NONLOCAL NONLINEAR PROBLEMS
AT
ESSAOUIRA

J. JULIAN TOLEDO

DPTO. ANALISIS MATEMATICO, UNIV. VALENCIA






This course is based on a series of works co-authored by
F. Andreu
N. Igbida
J. Mazén
M. Pérez
J. Toledo

Gandia, April 7, 2015






Introduction vii

Theme 1. Nonlinear semigroups: an overview 1.1
1.1. Abstract Cauchy problems. Mild solutions 1.1
1.2.  Accretive operators. Uniqueness of mild solutions 1.4
1.3. Range conditions. Existence of mild solutions 1.5
1.4. Regularity of mild solutions 1.8
1.5. Dependence 1.9
1.6. Completely accretive operators 1.12

Theme 2. Nonlocal p—Laplacian problems 2.1
2.1.  The Neumann problem for nonlocal p-Laplacian evolution with non—degenerate kernels 2.2

2.1.1. Existence and uniqueness 2.3
2.1.2.  Rescaling the kernel. Convergence to the local p-Laplacian 2.8
2.2.  The Neumann problem for the nonlocal total variation flow for non—degenerate kernels  2.23
2.2.1. Existence and uniqueness 2.24
2.2.2.  Rescaling the kernel. Convergence to the total variation flow 2.33
2.3.  The Dirichlet problem for fractional 1-Lapacian evolution 2.41
2.3.1. Existence and uniqueness 2.45
2.3.2. Rescaling 2.56
2.4. Poincaré type inequalities 2.60

2.67



vi

Theme 3. Some applications
3.1. A nonlocal version of the Aronsson-Evans-Wu model for sandpiles
3.1.1. The Aronsson-Evans-Wu model for sandpiles
3.1.2. Limit as p — oo in a nonlocal p—Laplacian Cauchy problem
3.1.3. A nonlocal sandpile problem
3.2. A Monge-Kantorovich mass transport problem for a discrete distance
3.2.1. A mass transport interpretation of the sandpile model
3.2.2. A nonlocal version of the Evans-Gangbo approach to optimal mass transport
3.3.  From the Dirichlet problem for the nonlocal p—Laplacian to ...
3.3.1. (p — 400) A best Lipschitz extension problem for a discrete distance
3.3.2. (p — 1) Median values and least gradient functions

References

3.1
3.1
3.2
3.4
3.9
3.14
3.14
3.19
3.30
3.33
3.43
3.98

Ref. 1



Introduction

The goal of this course is to present recent results on nonlocal problems with dif-
ferent boundary conditions. One of the main tools used is the Nonlinear Semigroup
Theory. We also give some results concerning limits of solutions to nonlocal problems
when a rescaling parameter goes to zero, recovering local problems.

The prototype of nonlocal problems that will be considered is the following:
wle,t) = (T xu—uet) = [ I = pulyt)dy - ula,t),
RN
where J : RY — R is a nonnegative, radial, continuous function with total mass
equal to 1.

vii



viii INTRODUCTION

Prototype equation:
0.1 wat) = [ I = g)(ulyt) = ulo, ) dy.

If u(z,t) is thought of as a density at a point x at time ¢t and
J(x — y) is thought of as the probability distribution of jumping
from location y to location x,

then

/ Jy—z)u(y,t)dy = (J*xu)(x,t) isthe rate at which individuals are arriving
RN
at position x from all other places and
u(x,t) = / J(y — x)u(x,t)dy is the rate at which they are leaving location x
RN

to travel to all other sites.

This consideration, in the absence of external or internal sources, leads immediately
to the fact that the density u satisfies equation (0.1).
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Equation (0.1) is said to be of nonlocal diffusion since the diffusion of the density
u at a point x and time ¢ depends not only on u at x, but on all the values of u in a
neighborhood of z through the convolution term J * .

Let us now fix a bounded domain €2 in RY. For local problems the two most common
boundary conditions are Neumann’s and Dirichlet’s. When looking at boundary
conditions for nonlocal problems, one has to modity the usual formulations for local
problems. For Neumann boundary conditions we propose

u(z, t) = /QJ(aj —y)(uly,t) — u(z, t)) dy, reQ t>0,
u(x,0) = ug(x), x € ()

In this model, the integral term takes only into account the diffusion inside 2. The
individuals may not enter or leave the domain. This is analogous to what is called
homogeneous Neumann boundary conditions in the literature.
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For Dirichlet boundary conditions we consider

:
i, 1) = / I —yuly, ) dy —u(z,t), 2 eQ t>0,
RN

\ u(x,t) =0, x &Q, t>0,

L u(x,0) = up(x), x € ()

In this model, diffusion takes place in the whole RY, but we assume that u vanishes
outside {2. Think as we had a hostile environment outside {2, and any individual that
jumps outside dies instantaneously. This is the analog of what is called homogeneous
Dirichlet boundary conditions for the heat equation. However, the boundary datum
is not understood in the usual sense of traces considered for local problems.

