
ASYMPTOTIC BEHAVIOUR OF SOLUTIONS

OF QUASI-LINEAR PARABOLIC

EQUATIONS WITH NON-LINEAR FLUX

F. Andreu, J. M. Mazón and J. Toledo

Departamento de Análisis Matemático
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Abstract. In this paper we study the large time behaviour of solutions of the quasi-

linear parabolic equation with nonlinear boundary conditions

𝑢𝑡 = div a(𝑥,𝐷𝑢) in (0,∞)× Ω

− ∂𝑢

∂𝜂𝑎
∈ 𝛽(𝑢) on (0,∞)× ∂Ω

𝑢(𝑥, 0) = 𝑢0(𝑥) in Ω.

We show that the solutions stabilize as 𝑡 → ∞ by converging to a constant function.
For some particular boundary conditions we also obtain a decay rate.

Introduction

Let Ω be a bounded domain in ℝ𝑁 with smooth boundary ∂Ω and 1 < 𝑝 < ∞.
Consider a vector valued function a mapping Ω× ℝ𝑁 into ℝ𝑁 and satisfying

(H1) a is a Carathéodory function ( i.e., the map 𝜉 → a(𝑥, 𝜉) is continuous
for almost all 𝑥 and the map 𝑥 → a(𝑥, 𝜉) is measurable for every 𝜉 ) and there
exists 𝜆 > 0 such that

⟨a(𝑥, 𝜉), 𝜉⟩ ≥ 𝜆∣𝜉∣𝑝 ( 1 < 𝑝 < ∞ )

holds for every 𝜉 and a.e. 𝑥 ∈ Ω, where ⟨, ⟩ means scalar product in ℝ𝑁 . There
is no restriction in assuming that 𝜆 = 1.

(H2) For every 𝜉 and 𝜂 ∈ ℝ𝑁 , 𝜉 ∕= 𝜂, and a.e. 𝑥 ∈ Ω it holds

⟨a(𝑥, 𝜉)− a(𝑥, 𝜂), 𝜉 − 𝜂⟩ > 0.
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(H3) There exists Λ ∈ ℝ such that

∣a(𝑥, 𝜉)∣ ≤ Λ(𝑗(𝑥) + ∣𝜉∣𝑝−1)

holds for every 𝜉 ∈ ℝ𝑁 with 𝑗 ∈ 𝐿𝑝′
, 𝑝′ = 𝑝/(𝑝− 1).

The hypotheses (H1), (H2) and (H3) are classical in the study of nonlinear op-
erators in divergence form ( see [16] ). The model example of a function a sat-
isfying these hypothesis is a(𝑥, 𝜉) = ∣𝜉∣𝑝−2𝜉. The corresponding operator is the
p-Laplacian operator Δ𝑝(𝑢) = div

(∣𝐷𝑢∣𝑝−2 𝐷𝑢
)
.

The aim of this paper is to study the large time behaviour of solutions for
equations of the form

𝑢𝑡 = div a(𝑥,𝐷𝑢) in Ω× (0,∞)

(𝐼) − ∂𝑢

∂𝜂𝑎
∈ 𝛽(𝑢) on ∂Ω× (0,∞)

𝑢(𝑥, 0) = 𝑢0(𝑥) in Ω.

where ∂/∂𝜂𝑎 is the Neumann boundary operator associated to a, i.e.,

∂𝑢

∂𝜂𝑎
:= ⟨a(𝑥,𝐷𝑢), 𝜂⟩

with 𝜂 the unit outward normal on ∂Ω, 𝐷𝑢 the gradient of 𝑢 and 𝛽 a maximal
monotone graph in ℝ×ℝ with 0 ∈ 𝛽(0) . These nonlinear fluxes on the boundary
occur in heat transfer between solids and gases ( [14] ) and in some problems in
Mechanics and Physics [13] ( see also [9] ). Observe also that the classical Neumann
and Dirichlet boundary conditions correspond to 𝛽 = ℝ×{0} and 𝛽 = {0}×ℝ ,
respectively.

In order to discuss the asymptotic behaviour of solutions of problem (I) we must
be sure such solutions exist. In general, problem (I) is not solvable in the classical
sense and it is necessary to introduce a suitable class of generalized solutions. In
[1], following the idea of entropy solution introduced in [7], we study problem (I)
in the context of Nonlinear Semigroup Theory. We associate to problem (I) an
m-T-accretive operator in 𝐿1(Ω). So, for us a solution of problem (I) will be the
mild-solution obtained via the Crandall-Liggett exponential formula. These mild-
solutions have been characterized in [2] by introducing a new class of weak solutions,
namely entropy solutions. We show that any solution of problem (I) converges to
a spatially constant function 𝐾, 𝐾 ∈ 𝛽−1(0), i.e., ∥𝑢(., 𝑡)−𝐾∥1 → 0 as 𝑡 → ∞.
For some particular boundary conditions we also obtain a decay rate. Our main
tool is the Lyapunov method for semigroups of nonlinear contractions introduced
by A. Pazy [18].

