap is completely accretive.

(11i) L>(2) C R(I + Ap).

(iv) The domain of the operator Ap is dense in L'(Q).
(v) If (u,v) € Ag, then

/Q Dul? < [[ufloc ]

We associate with problem (I) the operator

—LY(Q) . . 1
Ag = Ag , 1l.e., the closure of Ag in L ()

which is m-completely accretive in L!(€). Thus the abstract Cauchy problem in
LY(Q) corresponding to (I) reads as follows:

uw(t) + Agu(t) 20 t >0,
{aD { u(0) = up.

Since Ag is m-completely accretive in  L'(2) a unique mild-solution u €
C(R*; LY(Q)) of (II) is known to exist in the sense of Nonlinear Semigroup Theory
for any ug € D(Ag) = L' ().

In [1], following the idea of entropy solutions introduced in [7], we characterize
the closure Ag of the operator Ag in some cases.

2. THE STABILIZATION RESULTS

In this section we establish that the mild-solutions of problem (II) stabilize as
t — 0 by converging to a constant function. We use the Lyapunov method for
semigroups of nonlinear contractions introduced by A. Pazy [18].

In order to prove the stabilization theorem we need the orbits to be relatively
compact.

Theorem 2.1. Let (S(t))i>0 be the semigroup generated by Ag and Jy its
resolvent. Then,

(i) Jx(B) is a relatively compact subset of L*(Q) if B is a bounded subset
of L>®(9Q).

(ii) For every ug € L*(Q) the orbit y(ug) = {S(t)up : t >0} is a relatively
compact subset of L'(Q).

Proof. (i): Let B a bounded subset of L>(f2). Take (f,) C B and let w, :=
Ixfn. Set M :=sup,cy || fnllc < 00. By Theorem 1.1, |juy|lec < M for every
n € N and

2M2 XN (Q
(2.1) / | Du,, |P < +<) for all neN.
Q

Thus, {u, : n € N} is a bounded sequence in W1P(Q), and by the Rellich-
Kondrachov Theorem we have that {u, : n € N} is a relatively compact subset
of LY(Q).

(ii): Consider first ug € D(Ag) N L>(Q2). Then, since

1S(t)uolloo < ||uolloe  for all ¢ >0,
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as a consequence of (i), we have that Jy(v(up)) is a relatively compact subset of
LY(Q) for all X\ > 0. Moreover,

HS(t)uo — JAS(t)Uo”l < )\iﬂf{”l}”l TV E -AB(UO)}

Hence, ~y(ug) is relatively compact in L(£2).
Finally, since D(Ag)NL>(Q) is dense in L'(Q), given ug € L'(Q) and € > 0,
there exists vg € D(Ag) N L>(Q2) such that [ug — voll1 < €. So we have,

sup inf ||S(t)ug — S(s)vgll1 < sup [|S(t)ug — S(t)voll1 < ||uo — voll1 < €.
t>0 520 t>0

From where it follows that ~y(ug) is relatively compact in  L(2).
Now we come to the main result.

Theorem 2.2. Let ug € L (Q) and wu(x,t) be the mild-solution of problem (I).
Then, there exists a constant K, K € 371{0} such that

|lu(.,t) — K| =0 as t— oo.

Proof. Suppose first that ug € L>(€2). Let (S(t))i>0 be the semigroup generated
by Az and J, its resolvent. Let V: L'(Q) — [0,+0o0] be defined by
: Jqu?, if uwe L*(Q)
V(u) =
+00, if uw¢g L*(Q)

It is well-known that V' is lower semicontinuous (see [9, pag. 160]). On the other
hand, since Ag is completely accretive, we have

1 1
—/(t”/nf)gé—/f2 for f € L*(Q), t >0 and n €N.
2 /g 2 Jo

Now, by the Crandall-Liggett Theorem, since V is lower semicontinuous, we have

V(S(t)f) <liminfV(J]), f) <V(f), fort>0.

n—o0

Therefore, V is a Lyapunov functional for the semigroup (S(t))
Let W: L'(Q) =] — 0o, +00] be defined by