Nonlocal problems have been used to model very different applied situations, for
example in biology, image processing, particle systems, coagulation models, nonlocal
anisotropic models for phase transition, mathematical finances using optimal control
theory, etc. They share many properties with the classical local evolution problems,
however, there is no regularizing effect in general.
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Our interest in this course is concerned with nonlinear problems. We study nonlocal
analogs of the p—Laplacian evolution problems for 1 < p < o0:

u(t, x) = /AJ(az —y)|ult,y) —ult, )P (ult,y) —u(t,z))dy  forz €, t >0,

for J : RY — R a nonnegative continuous radial function with compact support,
J(0) > 0 and [,n J(z)dx = 1.

In a bounded domain €2, the above problem is a Dirichlet type problem by taking
A=RY and u = 0 in RY \ €, a Neumann type problem by taking A = . And a
Cauchy problem in the whole RY if A = Q) = RV,

We also present a nonlocal versions of the Total Variation Flow, for a non-degenerate
kernel and for a singular kernel.

Finally we present a sandpile model, an optimal mass transport problem, a median
value problem and a best Lipschitz extension problem, obtained as limit problems of
nonlocal p-Laplacian problems.
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THEME 1

Nonlinear semigroups: an overview

1.1. Abstract Cauchy problems. Mild solutions

We outline some of the main points of the theory of nonlinear semigroups and

evolution equations governed by accretive operators. We refer to [17], [18], [19],
20], 26], 27, (28], [29] and [30]

One of our main objectives will be the study of evolution problems of the form

o(t) + Ault) = £(t) on (0,T),
(CP)s. s
u(0) =z,
where X is a real Banach space with norm denoted by || - ||, f : (0,7T) — X

and A : D(A) — 2% is a (multivalued) operator. The use of multivalued nonlinear
operators permits to obtain a coherent theory but also it is quite useful in applications.

A problem of the form (CP), s is called an abstract Cauchy problem.

1.1
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Let A be an operator in X and f € LY0,T; X).

DEFINITION 1.1. A function w is called a strong solution of (CP), f if
we C([0,T]: X)N W20, T; X) and

loc

{ u 4+ Au(t) 3 f(t) ae. t € (0,T),
u(0) = x.

Let us now introduce a more general concept of solution for (CP), ¢, mild solution,
introduced by M. G. Crandall and T. M. Liggett in [30] and Ph. Bénilan in [18].
Roughly speaking, a mild solution of the problem

u' +Au > f on |a, bl
is a continuous function w € C([0,T]; X) which is the uniform limit of solutions of
time-discretized problems given by the following implicit Euler scheme:

U(tZ') — U(tz'_1>
tz‘ — t@'_l -+ AU(tZ') > f@',

where f; are approximations of f as |t; — ;1| — 0.
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DEFINITION 1.2.

1. Let € > 0. An e-discretization of u' + Au > f on [a, b] consists of a partition
tg < t1 < --- <ty and a finite sequence fi, fo, ..., fy of elements of X such that

a§t0<t1<"'<t]v§b, with
ti_ti—lgga i:1,...,N, to—a§5 and b—tNég.

N
Z/ | f(s) = fill ds < e.
i=1 Yti—1

We will denote this discretization by Da(to, ..., tn; f1,-- -, fN).

2. A solution of the discretization Da(to, ..., tN; f1,-.., fn) IS a piecewise con-
stant function v : |to, tn] — X whose values v(ty) = vy, v(t) = v; for t €|t; 1, )],
v =1,..., N satisty

and

Uj — Ui—1

ti —ti

3. An e-approzimate solution of (CP), , is a solution v of an e-discretization
DA(0=tg,....tn, f1,-.., fn) of v/ + Au > fon [0, T] with ||v(0) — z¢]| < e.

4. And w is a mild solution of (CP), r on |0,77] if and only if v € C(|0,T]; X)
and for each € > 0 there is an e-approximate solution v of (CP),, ¢ such that ||u(t) —
v(t)|| < € on the domain of v.

+Av; > f;, 1=1,...,N.
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THEOREM 1.3. Let A be an operator in X and f € L} (0,T;X). Then

loc
(i) If w is a strong solution of (CP),, s on [0, 7] then w is a mild solution.

(ii) If w is a mild solution of (CP),, r on [0, T], then u(t) € D(A) for all t € [0, T].

(iii) Let A be the closure of the operator A. Then w is a mild solution of
u'+Au > f on[0,T], u(0) = xg, if and only if u is a mild solution of u'+ Au > f
on [0, T], u(0) = x.