1. Preliminaries

In this section we give the results about existence and uniqueness of mild-
solutions of problem (I) we need. We start with some notation and definitions
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used later. If Ω ⊂ ℝ𝑁 is a Lebesgue measurable set then 𝜆𝑁 (Ω) denotes its
measure. The norm in 𝐿𝑝(Ω) is denoted by ∥.∥𝑝, 1 ≤ 𝑝 ≤ ∞. If 𝑘 ≥ 0 is an

integer and 1 ≤ 𝑝 ≤ ∞, 𝑊 𝑘,𝑝(Ω) is the Sobolev space of functions 𝑢 on the
open set Ω ⊂ ℝ𝑁 for which 𝐷𝛼𝑢 belongs to 𝐿𝑝(Ω) when ∣𝛼∣ ≤ 𝑘, with its

usual norm ∥.∥𝑘,𝑝. 𝑊 𝑘,𝑝
0 (Ω) is the closure of 𝒟(Ω) = 𝐶∞

0 (Ω) in 𝑊 𝑘,𝑝(Ω). If

𝑣 ∈ 𝐿1(Ω) and 𝜆𝑁 (Ω) < ∞, we denote by 𝑣 the average of 𝑣, i.e.,

𝑣 :=
1

𝜆𝑁 (Ω)

∫
Ω

𝑣(𝑥) 𝑑𝑥.

We use some terminology and notations from classical topological dynamics. For
a continuous semigroup (𝑇 (𝑡))𝑡≥0 on a metric space 𝑋, the orbit or trajectory of
𝑢 ∈ 𝑋 is the set

𝛾(𝑢) = {𝑇 (𝑡)𝑢 : 𝑡 ≥ 0}
and the 𝜔-limit set of 𝑢 is

𝜔(𝑢) = {𝑣 ∈ 𝑋 : 𝑣 = lim
𝑛→∞𝑇 (𝑡𝑛)𝑢 for some sequence 𝑡𝑛 → ∞}.

This set is possibly empty. Now, it is well-known that if 𝛾(𝑢) is relatively compact,
then 𝜔(𝑢) is a non empty, compact and connected subset of 𝑋. Furthermore,
𝜔(𝑢) is positive invariant under 𝑇 (𝑡), i.e., 𝑇 (𝑡)𝜔(𝑢) = 𝜔(𝑢) for any 𝑡 ≥ 0. An
equilibrium or stationary point 𝑢 ∈ 𝑋 is a point such that 𝛾(𝑢) = 𝜔(𝑢) = {𝑢}, or
equivalently, 𝑇 (𝑡)𝑢 = 𝑢 for all 𝑡 ≥ 0.

As we said in the introduction, our abstract framework is the Theory of Nonlinear
Semigroups. We refer the reader to [2], [4], [6] and [11] for background material on
nonlinear contraction semigroups.

Ph. Bénilan and M. Crandall introduce in [5] the concept of completely accretive
operator, whose precedents are the results of Brézis- Strauss [10] on semilinear
elliptic equations ( see also [4] ). This type of operators, in the particular case of
𝐿1(Ω) with Ω bounded, can be defined in the following way: An operator 𝐴 in
𝐿1(Ω), possibly multivalued ( i.e., 𝐴 ⊂ 𝐿1(Ω) × 𝐿1(Ω) ), is said to be completely
accretive if one of the following conditions is satisfied:

1. For 𝜆 > 0, (𝑢, 𝑣), (�̂�, 𝑣) ∈ 𝐴 and 𝑗 ∈ 𝐽0,

(1.1)

∫
Ω

𝑗(𝑢− �̂�) ≤
∫
Ω

𝑗(𝑢− �̂�+ 𝜆(𝑣 − 𝑣)),

where

𝐽0 = {convex lower-semicontinuous maps 𝑗 : ℝ → [0,∞] satisfying 𝑗(0) = 0}.
2. For (𝑢, 𝑣), (�̂�, 𝑣) ∈ 𝐴 and 𝑝 ∈ 𝑃0,

(1.2)

∫
Ω

𝑝(𝑢− �̂�)(𝑣 − 𝑣) ≥ 0,

where

𝑃0 = {𝑝 ∈ 𝐶∞(ℝ) : 0 ≤ 𝑝′ ≤ 1, supp(𝑝′) is compact, and 0 ∕∈ supp(𝑝)}.
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Remark that if 𝐴 is a completely accretive operator in 𝐿1(Ω) and 1 ≤ 𝑞 ≤ ∞,
then the restriction 𝐴𝑞 of 𝐴 to 𝐿𝑞(Ω) is T-accretive in 𝐿𝑞(Ω). Consequently,
the corresponding resolvent 𝐽𝜆 = (𝐼 + 𝜆𝐴𝑞)

−1 is an order preserving contraction
in 𝐿𝑞(Ω). If a completely accretive operator 𝐴 in 𝐿1(Ω) satisfies the range
condition: “there exists 𝜆 > 0 such that 𝑅(𝐼 + 𝜆𝐴) is dense in 𝐿1(Ω)”, then the
closure 𝐴 of 𝐴 is an m-T-accretive operator in 𝐿1(Ω). So, by Crandall-Liggett’s
Theorem, the operator 𝐴 generates, on the closure of its domain, a semigroup of
order-preserving contractions given by the exponential formula

𝑒𝑡𝐴𝑢 = lim
𝑛→∞(𝐼 +

𝑡

𝑛
𝐴)−𝑛𝑢 for 𝑢 ∈ 𝐷(𝐴).

This semigroup solves the corresponding initial value problem for the operator 𝐴

(1.3) 𝑢′ +𝐴𝑢 ∋ 0, 𝑢(0) = 𝑢0.

The function 𝑢(𝑡) := 𝑒−𝑡𝐴𝑢0 is called the mild-solution of problem (1.3).