>0

Jo |Dul", it [Duf € L7(Q)
W(u) =
+00, if |Du| ¢ LP(Q)

It is easy to see that W is lower semicontinuous in LP(Q2). Since wug € L™ (£2),

by Theorem 1.1, Jyug = (I + AAg) " tug € D(Ag) € WHP(Q) N L>°(2). Then,
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(Jauo, 3 (uo — Jrug)) € Ag. Thus, taking w =0 as a test function in the definition
of the operator Ag, we have

1
/ (ale, DJyuo), Do) < / (1o — Jatio) Tt — B(Jxug).
Q Q

Now, using (H;) and @(Jyup) > 0, we obtain

1
W(J)\UO) S X /(UO — J}\UO)J}\UO.

w

Then, since

V(Jato) — V(ug) = %/

1
(Jrug)? — 5/ up < —/(uo — Jaug) Jauo,
0 Q Q

we get
(2.3) V(Jaug) + MIWW(Jrug) — V(ug) < 0.
Replacing wug by Jf_luo in (2.3) we find

V(J5ug) + IW(J5ug) — V(JI¥ ug) < 0.
Summing these inequalities from k=1 to k=mn and choosing \ = t/n, it yields

n — k
(2.4) V(Jhug) + ; “W(JEup) = V(ug) 0.
Next we define a piecewise constant function
F, (1) = W(J%uo) for (k—1)t/n <71 <kt/n.

Then

On the other hand, by the Crandall-Liggett Theorem,

lim J5ug = S(T)ug in L'()

n—,oo n

where k =k, (7) = [n7/t] + 1. By the Dominated Convergence Theorem, taking a
subsequence if necessary, it follows that

lim JY¥ug = S(t)ug in LP(Q).

n—oo n

Since W is lower semicontinuous in LP({2), we have

W(S(t)ug) < liminf W(J¥ ug) = lim inf F, (7).

n— o0 n— oo
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Thus, by Fatou’s lemma, we obtain

t t n
(2.5) / W(S(T)up) dr < lim inf/ F,(7) dr =lim infz iVV(JEUO).
0 0 1 "

n— oo n—oo

Passing to the limit as n — oo in (2.4) and taking into account (2.5) and the lower
semicontinuity of V), we get

V(S(t)uo) + /0 W(S(r)uo) dr — V(ug) < 0.
Consequently
(2.6) /000 W(S(T)uo) dr < V(uo).

Thus, there exists a sequence t,, — 0o, such that W(S(tn)uo) — 0 as n — oo.
Now by Theorem 2.1, there exists a subsequence (t,,) such that

lim S(t,, )uo = v € w(ug).
k— o0

Hence, by the Dominated Convergence Theorem,

lim S(t,, )up =v in LP(Q)

k—o0

and by the lower semicontinuity of W, it follows that

W(v) < likm inf W(S(tn, )uo) = 0.
—00

Therefore, v is a constant K. If K =0, since 0 is an equilibrium, w(ug) = {0}.
Suppose K > 0. Then, since |[|S(t)K | < |[|K|s = K,

(2.7) 0<S(H)K < K.

Since S(t)K, K € w(up) and V is a Lyapunov functional, it follows from the
invariance principle of Dafermos [12, Proposition 4.1] that V(S(t)K) = V(K).
Consequently, by (2.7) and the definition of V, S(¢)K = K for all ¢ > 0, so as
S(t) are contractions, we get w(ug) = {K} and the proof for the case uy € L ()
concludes. Now, since L>(Q) is dense in D(Ag) = L'(Q) and S(t) is a T-
contraction, from the above we obtain easily the conclusion in the general case
up € L1(Q). Finally, as K is an equilibrium, it follows that K € 871{0}.