1.2. Accretive operators. Uniqueness of mild solutions

The existence of mild solutions requires, as we just pointed out before, the existence
of solutions of discretized equations of the form

XTi— Ti_
Ll Ax o f i=1,...,N
ti —ti1
or equivalently
T; + (ti — ti_1>ACIZZ' > (ti — tz’—l)fz’ + 1, 1 = 1, Ce N,

Accretive operators guarantees uniqueness of such solutions:

DEFINITION 1.4. An operator A in X is accretive if

e —z]| < ||lr — 2+ Ay —9)|| whenever A >0 and (x,y),(Z,7y) € A.
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Note that A is accretive if and only if, for A > 0,
(I +XA) 2 = (T+ XA 2| <]z — 2,

that is, A is accretive if and only if J{' := (I + AA)~! (called the resolvent of A) is
a smgle—valued nonexpansive map for )\ > 0.

An operator in a Hilbert space is accretive iff it is monotone, that is,
(x—zly—9) >0 forall (z,y),(z,9) € A.

Accretivity implies uniqueness of mild solutions:

THEOREM 1.5. Let A accretive, f, f € LY0,T: X), and let u,u be mild solu-
tions on [0,T) of (CP)y, s and (CP), ; respectively. Then

lu(t) — a(e)]| < [0 — dol] + / 1£(s) — f(s)ds, fort e [0,T).

1.3. Range conditions. Existence of mild solutions

But apart from accretivity one should expect a range condition to get the existence
of solution as well. One could ask for R(1 +  A) = X for all A > 0:

An operator A is said to be m-accretive in X if A is accretive and R(I + AA) =
for all A > 0; if and only if there exists one A > 0 such that R(I + M\A) =
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It is easy to see that each m~accretive operator A in X is maximal accretive in the
sense that every accretive extension of A coincides with A. In general, the converse
is not true, but it is in Hilbert spaces:

THEOREM 1.6 (Minty’s Theorem). Let H be a Hilbert space and A an accretive
operator in H. Then A 1s m-accretive if and only if A 1s mazimal monotone.

One of the most important examples of maximal monotone operators in Hilbert
spaces comes from optimization theory: subdifferentials of convex functions.

Let (H, (| )) be a Hilbert space and ¢ : H — (—00, +00| convex. Its subdifferen-
tial Oy is the operator defined by

w € dp(z) <= p(xr) > p(z)+ (wlz—2) Ve H.
If (2,w),(z,w) € Op, then p(z) > p(2) + (w|z — 2) and p(2) > p(2) + (w|z2 — 2).
Adding this inequalities we get (w —w|z — 2) > 0. Thus, dyp is a monotone operator.
Now, if ¢ is convex, lower semicontinuous and proper, then 0 is maximal monotone
and D(0y) = D(p).
Observe that 0 € 0p(z) if and only if ¢(x) > p(z) for all z € H, if and only if
¢(z) = mingep(y) p(x). Therefore,

0 € 0p(z) is the Fuler equation of the variational problem

Z) = min xT).
Pz)= min ()
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Given a closed convex subset K of H, the indicator function of K is defined by
0 it ue kK,
HK(U){+O® if ué& K.
[ts subdifferential is characterized as follows:
v€E€gu) < uweK and (v,w—u)<0 YweK.
THEOREM 1.7 (Crandalliiggett, Bénilan). Suppose that A is m—accretive in X,
feLY0,T;X) and v € D(A). Then
u' +Au> f on [0,T], u(0)=uz,

has a unique mild solution w on |0,T].

If we set e ™2 to be the mild solution of v’ + Au > 0 on (0, +o0) with initial
data x, then (e7"),5¢ is a contraction semigroup: the semigroup generated by —A.

In the homogeneous case we can debilitate the m-accretivity of the operator and
get an explicit representation of the mild solution.

DEFINITION 1.8. We say that an accretive operator A satisfies the range condition
when

D(A) C R(I+XA) forall A > 0.
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THEOREM 1.9 (Crandall-Liggett Theorem). If A is accretive and satisfies the
range condition, then (e7');>q is a semigroup of contractions on D(A) and

t - —
ey = lim (] + —A) T for x € D(A).
n

n—oo

1.4. Regularity of mild solutions
In general mild solutions are not strong solutions. When they are?

THEOREM 1.10. Assume X 1is reflexive. Let A be an accretive operator in X,
feBV(0,T;X) and x € D(A). Ifu is a mild solution of (CP), s on [0,T], then
uw € WH0,T; X) and u is a strong solution.