From now on, Ω will be a bounded domain in ℝ𝑁 with smooth boundary ∂Ω
of class 𝐶1, 1 < 𝑝 < 𝑁 , a is a vector valued map from Ω×ℝ𝑁 into ℝ𝑁 satisfying
(H1) - (H3) and 𝛽 is a maximal monotone graph in ℝ× ℝ with 0 ∈ 𝛽(0).

In order to study problem (I) from the point of view of Nonlinear Semigroup
Theory we introduce a nonlinear completely accretive operator 𝐴𝛽 in 𝐿1(Ω)
associated with the formal expression

−div a(𝑥,𝐷𝑢) + nonlinear boundary conditions.

Since 𝛽 is a maximal monotone graph in ℝ×ℝ with 0 ∈ 𝛽(0), there exists a
convex lower semicontinuous (l.s.c.) function 𝑗 on ℝ, 𝑗(0) = 0, such that 𝛽 = ∂𝑗.
Consider Φ : 𝑊 1,𝑝(Ω) → [0,+∞], defined by

𝛷(𝑢) :=

{ ∫
∂Ω

𝑗(𝑢) if 𝑗(𝑢) ∈ 𝐿1(∂Ω)

+∞ if 𝑗(𝑢) ∕∈ 𝐿1(∂Ω).

It is well-known ( cf. [9] ) that 𝛷 is a convex l.s.c. function in 𝑊 1,𝑝(Ω). Moreover
𝛷 ≥ 0 because 𝑗 ≥ 0. Now let us define the operator 𝐴𝛽 in 𝐿1(Ω) by:

(𝑢, 𝑣) ∈ 𝐴𝛽 if and only if 𝑢 ∈ 𝑊 1,𝑝(Ω) ∩ 𝐿∞(Ω), 𝑣 ∈ 𝐿1(Ω) and

𝛷(𝑤) ≥ 𝛷(𝑢)+

∫
Ω

𝑣(𝑤−𝑢)−
∫
Ω

⟨a(𝑥,𝐷𝑢), 𝐷(𝑤−𝑢)⟩ for every 𝑤 ∈ 𝑊 1,𝑝(Ω)∩𝐿∞(Ω).

Here and below the integrals over Ω are with respect to Lebesgue measure 𝜆𝑁

and the integrals over ∂Ω are with respect to the area measure 𝜇 on ∂Ω.

In the following theorem we summarize all the results we need about 𝐴𝛽 given
in [1].

Theorem 1.1. The operator 𝐴𝛽 satisfies the following statements:
(i) 𝐴𝛽 is univalued, i.e., if (𝑢, 𝑣) ∈ 𝐴𝛽, then

𝑣 = −div a(𝑥,𝐷𝑢) in the sense of distributions.
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(ii) 𝐴𝛽 is completely accretive.
(iii) 𝐿∞(Ω) ⊂ 𝑅(𝐼 +𝐴𝛽).
(iv) The domain of the operator 𝐴𝛽 is dense in 𝐿1(Ω).
(v) If (𝑢, 𝑣) ∈ 𝐴𝛽, then ∫

Ω

∣𝐷𝑢∣𝑝 ≤ ∥𝑢∥∞∥𝑣∥1.

We associate with problem (I) the operator

𝒜𝛽 := 𝐴𝛽
𝐿1(Ω)

, i.e., the closure of 𝐴𝛽 in 𝐿1(Ω)

which is m-completely accretive in 𝐿1(Ω). Thus the abstract Cauchy problem in
𝐿1(Ω) corresponding to (I) reads as follows:

(𝐼𝐼)

{
𝑢′(𝑡) +𝒜𝛽𝑢(𝑡) ∋ 0 𝑡 ≥ 0,

𝑢(0) = 𝑢0.

Since 𝒜𝛽 is m-completely accretive in 𝐿1(Ω) a unique mild-solution 𝑢 ∈
𝐶(ℝ+;𝐿1(Ω)) of (II) is known to exist in the sense of Nonlinear Semigroup Theory

for any 𝑢0 ∈ 𝐷(𝒜𝛽) = 𝐿1(Ω).
In [1], following the idea of entropy solutions introduced in [7], we characterize

the closure 𝒜𝛽 of the operator 𝐴𝛽 in some cases.

2. The stabilization results

In this section we establish that the mild-solutions of problem (II) stabilize as
𝑡 → 0 by converging to a constant function. We use the Lyapunov method for
semigroups of nonlinear contractions introduced by A. Pazy [18].

In order to prove the stabilization theorem we need the orbits to be relatively
compact.

Theorem 2.1. Let (𝑆(𝑡))𝑡≥0 be the semigroup generated by 𝒜𝛽 and 𝐽𝜆 its
resolvent. Then,

(i) 𝐽𝜆(𝐵) is a relatively compact subset of 𝐿1(Ω) if 𝐵 is a bounded subset
of 𝐿∞(Ω).

(ii) For every 𝑢0 ∈ 𝐿1(Ω) the orbit 𝛾(𝑢0) = {𝑆(𝑡)𝑢0 : 𝑡 ≥ 0} is a relatively
compact subset of 𝐿1(Ω).