3. SOME PARTICULAR BOUNDARY CONDITIONS

For some particular boundary conditions we can say more about the constant
K of Theorem 2.2. For instance, when [ = {0} x R, then K = 0, i.e., for
Dirichlet boundary conditions the solutions of problem (I) stabilize to 0. Now, in
this section we are going to see that for Dirichlet and Neumann boundary conditions
we also can estimate a decay rate of the solutions when ¢ — oo. We start with the
Neumann boundary valued problem. First we need the following result about the
conservation of mass.
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Proposition 3.1. Let ((S(t))t>0 be the semigroup in L*(Q)) generated by Ag,
with B corresponding to the Neumann boundary condition, and wug € L'(£2).
Then, we have consevation of mass, that is,

/S(t)uoz/uo, for all t>0.
Q Q

Proof. Without loss of generality we can assume that wg € L*(Q2). For A > 0,
let Jyx = (I + Ag)~! Dbe the resolvent of Az and define v; by vy = up,
Vi1 = Javi, 0 = 1,2,---. Letting wvy(t) = v; for iA <t < (i + 1)\, we have by
the Crandall-Ligett Theorem that

lim vy (t) = S(t)ug in L'(£),
A—0

and the limit is uniform for ¢ in compact subsets of [0, 0.
Since (vi41, 3 (vi — viy1)) € Ag, we have

30 [ (Do), Dl = 6) < [ S =)o =),

Q

for every ¢ € WHP(Q) N L>(Q).
Now, given ¢ € W1P(Q) N L>°(Q), taking v;y 1 — ¢ and v;4q + ¢ as a test
functions in (3.1) we get

(32 | @@ Dvisn). Do) = [ S0 = v

Q

for every ¢ € WHP(Q) N L>°(Q). In particular, taking ¢(z) =1 for all x € Q in

(3.2), it follows that
/U7;+1=/U¢=/U07 1=1,2,---
Q Q Q

/S(t)u(]: lim v,\(t):/uo.
Q A—0 o) Q

Concerning Neumann boundary problem, we have the following result

Therefore,

Theorem 3.2. Let ug € LY(Q). Then, if u(z,t) is the mild-solution of problem
(1) with Neumann boundary conditions, we have

|lu(.,t) —wglls = 0 as t — oo.

Moreover, if ug € L>®(QQ) there exists a constant C, independent of wg, such that

2\ 1/p
u(-,t) —woll, < <%> for all t> 0.
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Proof. Let wuy € LY(Q2) and wu(x,t) be the mild-solution of problem (I) with

B =R x {0}. By Theorem 2.2, there exists a constant K € 371{0} such that
Tim () = K]l = 0.

Then, since the average of any solution is preserved (Proposition 3.1), it follows

that K = uy.

Now suppose ug € L>(€). Then, by (2.6) we have that wu(.,t) € WhP(Q) for
almost all £ > 0 and, moreover,

t
1
(3.3) / / | Du(., s)|? ds < §||u0||§ for any t>0.
0 Jo
On the other hand, since wu(.,s) = ug, by the Poincaré-Wirtinger inequality, it
follows that
(3.4) lu(.,t) —aolly = lu(., ) —u(., s)[[; < M[|Du(., s)]|7.
Then, (3.3) and (3.4) imply that

t
1
(3.5) / u(.,t) —uollh ds < §M||u0||§ for any t¢ > 0.
0

Now, since Ag is completely accretive and j(r) = |r|P is an element of Jp,
U(u) = [j(u) is a Lyapunov functional for the semigroup generated Ag. Then,
by (3.5) we get

t
1
) =l < [ Utuls) =) ds < 50 ol

Therefore
Clluoll3

1/p
" ) for all ¢t > 0.

HM@—%MS(

with C = 4L

Unilateral boundary conditions of type

ou
0 — =0
u>U = an ,
ou
=0 — > 0.
u = o >

which correspond to variational inequalities introduced by J. L. Lions and G. Stam-
pachia [17] (see also [8] and [9]), appear in elasticity (Signorini’s problem) and in
problems of heat control. In the above notation this boundary condition is

;;: € B(u)
with [ being the maximal monotone graph
0, for r>0
B(r) =4 ] —00,0], for r=0
0, for r < 0.