Also:

THEOREM 1.11. Let H be a Hilbert space and o : H — (—o0,+00] a proper,
convex and lower semicontinuous function such that Minp = 0. Suppose f €

L*(0,T; H) and xy € D(0p); then the mild solution u(t) of
u' 4+ 0p(u) > f on [0,T],
u(0) = xo,

18 a strong solution.
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1.5. Dependence

THEOREM 1.12 (Brezis-Pazy Theorem). Let A, be m-accretive in X, x, €
D(A,) and f, € LY0,T;X) forn = 1,2,...,00. Let u, be the mild solution
of

u, + Apun, 3 fr in [0,T), u,(0) =x,.
If f = foo in LY0,T: X) and x,, — T asn — 00 and
lim (I +XA,) 2= (I +MA) 'z,

n—oo

for some A >0 and all z € D, with D dense in X, then

lim w,(t) = use(t) uniformly on [0,T).

n—oo

For subdifferentials of convex lower semicontinuous functionals in Hilbert spaces,
to prove the convergence of the resolvent it is enough to show the convergence of the
functionals in the sense of Mosco ([49)).
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Mosco convergence.

Given a sequence W, ¥ : H — (—00, +00] of convex lower semicontinuous func-
tionals, we say that W,, converges to ¥ in the sense of Mosco it

(1) Vu e DY) Ju, € D(V,) : u, —u and V(u) > limsup,, ., V,(u,);
(2) for every subsequence ny, as u; — u, we have W(u) < liminf;, ¥, (us).

Or equivalently:
w-lim sup Epi(V,,) C Epi(V) C s-lim inf Epi(W¥,,),

n—00 n—:o0

where

sliminf A, ={x € H: dx, € A,,, x,, = x}

n—oo

w-limsup A, = {x € H : Iz, € A,,, x, — z}.

n—oo
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From Theorem 1.12 and using the results of H. Attouch ([16]) we have:

THEOREM 1.13. The following statements are equivalent:
(1) V,, converges to V in the sense of Mosco.
(ii) (I +X0V,) e — (I +X00) e, VA>0, z€H.

Moreover, any of these two conditions implies that

(117) for every o € D(OV) and xy, € D(OV,) such that xo, — o, and every
fo, f € L*(0,T; H) with f, — f, if u,(t), u(t) are the strong solutions of
w,(t) + 0V, (uy(t)) o fn, ae. t€(0,7),
un(0) = T,
and
u'(t)+0V(u(t)) > f, ae te(0,T),
u(0) = xy,
respectively, then
u, —u n C([0,T];H).
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1.6. Completely accretive operators

Many nonlinear semigroups that appear in the applications are also order-preserving
and contractions in every LP. Ph. Bénilan and M. G Crandall (|19]) introduced a
class of operators, named completely accretive, for which the semigroup generated by
the Crandall-Liggett exponential formula enjoys these properties. In this section we
outline some of the main points given in [19].

Let © be an open set in RY and let M () be the space of measurable functions
from ) into R.

For u,v € M(2), we write

u < v if and only if/ Jj(u)dr < /j(v)d:zs
0

0
for all j € Jy :={j: R — |0, 00] convex, ls.c., j(0) =0}.

DEFINITION 1.14. Let A be an operator in M (2). We say that A is completely
accretive if

u—u<u—u+ANv—20) forall A >0 and all (u,v),(u,v) € A.

The definition of completely accretive operators does not refer explicitly to topolo-
gies or norms. However, if A is completely accretive in M (€2) and A C LP(Q2) x LP(Q)
(1 < p < o0) then A is accretive in LP(€2).
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Let Py = {qg e C®(R): 0< ¢ <1, supp(q’) is compact and 0 & supp(q)}. The
following result provides a very useful characterization of complete accretivity.

PROPOSITION 1.15. If A C LP(Q) x LP(Q)), 1 < p < o0, then A is completely
accretive if and only if

/q(u —u)(v—0)>0 forany q€ Py, (u,v),(u,0v) € A.
0

PROPOSITION 1.16. Let 1 < p < +00.

(i) Let w € LP(§2). Then {v € M(§2) :v < u} is a weakly sequentially compact
subset of LP(S).

(i) If {u,} is a sequence satisfying u, < uw € LP(Q)) for all n, and u, — u
weakly in L,(QY), then ||u, — u|[, — 0.

DEFINITION 1.17. Let X be a linear subspace of M (2). An operator A in X is
m-completely accretive in X if A is completely accretive and R(I + AA) = X for

A>0

PROPOSITION 1.18. Let 1 < p < +o00. Let A be a completely accretive operator

in LP(S)). Suppose there exists A > 0 for which R(I + AA) is dense in LP(£2).