Proof. (i): Let 𝐵 a bounded subset of 𝐿∞(Ω). Take (𝑓𝑛) ⊂ 𝐵 and let 𝑢𝑛 :=
𝐽𝜆𝑓𝑛. Set 𝑀 := sup𝑛∈ℕ ∥𝑓𝑛∥∞ < ∞. By Theorem 1.1, ∥𝑢𝑛∥∞ ≤ 𝑀 for every
𝑛 ∈ ℕ and

(2.1)

∫
Ω

∣𝐷𝑢𝑛∣𝑝 ≤ 2𝑀2𝜆𝑁 (Ω)

𝜆
for all 𝑛 ∈ ℕ.

Thus, {𝑢𝑛 : 𝑛 ∈ ℕ} is a bounded sequence in 𝑊 1,𝑝(Ω), and by the Rellich-
Kondrachov Theorem we have that {𝑢𝑛 : 𝑛 ∈ ℕ} is a relatively compact subset
of 𝐿1(Ω).

(ii): Consider first 𝑢0 ∈ 𝒟(𝐴𝛽) ∩ 𝐿∞(Ω). Then, since

∥𝑆(𝑡)𝑢0∥∞ ≤ ∥𝑢0∥∞ for all 𝑡 ≥ 0,
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as a consequence of (i), we have that 𝐽𝜆(𝛾(𝑢0)) is a relatively compact subset of
𝐿1(Ω) for all 𝜆 > 0. Moreover,

∥𝑆(𝑡)𝑢0 − 𝐽𝜆𝑆(𝑡)𝑢0∥1 ≤ 𝜆 inf{∥𝑣∥1 : 𝑣 ∈ 𝒜𝛽(𝑢0)}.
Hence, 𝛾(𝑢0) is relatively compact in 𝐿1(Ω).

Finally, since 𝒟(𝒜𝛽)∩𝐿∞(Ω) is dense in 𝐿1(Ω), given 𝑢0 ∈ 𝐿1(Ω) and 𝜖 > 0,
there exists 𝑣0 ∈ 𝒟(𝒜𝛽) ∩ 𝐿∞(Ω) such that ∥𝑢0 − 𝑣0∥1 < 𝜖. So we have,

sup
𝑡≥0

inf
𝑠≥0

∥𝑆(𝑡)𝑢0 − 𝑆(𝑠)𝑣0∥1 ≤ sup
𝑡≥0

∥𝑆(𝑡)𝑢0 − 𝑆(𝑡)𝑣0∥1 ≤ ∥𝑢0 − 𝑣0∥1 < 𝜖.

From where it follows that 𝛾(𝑢0) is relatively compact in 𝐿1(Ω).

Now we come to the main result.

Theorem 2.2. Let 𝑢0 ∈ 𝐿1(Ω) and 𝑢(𝑥, 𝑡) be the mild-solution of problem (I).
Then, there exists a constant 𝐾, 𝐾 ∈ 𝛽−1{0} such that

∥𝑢(., 𝑡)−𝐾∥1 → 0 as 𝑡 → ∞.

Proof. Suppose first that 𝑢0 ∈ 𝐿∞(Ω). Let (𝑆(𝑡))𝑡≥0 be the semigroup generated
by 𝒜𝛽 and 𝐽𝜆 its resolvent. Let 𝒱 : 𝐿1(Ω) → [0,+∞] be defined by

𝒱(𝑢) =

⎧⎨⎩
1
2

∫
Ω
𝑢2, if 𝑢 ∈ 𝐿2(Ω)

+∞, if 𝑢 ∕∈ 𝐿2(Ω)

It is well-known that 𝒱 is lower semicontinuous (see [9, pag. 160]). On the other
hand, since 𝒜𝛽 is completely accretive, we have

1

2

∫
Ω

(𝐽𝑛
𝑡/𝑛𝑓)

2 ≤ 1

2

∫
Ω

𝑓2 for 𝑓 ∈ 𝐿2(Ω), 𝑡 > 0 and 𝑛 ∈ ℕ.

Now, by the Crandall-Liggett Theorem, since 𝒱 is lower semicontinuous, we have

𝒱(𝑆(𝑡)𝑓) ≤ lim inf
𝑛→∞ 𝒱(𝐽𝑛

𝑡/𝑛𝑓
) ≤ 𝒱(𝑓), for 𝑡 ≥ 0.

Therefore, 𝒱 is a Lyapunov functional for the semigroup
(
𝑆(𝑡)

)
𝑡≥0

.

Let 𝒲 : 𝐿1(Ω) →]−∞,+∞] be defined by

𝒲(𝑢) =

⎧⎨⎩
∫
Ω

∣∣𝐷𝑢
∣∣𝑝, if

∣∣𝐷𝑢
∣∣ ∈ 𝐿𝑝(Ω)

+∞, if
∣∣𝐷𝑢

∣∣ ∕∈ 𝐿𝑝(Ω)

It is easy to see that 𝒲 is lower semicontinuous in 𝐿𝑝(Ω). Since 𝑢0 ∈ 𝐿∞(Ω),
by Theorem 1.1, 𝐽𝜆𝑢0 = (𝐼 + 𝜆𝐴𝛽)

−1𝑢0 ∈ 𝒟(𝒜𝛽) ⊂ 𝑊 1,𝑝(Ω) ∩ 𝐿∞(Ω). Then,
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(𝐽𝜆𝑢0,
1
𝜆 (𝑢0−𝐽𝜆𝑢0)) ∈ 𝐴𝛽 . Thus, taking 𝑤 = 0 as a test function in the definition

of the operator 𝐴𝛽 , we have∫
Ω

⟨a(𝑥,𝐷𝐽𝜆𝑢0), 𝐷𝐽𝜆𝑢0⟩ ≤ 1

𝜆

∫
Ω

(𝑢0 − 𝐽𝜆𝑢0)𝐽𝜆𝑢0 − 𝛷(𝐽𝜆𝑢0).