For this type of boundary conditions and for similar ones which appear in problems
of temperature control through the boundary (see [14]), we have the following result.
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Theorem 3.3. Let 5 be a mazximal monotone graph in R x R with 0 € 3(0).
Let 0 <wug € LYQ) and wu(x,t) the mild-solution of problem (I). Then, there
exists a constant K > 0 such that

|lu(.,t) — K| =0 as t — oo.
Moreover, if d:=sup{r >0 : 0¢€ B(r)}. Then,

inf{d,uo} < K <inf{d, uo}.

Proof. We suppose first that wg > a > 0. Let

= [0, for r <0
blr) = { B(r)N[0,+o0], for r>0.

It is easy to see that

e sy = e_tAﬁuo for t > 0.

By Theorem 2.2, there exists 0 < K € 71{0} such that w(ug) = {K}. By the
definition of d, K < d. Moreover, having in mind the proof of Proposition 3.1, we

have
/e_tABUOS/UO
Q Q

and consequently K < ug. Consider g := inf{d,up}. Then, w(dg) < w(ug) =
{K} since 4y < ug. Now, if a =R x {0} it is not difficult to see that

e_tABﬁo = e_tA“ﬁo for ¢t > 0.

Hence, by Theorem 3.2 we have

N
w(uo)—{M(Q)/Q 0}.

Then
1

K Z —/ IAL() = 1nf{d, Uo}
1(€2) Jo
and the proof finishes in the case ug > a > 0.
Finally, suppose that wg > 0. Then, given € > 0, if u. = ug(z) + €, the above
implies the existence of a constant K. such that w(u.) = {K.}. Moreover we
have

P.i=inf{du) < K, < inf{d. %} =: Q.

Now,
P. — inf{d,up} as e—0

and
Q. — inf{d,ug} as €— 0.
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Therefore, there exists a sequence {e,}, €, — 0, such that K. — K and
inf{d,uo} < K <inf{d, uo}.

Let us prove w(up) = {K}. In fact:

le™* 4 ug — K|y < [le™*ug — e™ g, [l + e ue, — Ke, |1+ 1K, — K|

< [luo — ue, l + le™ P ue, — Ke, |1+ 1Ke, — K1

Now, since w(u., ) = {K,, }, we have that

lm [le™™%ug — K|y < |luo — e, |1 + | Ke,, — K1
t—o0

But |Jup —uc, |1 =0 and ||K., — K|1 — 0 as n — oo, hence w(ug) = {K}.

Remark that in the above theorem, K = ug if B(r) =0 for all r > 0, and

K =0 if B(r) >0 forall r>0.
To finish, let us see that for the Dirichlet boundary value problem we also obtain

a decay rate. To be more concrete, we have

Theorem 3.4. Let ug € L*™(Q2) the mild-solution of the problem
uy = div a(xz, Du) in Q x (0,00)

u=0 on 092 x (0,00)
u(z,0) =up(xz) in Q.

Then, there exists a constant C', independent of wug, such that

Cluoll3

1/p
Ju(-, )llp < ( " > for all t>0.

Proof. By the definiton of Ag, Jyug € I/VO1 P(Q). So, by the Poincaré inequality,
there exists a constant M such that

/|J)\UO|p§M/ |D(J>\UO)|p.
Q Q

Then, if we set
1

U(w) = [l
(2.3) implies that

V(J)\UO) + )\Z/{(J)\Uo) - V(UQ) < 0

Thus, proceeding as in the proof of Theorem 2.2, we get

(3.6) /OOOU(u(., s)) ds < V(ug).



ASYMPTOTIC BEHAVIOUR 13

Now, by the complete accretiveness of Ag, U is a Lyapunov functional for the
semigroup generated by Ag. Then, by (3.6) we get

) = I < [ Utat o) ds < S0l

Therefore

2\ 1/p
lu(., t)|lp, < <M> for all ¢ >0,

with C = &

Remark 3.5.. The asymptotic behaviour of solutions of the Dirichlet problem for
more general a is studied by P. Wittbold [19]. Also in [15] precise decay estimates
are given for the particular case of the p-Laplacian with p > 2.
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