Then the operator ZLP(Q)

in LP(Q)).

s the unique m-completely accretive extension of A
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Let 1 < p < +oo. If A is m-completely accretive in LP(2), by Crandall-Liggett’s
theorem, A generates a contraction semigroup in LP(€)) given by the exponential
formula

t N\ p
e g = || - |- lim <I + —A) ug for any ug € D(A)L (Q).
n

n—oo

A

Moreover, for any ¢ > 0, e7** is a ||.||,~T—contraction for any 1 < g < co.

PROPOSITION 1.19. Let |Q)] < co. If A C LY(Q) x LY(Q) is an m-completely
accretive operator in LY(Q)), then for every uy € D(A), the mild solution of the
problem

u + Au 3 0,
u(0) = ug
is i WHH0,T: X) and is a strong solution.

Moreover the following regularizing effect holds:

THEOREM 1.20. Let 1 < p < +00. Let A an m-completely accretive operator
in LP(§2), positively homogeneous of degree 0 < m # 1, i.e, A(Au) = X" Au for
w € D(A). Then for u € D(A)NLP(Q) and t > 0, we have e u € D(A).
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Nonlocal p—Laplacian problems

Model evolution equations for nonlinear local diffusion:

- the porous medium equation, v; = A (\v|m_1v),

- the p-Laplacian evolution, v; = div (\Vv|p_2VU).

Here we will study a nonlocal analog of the p-Laplacian evolution with Neumann
boundary conditions and the Neumann problem for the nonlocal total variational flow,

both for non-degenerate kernels, and the Dirichlet problem for fractional 1-Laplacian
evolution.

We will study:
- existence and uniqueness,

- if the kernel is rescaled in an appropriate way, the corresponding solutions of
the nonlocal evolution problems converge to the solution of the corresponding local
evolution problems.

The asymptotic behaviour is also studied in [10], [12], [48]. A nonlocal analogous
problem to the porous medium equation for non—-degenerate kernel can be found in [9].

2.1
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2.1. The Neumann problem for nonlocal p—Laplacian evolution with
non—degenerate kernels

Let J : RY — R be a nonnegative continuous radial function with compact support,
J(0) >0 and [on J(z)dz =1,
and 2 C RY a bounded domain.

We begin with the study of the nonlocal p—Laplacian evolution problem with Neumann
boundary conditions:

wil,t) = / I — y)luly, 1) — ulz, OP2(uly, ) — ulz, 1)) dy,

u(z,0) = ug(x), r e, t>0.

(2.1)

DEFINITION 2.1. A solution of (2.1) in [0,T] is a function u € W10, T LY(Q))
that satisfies u(x,0) = ug(x) a.e. x € {2 and

el 1) = / T — )y, t) — ule, O 2(uly, £) — ule, 1) dy
a.e. in €2 x (0,7).
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2.1.1. Existence and uniqueness.

Tools: Nonlinear Semigroup Theory.

We introduce the following operator in L'(€2) associated with problem (2.1):

Bju() = - [ (o~ yluly) - ule) uly) - u(e) dy,  x €
Observe that "
- Bg is positively homogeneous of degree p — 1;
- for p > 2, LP7HQ) C D(Bpj);
-and for 1 < p <2, D(B)) = L'(Q2) and B is closed in L'(€2) x L'(Q).

Using the following integration by parts formula:

LEMMA 2.2. For every u,v € LP(1Q),

- [ [ I = wluty) — u@)l () — uta))dyoia) da

=5 | [ Te =) = ul@)l i) = w@)wl) = ola) dy da

we have the following monotonicity result for BpJ ;
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LEMMA 23. Let T : R — R be a nondecreasing function. Then, for every
u, v € LP(Q)) such that T(u —v) € LP(Q2), we have

/Q (BJu(x) — Bo(x)) Tlulz) — v(x))da

_ % /Q /Q J(z — ) (T(uly) - v(y) — Tu(z) — v(z)))

% ([u(y) = u(@)["*(uly) — u(z)) = [v(y) = v(@)>(v(y) — v(z))) dyde > 0.

From it we obtain easily that Bp‘] is completely accretive. Now we will also prove
that:

THEOREM 2.4. The operator B]‘Q] satisfies the range condition
(2.2) LP(Q) C R(I + BY).

Therefore, for any ¢ € LP(£2) there is a unique solution of the problem u+BI{ U= q
and the resolvent (I + B;)~" is a contraction in L(Q) for all 1 < ¢ < +-00.
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PROOF. We want to prove that for any ¢ € LP(2) there exists u € D(B;) such
that w = (I + BJ)~'¢.

Let us first take ¢ € L™(Q). Let A,,,, : L?(Q) — L¥(€) be the continuous mono-
tone operator defined by

1 1
A, (w) =T, B’ “lulP Pt — —|ulP
) = T) + Bu+ -~ — a2
where T.(r) =c A (rV (—c)),c>0,r € R.
Ay is coercive in LP(€)):
/Anm(u)u
lim & = +00.