Now, using (H1) and 𝛷(𝐽𝜆𝑢0) ≥ 0, we obtain

𝒲(𝐽𝜆𝑢0) ≤ 1

𝜆

∫
𝜔

(𝑢0 − 𝐽𝜆𝑢0)𝐽𝜆𝑢0.

Then, since

𝒱(𝐽𝜆𝑢0)− 𝒱(𝑢0) =
1

2

∫
Ω

(𝐽𝜆𝑢0)
2 − 1

2

∫
Ω

𝑢2
0 ≤ −

∫
Ω

(𝑢0 − 𝐽𝜆𝑢0)𝐽𝜆𝑢0,

we get

(2.3) 𝒱(𝐽𝜆𝑢0) + 𝜆𝒲(𝐽𝜆𝑢0)− 𝒱(𝑢0) ≤ 0.

Replacing 𝑢0 by 𝐽𝑘−1
𝜆 𝑢0 in (2.3) we find

𝒱(𝐽𝑘
𝜆𝑢0) + 𝜆𝒲(𝐽𝑘

𝜆𝑢0)− 𝒱(𝐽𝑘−1
𝜆 𝑢0

) ≤ 0.

Summing these inequalities from 𝑘 = 1 to 𝑘 = 𝑛 and choosing 𝜆 = 𝑡/𝑛, it yields

(2.4) 𝒱(𝐽𝑛
𝑡
𝑛
𝑢0) +

𝑛∑
𝑘=1

𝑡

𝑛
𝒲(𝐽𝑘

𝑡
𝑛
𝑢0)− 𝒱(𝑢0) ≤ 0.

Next we define a piecewise constant function

𝐹𝑛(𝜏) = 𝒲(𝐽𝑘
𝑡
𝑛
𝑢0) for (𝑘 − 1)𝑡/𝑛 < 𝜏 ≤ 𝑘𝑡/𝑛.

Then

𝑛∑
𝑘=1

𝑡

𝑛
𝒲(𝐽𝑘

𝑡
𝑛
𝑢0) =

∫ 𝑡

0

𝐹𝑛(𝜏) 𝑑𝜏.

On the other hand, by the Crandall-Liggett Theorem,

lim
𝑛→∞ 𝐽𝑘

𝑡
𝑛
𝑢0 = 𝑆(𝜏)𝑢0 in 𝐿1(Ω)

where 𝑘 = 𝑘𝑛(𝜏) = [𝑛𝜏/𝑡] + 1. By the Dominated Convergence Theorem, taking a
subsequence if necessary, it follows that

lim
𝑛→∞ 𝐽𝑘

𝑡
𝑛
𝑢0 = 𝑆(𝜏)𝑢0 in 𝐿𝑝(Ω).

Since 𝒲 is lower semicontinuous in 𝐿𝑝(Ω), we have

𝒲(𝑆(𝑡)𝑢0) ≤ lim inf
𝑛→∞ 𝒲(𝐽𝑘

𝑡
𝑛
𝑢0) = lim inf

𝑛→∞ 𝐹𝑛(𝜏).
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Thus, by Fatou’s lemma, we obtain

(2.5)

∫ 𝑡

0

𝒲(
𝑆(𝜏)𝑢0

)
𝑑𝜏 ≤ lim inf

𝑛→∞

∫ 𝑡

0

𝐹𝑛(𝜏) 𝑑𝜏 = lim inf
𝑛→∞

𝑛∑
𝑘=1

𝑡

𝑛
𝒲(𝐽𝑘

𝑡
𝑛
𝑢0).

Passing to the limit as 𝑛 → ∞ in (2.4) and taking into account (2.5) and the lower
semicontinuity of 𝒱, we get

𝒱(𝑆(𝑡)𝑢0

)
+

∫ 𝑡

0

𝒲(
𝑆(𝜏)𝑢0

)
𝑑𝜏 − 𝒱(𝑢0) ≤ 0.

Consequently

(2.6)

∫ ∞

0

𝒲(
𝑆(𝜏)𝑢0

)
𝑑𝜏 ≤ 𝒱(𝑢0).

Thus, there exists a sequence 𝑡𝑛 → ∞, such that 𝒲(
𝑆(𝑡𝑛)𝑢0

) → 0 as 𝑛 → ∞.
Now by Theorem 2.1, there exists a subsequence (𝑡𝑛𝑘

) such that

lim
𝑘→∞

𝑆(𝑡𝑛𝑘
)𝑢0 = 𝑣 ∈ 𝜔(𝑢0).

Hence, by the Dominated Convergence Theorem,

lim
𝑘→∞

𝑆(𝑡𝑛𝑘
)𝑢0 = 𝑣 in 𝐿𝑝(Ω)

and by the lower semicontinuity of 𝒲, it follows that

𝒲(𝑣) ≤ lim inf
𝑘→∞

𝒲(
𝑆(𝑡𝑛𝑘

)𝑢0

)
= 0.

Therefore, 𝑣 is a constant 𝐾. If 𝐾 = 0, since 0 is an equilibrium, 𝜔(𝑢0) = {0}.
Suppose 𝐾 > 0. Then, since ∥𝑆(𝑡)𝐾∥∞ ≤ ∥𝐾∥∞ = 𝐾,

(2.7) 0 ≤ 𝑆(𝑡)𝐾 ≤ 𝐾.

Since 𝑆(𝑡)𝐾, 𝐾 ∈ 𝜔(𝑢0) and 𝒱 is a Lyapunov functional, it follows from the
invariance principle of Dafermos [12, Proposition 4.1] that 𝒱(𝑆(𝑡)𝐾)

= 𝒱(𝐾).
Consequently, by (2.7) and the definition of 𝒱, 𝑆(𝑡)𝐾 = 𝐾 for all 𝑡 ≥ 0, so as
𝑆(𝑡) are contractions, we get 𝜔(𝑢0) = {𝐾} and the proof for the case 𝑢0 ∈ 𝐿∞(Ω)

concludes. Now, since 𝐿∞(Ω) is dense in 𝒟(𝐴𝛽) = 𝐿1(Ω) and 𝑆(𝑡) is a T-
contraction, from the above we obtain easily the conclusion in the general case
𝑢0 ∈ 𝐿1(Ω). Finally, as 𝐾 is an equilibrium, it follows that 𝐾 ∈ 𝛽−1{0}.

3. Some particular boundary conditions

For some particular boundary conditions we can say more about the constant
𝐾 of Theorem 2.2. For instance, when 𝛽 = {0} × ℝ, then 𝐾 = 0, i.e., for
Dirichlet boundary conditions the solutions of problem (I) stabilize to 0. Now, in
this section we are going to see that for Dirichlet and Neumann boundary conditions
we also can estimate a decay rate of the solutions when 𝑡 → ∞. We start with the
Neumann boundary valued problem. First we need the following result about the
conservation of mass.
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Proposition 3.1. Let ((𝑆(𝑡))𝑡≥0 be the semigroup in 𝐿1(Ω) generated by 𝒜𝛽,
with 𝛽 corresponding to the Neumann boundary condition, and 𝑢0 ∈ 𝐿1(Ω).
Then, we have consevation of mass, that is,∫

Ω

𝑆(𝑡)𝑢0 =

∫
Ω

𝑢0, for all 𝑡 ≥ 0.

Proof. Without loss of generality we can assume that 𝑢0 ∈ 𝐿∞(Ω). For 𝜆 > 0,
let 𝐽𝜆 = (𝐼 + 𝐴𝛽)

−1 be the resolvent of 𝐴𝛽 and define 𝑣𝑖 by 𝑣0 = 𝑢0,
𝑣𝑖+1 = 𝐽𝜆𝑣𝑖, 𝑖 = 1, 2, ⋅ ⋅ ⋅ . Letting 𝑣𝜆(𝑡) = 𝑣𝑖 for 𝑖𝜆 ≤ 𝑡 < (𝑖 + 1)𝜆, we have by
the Crandall-Ligett Theorem that

lim
𝜆→0

𝑣𝜆(𝑡) = 𝑆(𝑡)𝑢0 in 𝐿1(Ω),

and the limit is uniform for 𝑡 in compact subsets of [0,∞[.
Since (𝑣𝑖+1,

1
𝜆 (𝑣𝑖 − 𝑣𝑖+1)) ∈ 𝐴𝛽 , we have

(3.1)

∫
Ω

⟨a(𝑥,𝐷𝑣𝑖+1), 𝐷(𝑣𝑖+1 − 𝜙)⟩ ≤
∫
Ω

1

𝜆
(𝑣𝑖 − 𝑣𝑖+1)(𝑣𝑖+1 − 𝜙),

for every 𝜙 ∈ 𝑊 1,𝑝(Ω) ∩ 𝐿∞(Ω).
Now, given 𝜙 ∈ 𝑊 1,𝑝(Ω) ∩ 𝐿∞(Ω), taking 𝑣𝑖+1 − 𝜙 and 𝑣𝑖+1 + 𝜙 as a test

functions in (3.1) we get

(3.2)

∫
Ω

⟨a(𝑥,𝐷𝑣𝑖+1), 𝐷𝜙⟩ =
∫
Ω

1

𝜆
(𝑣𝑖 − 𝑣𝑖+1)𝜙,

for every 𝜙 ∈ 𝑊 1,𝑝(Ω) ∩ 𝐿∞(Ω). In particular, taking 𝜙(𝑥) = 1 for all 𝑥 ∈ Ω in
(3.2), it follows that ∫

Ω

𝑣𝑖+1 =

∫
Ω

𝑣𝑖 =

∫
Ω

𝑢0, 𝑖 = 1, 2, ⋅ ⋅ ⋅

Therefore, ∫
Ω

𝑆(𝑡)𝑢0 = lim
𝜆→0

∫
Ω

𝑣𝜆(𝑡) =

∫
Ω

𝑢0.

Concerning Neumann boundary problem, we have the following result

Theorem 3.2. Let 𝑢0 ∈ 𝐿1(Ω). Then, if 𝑢(𝑥, 𝑡) is the mild-solution of problem
(I) with Neumann boundary conditions, we have

∥𝑢(., 𝑡)− 𝑢0∥1 → 0 as 𝑡 → ∞.

Moreover, if 𝑢0 ∈ 𝐿∞(Ω) there exists a constant 𝐶, independent of 𝑢0, such that

∥𝑢(., 𝑡)− 𝑢0∥𝑝 ≤
(
𝐶∥𝑢0∥22

𝑡

)1/𝑝

for all 𝑡 > 0.
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Proof. Let 𝑢0 ∈ 𝐿1(Ω) and 𝑢(𝑥, 𝑡) be the mild-solution of problem (I) with
𝛽 = ℝ× {0}. By Theorem 2.2, there exists a constant 𝐾 ∈ 𝛽−1{0} such that

lim
𝑡→∞ ∥𝑢(., 𝑡)−𝐾∥1 = 0.