Jull ooy =too [|ull o)
Then (|25, Corollary 30]) there exists wy,,, € LP(£2) such that

1

1 _ 9 _
Tc(un,m) + B];]un’m -+ 5|un’m|p 2u7—;m — E‘un’mw 2un,m = gb

Using monotonicity we obtain that T¢.(u,,,,) < ¢. Consequently, taking ¢ > ||¢|| 1),
we see that u,,, < ¢ and

1 _ 1 9 _
Unm + Byt m + 5|Un,m!p 2 — E|un,m|p Uy = O,
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Using that w,, ,, is increasing in n (and decreasing in m), that u, ,, < ¢, and the
the monotone convergence, passing to the limit in n we get u,, a solution to

1 9 _
U, + Bgum — E\ump? U = ¢,
and u,, < ¢.
Now, u,, is decreasing in m. Then, taking limits in m we obtain a solution u to
J,
u+ Byu=¢.

Let now ¢ € LP()). Take ¢, € L>=(Q)), ¢, — ¢ in LP(§2). Then, by the previous
step, there exists u, = (I + Bg )1, Using that Bg is completely accretive we get

u, = u in LP(Q), and then also B;u, — Bju in LY (). Then, we conclude that
u + B];] U= Q. []

If B) denotes the closure of B in L'(€2), then by Theorem 2.4 we obtain that B;
is m-completely accretive in L'(€), consequently, by Theorem 1.7:

THEOREM 2.5. Let T > 0 and ug € LY(Q). Then there exists a unique mild
solution u of

23 { W(t) + Blu(t) =0, t e (0,T),
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Now, by Theorem 1.10, thanks to the complete accretivity of Bi?] and the range
condition (2.2), we have:

COROLLARY 2.6. If uy € LP(X2), the unique mild solution of (2.3) is a strong
solution of problem (2.1) and a solution in the sense of Definition 2.1.

If 1 < p < 2 since D(B)) = L'(Q) and By is closed in L'(Q) x L'(Q), by
Proposition 1.19:

COROLLARY 2.7. Let 1 < p < 2. Ifug € LYQ), the unique mild solution

of (2.3) is a strong solution of problem (2.1) and a solution in the sense of
Definition 2.1.

Moreover, we have the following contraction principle:

COROLLARY 2.8. For q € [1,400|, if ujg € L), i = 1,2, we have:

I (t) = ua(t) " zog) < [l(wro = u20)" || pay  for every t € [0,T7.
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2.1.2. Rescaling the kernel. Convergence to the local p—Laplacian.

Let 2 be a bounded smooth domain in RY. For fixed p > 1 we consider the rescaled
kernels

hele) = 5359 (),

L. p
where C'; = 3 L [on J(2)|zn|P dz is a normalizing constant.

The solution u. of problem (2.1), with the kernel J replaced by J, ., converges,
as the scaling parameter € goes to zero, to the solution of the classical p-Laplacian
evolution problem with homogeneous Neumann boundary conditions:

(v = A in 2 x (0,7,

(2.4) IVolP™*Vu-n=0 ondx (0,T),

_/\

v(x,0) = up(z) in €2,

where 7 is the unit outward normal on 99 and Ayv = div(]Vo|P~?Vv) is the so—called
p—Laplacian of v.
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Some facts about the local p-Laplacian equation.

Associated to the p—Laplacian with homogeneous boundary condition, the following
operator B, C L'(2) x LY(Q) is defined: (v,0) € B, if and only if o € L),
v € WHP(Q) and

/ VuP*Vu - VEdr = / o&dx  for every € € WHP(Q) N L>(Q),
Q Q

and it is proved that B, is a completely accretive operator in L'(§2) with dense domain
satisfying a range condition, which implies that its closure B, in L'(2) x L}(Q) is an
m-completely accretive operator in L'(2) with dense domain (see [6] or [7]).

In [5] and [8] it is shown that for any uy € L'(€), the unique mild solution
v(t) = e Prug given by Crandall-Liggett’s exponential formula is the unique entropy
solution of

(v = A in 2 x (0,7),

IVulP*Vo-n=0 on 0 x (0,7T),

L\

| v(z,0) = up(x) in €2,
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A formal calculation for N = 1. Let u(z) be a smooth function and consider

A)0) = ez [ (F22) ) — )P () ~ ute) dy

E

Changing variables, y = x + €z, we get
1
(2.5) A (u)(x) = 5/ J()|u(x + e2) — u(x) P (u(z + £2) — u(z)) dz.
R

Expanding in powers of € we obtain

/ u’(x) 2 2 P2
u'(x)z + ez”+ 0(e”)