Then, since the average of any solution is preserved (Proposition 3.1), it follows
that 𝐾 = 𝑢0.

Now suppose 𝑢0 ∈ 𝐿∞(Ω). Then, by (2.6) we have that 𝑢(., 𝑡) ∈ 𝑊 1,𝑝(Ω) for
almost all 𝑡 > 0 and, moreover,

(3.3)

∫ 𝑡

0

∫
Ω

∣𝐷𝑢(., 𝑠)∣𝑝 𝑑𝑠 ≤ 1

2
∥𝑢0∥22 for any 𝑡 > 0.

On the other hand, since 𝑢(., 𝑠) = 𝑢0, by the Poincaré-Wirtinger inequality, it
follows that

(3.4) ∥𝑢(., 𝑡)− 𝑢0∥𝑝𝑝 = ∥𝑢(., 𝑡)− 𝑢(., 𝑠)∥𝑝𝑝 ≤ 𝑀∥𝐷𝑢(., 𝑠)∥𝑝𝑝.
Then, (3.3) and (3.4) imply that

(3.5)

∫ 𝑡

0

∥𝑢(., 𝑡)− 𝑢0∥𝑝𝑝 𝑑𝑠 ≤ 1

2
𝑀∥𝑢0∥22 for any 𝑡 > 0.

Now, since 𝐴𝛽 is completely accretive and 𝑗(𝑟) = ∣𝑟∣𝑝 is an element of 𝐽0,
𝒰(𝑢) = ∫

Ω
𝑗(𝑢) is a Lyapunov functional for the semigroup generated 𝐴𝛽 . Then,

by (3.5) we get

𝑡∥𝑢(., 𝑡)− 𝑢0∥𝑝𝑝 ≤
∫ 𝑡

0

𝒰(𝑢(., 𝑠)− 𝑢0) 𝑑𝑠 ≤ 1

2
𝑀∥𝑢0∥22.

Therefore

∥𝑢(., 𝑡)− 𝑢0∥𝑝 ≤
(
𝐶∥𝑢0∥22

𝑡

)1/𝑝

for all 𝑡 > 0.

with 𝐶 = 𝑀
2 .

Unilateral boundary conditions of type

𝑢 > 0 ⇒ ∂𝑢

∂𝜂
= 0,

𝑢 = 0 ⇒ ∂𝑢

∂𝜂
≥ 0.

which correspond to variational inequalities introduced by J. L. Lions and G. Stam-
pachia [17] (see also [8] and [9]), appear in elasticity (Signorini’s problem) and in
problems of heat control. In the above notation this boundary condition is

∂𝑢

∂𝜂𝑎
∈ 𝛽(𝑢)

with 𝛽 being the maximal monotone graph

𝛽(𝑟) =

⎧⎨⎩
0, for 𝑟 > 0

]−∞, 0], for 𝑟 = 0

∅, for 𝑟 < 0.

For this type of boundary conditions and for similar ones which appear in problems
of temperature control through the boundary (see [14]), we have the following result.
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Theorem 3.3. Let 𝛽 be a maximal monotone graph in ℝ × ℝ with 0 ∈ 𝛽(0).
Let 0 ≤ 𝑢0 ∈ 𝐿1(Ω) and 𝑢(𝑥, 𝑡) the mild-solution of problem (I). Then, there
exists a constant 𝐾 ≥ 0 such that

∥𝑢(., 𝑡)−𝐾∥1 → 0 as 𝑡 → ∞.

Moreover, if 𝑑 := sup{𝑟 ≥ 0 : 0 ∈ 𝛽(𝑟)}. Then,

inf{𝑑, 𝑢0} ≤ 𝐾 ≤ inf{𝑑, 𝑢0}.

Proof. We suppose first that 𝑢0 ≥ 𝛼 > 0. Let

𝛽(𝑟) =

{
0, for 𝑟 < 0

𝛽(𝑟) ∩ [0,+∞[, for 𝑟 ≥ 0.

It is easy to see that

𝑒−𝑡𝒜𝛽𝑢0 = 𝑒−𝑡𝒜𝛽𝑢0 for 𝑡 ≥ 0.

By Theorem 2.2, there exists 0 ≤ 𝐾 ∈ 𝛽−1{0} such that 𝜔(𝑢0) = {𝐾}. By the
definition of 𝑑, 𝐾 ≤ 𝑑. Moreover, having in mind the proof of Proposition 3.1, we
have ∫

Ω

𝑒−𝑡𝒜𝛽𝑢0 ≤
∫
Ω

𝑢0

and consequently 𝐾 ≤ 𝑢0. Consider �̂�0 := inf{𝑑, 𝑢0}. Then, 𝜔(�̂�0) ≤ 𝜔(𝑢0) =
{𝐾} since �̂�0 ≤ 𝑢0. Now, if 𝛼 = ℝ× {0} it is not difficult to see that

𝑒−𝑡𝒜𝛽 �̂�0 = 𝑒−𝑡𝒜𝛼 �̂�0 for 𝑡 ≥ 0.

Hence, by Theorem 3.2 we have

𝜔(�̂�0) =
{ 1

𝜇(Ω)

∫
Ω

�̂�0

}
.

Then

𝐾 ≥ 1

𝜇(Ω)

∫
Ω

�̂�0 = inf{𝑑, 𝑢0}

and the proof finishes in the case 𝑢0 ≥ 𝛼 > 0.
Finally, suppose that 𝑢0 ≥ 0. Then, given 𝜖 > 0, if 𝑢𝜖 = 𝑢0(𝑥) + 𝜖, the above

implies the existence of a constant 𝐾𝜖 such that 𝜔(𝑢𝜖) = {𝐾𝜖}. Moreover we
have

𝑃𝜖 := inf{𝑑, 𝑢𝜖} ≤ 𝐾𝜖 ≤ inf{𝑑, 𝑢𝜖} =: 𝑄𝜖

Now,

𝑃𝜖 → inf{𝑑, 𝑢0} as 𝜖 → 0

and

𝑄𝜖 → inf{𝑑, 𝑢0} as 𝜖 → 0.
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Therefore, there exists a sequence {𝜖𝑛}, 𝜖𝑛 → 0, such that 𝐾𝜖𝑛 → 𝐾 and

inf{𝑑, 𝑢0} ≤ 𝐾 ≤ inf{𝑑, 𝑢0}.

Let us prove 𝜔(𝑢0) = {𝐾}. In fact:

∥𝑒−𝑡𝒜𝛽𝑢0 −𝐾∥1 ≤ ∥𝑒−𝑡𝒜𝛽𝑢0 − 𝑒−𝑡𝒜𝛽𝑢𝜖𝑛∥1 + ∥𝑒−𝑡𝒜𝛽𝑢𝜖𝑛 −𝐾𝜖𝑛∥1 + ∥𝐾𝜖𝑛 −𝐾∥1

≤ ∥𝑢0 − 𝑢𝜖𝑛∥1 + ∥𝑒−𝑡𝒜𝛽𝑢𝜖𝑛 −𝐾𝜖𝑛∥1 + ∥𝐾𝜖𝑛 −𝐾∥1.
Now, since 𝜔(𝑢𝜖𝑛) = {𝐾𝜖𝑛}, we have that

lim
𝑡→∞ ∥𝑒−𝑡𝒜𝛽𝑢0 −𝐾∥1 ≤ ∥𝑢0 − 𝑢𝜖𝑛∥1 + ∥𝐾𝜖𝑛 −𝐾∥1.

But ∥𝑢0 − 𝑢𝜖𝑛∥1 → 0 and ∥𝐾𝜖𝑛 −𝐾∥1 → 0 as 𝑛 → ∞, hence 𝜔(𝑢0) = {𝐾}.
Remark that in the above theorem, 𝐾 = 𝑢0 if 𝛽(𝑟) = 0 for all 𝑟 > 0, and

𝐾 = 0 if 𝛽(𝑟) > 0 for all 𝑟 > 0.
To finish, let us see that for the Dirichlet boundary value problem we also obtain

a decay rate. To be more concrete, we have

Theorem 3.4. Let 𝑢0 ∈ 𝐿∞(Ω) the mild-solution of the problem

𝑢𝑡 = div a(𝑥,𝐷𝑢) in Ω× (0,∞)

𝑢 = 0 on ∂Ω× (0,∞)

𝑢(𝑥, 0) = 𝑢0(𝑥) in Ω.

Then, there exists a constant 𝐶, independent of 𝑢0, such that

∥𝑢(., 𝑡)∥𝑝 ≤
(
𝐶∥𝑢0∥22

𝑡

)1/𝑝

for all 𝑡 > 0.

Proof. By the definiton of 𝐴𝛽 , 𝐽𝜆𝑢0 ∈ 𝑊 1,𝑝
0 (Ω). So, by the Poincaré inequality,

there exists a constant 𝑀 such that∫
Ω

∣𝐽𝜆𝑢0∣𝑝 ≤ 𝑀

∫
Ω

∣𝐷(𝐽𝜆𝑢0)∣𝑝.

Then, if we set

𝒰(𝑣) := 1

𝑀
∥𝑣∥𝑝𝑝,

(2.3) implies that

𝒱(𝐽𝜆𝑢0) + 𝜆𝒰(𝐽𝜆𝑢0)− 𝒱(𝑢0) ≤ 0

Thus, proceeding as in the proof of Theorem 2.2, we get

(3.6)

∫ ∞

0

𝒰(𝑢(., 𝑠)) 𝑑𝑠 ≤ 𝒱(𝑢0).
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Now, by the complete accretiveness of 𝐴𝛽 , 𝒰 is a Lyapunov functional for the
semigroup generated by 𝐴𝛽 . Then, by (3.6) we get

𝑡∥𝑢(., 𝑡)− ∥𝑝𝑝 ≤
∫ 𝑡

0

𝒰(𝑢(., 𝑠)) 𝑑𝑠 ≤ 1

2
𝑀∥𝑢0∥22.

Therefore

∥𝑢(., 𝑡)∥𝑝 ≤
(
𝐶∥𝑢0∥22

𝑡

)1/𝑝

for all 𝑡 > 0,

with 𝐶 = 𝑀
2 .

Remark 3.5.. The asymptotic behaviour of solutions of the Dirichlet problem for
more general a is studied by P. Wittbold [19]. Also in [15] precise decay estimates
are given for the particular case of the p-Laplacian with 𝑝 > 2.
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