—2 _ _p-2
(u(x +e2) — u(x)|P~* = &v 5

= 2 ()22 4 @ p — 2 (@) (@) 4 O(e),
and
u(x +e2) —u(x) = eu'(x)z + @5222 +0(e%).
Hence, (2.5) becomes
Aw)@) = 2 [ I deful @) (o

+5 [ TNl d (0 = 2@ e) + (@)l (@) + Ofe),
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that is,

Afw)(e) = - /R J(2) |2z dzfu ()0 (2)

+5 [T d(d @l @) +06e),

Using that J is radially symmetric, the first integral vanishes and therefore
lim A (u) () = C(Ju/ (@)} ()’
e—

where

czl/ﬂz)\z\pdz.
R

2

The objective is to make this formal calculation rigorous.

Tools:
- a precompactness result (a variant of [23, Theorem 4]).

- Nonlinear Semigroup Theory.

For a function g defined in a set D, we denote by g to its extension by 0 outside D.
BV (D) is the space of bounded variation functions.
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THEOREM 2.9 (The precompactness result). Let 1 < ¢ < 400 and D C RY
open. Let p: RY — R be a nonnegative continuous radial function with compact
support, non identically zero. Let {f,}, C LY D) such that

20 [ [ 515 = faltptnty = o) dedy < o0

n

1. If {f.} is weakly convergent in LY(D) to f, then:
(i) For q > 1, f € WY(D), and moreover
1 ) fo (@ +32) = f(@)

weakly in LY(D) x LI(RY).
(ii) For g =1, f € BV(D), and moreover

p(2)X (.+lz) i <-+§2—fn<->

— (p(z))" 2 - V f(x)

- —p(z)z-Df

in the sense of measures.

2. Suppose D is a smooth bounded domain in RY and p(z) > p(y) if |z| < |y|.
Then there exists a subsequence { f, } such that

Q) if ¢ > 1, fu, — f in LYD) with f € W(D);
(i) if =1, f,, = f in L\(D) with f € BV(D).
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THEOREM 2.10. Suppose J(x) > J(y) if |x] < |y|. For any ¢ € L>(12),
(2.7) (1 4 BJ“) 6 (I+B) " ¢ inLl(Q) ase — 0.

PROOF. For € > 0, let u. = (I + B‘]pg) ¢. Then
(2.8)

L= S5 [ [ (52) 1ncto) = wco)l2uct) = o)) (o)

= /ngf for every & € L>(€)).

Aim: find a sequence &, — 0 such that v, — v in LP(Q), v € WP(Q) and
v=(I+B,) "¢, that is,

/ v€ + / Vol *Vu - VE = / ¢ for every £ € WHP(Q) N L¥(1)).
Q Q Q

We have that u. < ¢; therefore, by Proposition 1.16, there exists a sequence
£, — 0 such that

— v weakly in L?() and in L*(Q), and v < ¢.

Consequently, ||u, || ro@), [|v]zo@) < |0l e

Ue

n
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Changing variables, we can rewrite (2.8) as

/ o(x)€ () dr — / u.(2)E(x) d
(2.9) _ /R ) /Q %J(z)xg(ersz)

Xﬂg(:p +ez) —u(x)E(x +ez) — £(x) drds
£ £

Taking € = ¢, and & = u,, in (2.9), we get

U(x +e2) — u(x) P2

€

1Csp (2= Uz, (y) — e, () 7
INEES ( ) = e
_ B p
B / /%J(2>Xﬂ(x + €p2) Heg 2 €n7) = e, (1) drdz < M.
RV Jo 2 En
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That is,
C _5 n - We
/ /ﬂJ(Z>XQ<CC—|—€nZ) U, (x + en2) — ue, ()
RN Jo 2

€n

p

drdz < M,

u., — v weakly in LP(€).

Therefore, by Theorem 2.9, v € W'7(€)) and
(2.10)

(%J(z)) " Xa(z + 6nZ)ﬂ€”<x + 5?%;) —u,(z) (%J@) N z - Vo(z)

weakly in L2(Q) x LP(RN). Moreover, there exists y € L” () x LY (RY) such that
p—2 —

Ue, (T + €p2) — ue, ()
En

Us, (¢ + €nz) — us, (2)
€n

(TN Xal@ + e2)

= ()" x(x, 2)
weakly in L7 (Q) x L¥ (RY).
Therefore, passing to the limit in (2.9) for € = ¢,,, we get

(2.11) /v§+/RV/QCJpJ x(z,2)z - VE(x )d:cdz—/qbf

for every smooth & and by approximation for every £ € W12(Q).
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We now show that
C B
(2.12) / / 222 J(2)x(z, 2)z - VE(x) dr dz = / Vo’ Vo - VE.
RN Jo 2 0

Taking & = u,, in (2.9):

LU?(Q?)CZZC—I—/RN/Q%J<Z>XQ<ZC+€Z>

Taking now limits, using that / v? < lim inf / u?n and (2.11) for £ = v we get:
0 nooJa

U-(r +€2) — u-(x)

P
da:dz:/qb(x)usnda?.
0

p

dx dz

Us, (¢ + €n2) — U, (2)
€n

C
lim sup/ /ﬂ(](Z)XQ(I' + &n2)
n RV Jo 2

(2.13)
< ANL%J<Z)X<$,Z>Z°VU<$> dx dz.
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By the monotonicity Lemma 2.3, for every p smooth,

=25 [ (F22) 1) = ol (ot0) = plo) d o) — pla)

25 [ (52 o) — ol

X (ue, (y) = te, (2)) dy (ue, (x) = p(x)) d.

Using the same change of variable that we used above and taking limits, on account
of (2.10) and (2.13), we obtain, for every smooth p,

./]RN /Q %ﬂz)‘z - Vp(z)|[P22 - Vp(z) 2 - (Vu(z) — Vp(x)) dr dz
= /IRNL%J(Z)X<$,Z)z - (Vu(x) — Vp(x)) dz dz,

and then for every p € WhP(Q).
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Taking p = v &£ A, A > 0 and £ € WP(Q), and letting A — 0, we get
/ / %J(z)x(a:, 2)z - V&(x)dx dz
RV Jo 2

_ /R ) %J@) /Q 2 V(@) P (2 - Vo(z)) (2 - VE()) dadz.

Consequently,
/ / %J(z)x(az, 2)z - Vé(x)drdz = / a(Vv) - VE  for every £ € WHP(Q),
RN J O {2

where
1

a;(§) = CJ,p/ ~J(2) |z €77 2 € 2 dz,

RN 2
Then, since

(2.14) a(é) = [¢]" %,
we obtain that (2.12) is true and
v=(I+B,) "¢
And the proof finishes using Theorem 2.9, 2. []

The proof of (2.14) is an exercise: Use that a is positively homogeneous of degree
p — 1, that J is a radial function, and an adequate change of variables.
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From the above theorem, and Theorem 1.12 we obtain:

THEOREM 2.11. Assume that J(z) > J(y) if |z| < |y|. Let T > 0 and uy €
L), p < q < +00. Let u. be the unique solution of (2.1) with J replaced by
Jye and v the unique solution of (2.4). Then

(2.15) lim sup |luc(-,t) —v(-,t)||za) = 0.
e=0 40,7

Moreover, if 1 < p <2, (2.15) holds for any uy € L4(Q)), 1 < ¢ < +00.
PROOF. Since B];] is completely accretive and satisfies the range condition (2.2), to

get (2.15) it is enough to see that

1
(1 + Bgfp’g) 6— (I+B) "¢ inLIQ) ase— 0

for any ¢ € L*>(Q2) (see Theorem 1.12). Taking into account that
Tpe

~1
(I + B, ) ¢ < ¢,
the above convergence follows by (2.7). ]
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PROOF OF THE PRECOMPACTNESS THEOREM 2.9. From (2.6),

2)Xp | x lZ ?n(er%Z)_fn(x)q rdz
- [ fyero (7 52) 1/ o
//np n(z — 1y fn()/fn() dvdy < M.

On the other hand, if ¢ € D(D) and ¢ € D(RY), for n large enough,

[ e [ (H : )fn (w43 = hla)

n 1/n

__ / NE / fo(x 1 /Ef =) o (o) d

Let us start with the case 1(i): suppose f, — f weakly in LY(D). By (2.16), up to
a subsequence,

(2.17)

(0(2) x5 ( + %) L2 1/71 “ I L (2 gz, 2) weake LI(D) x LIRY).
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Therefore, passing to the limit in (2.17), we get

/R N (p(2))"1 /D gz, 2)o(x) dr (2) dz

[ oD [ @)z Vla) dooie) de

Consequently,

/ 9(z, 2)pl(z) do = — / f(z)z-Ve(x)de, V=€ nt(supp(p)).
D D
This implies f € W14(D) and

(p(2)" glw,2) = (p(2))/"2 - Vf(x) inD xRV,

Let us now prove 1(ii). By (2.16), there exists a bounded Radon measure p €
M(D x RY) such that, up to a subsequence,

p(2)Xp (x + lz) G 1%2 — fu(2)

— u(x,z) weakly in M(D x RY).
n
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Hence, passing to the limit in (2.17), we get

[ et =~ [ ) Ve deds

DxRN

Now, applying the disintegration theorem to the measure u, we get that:

f e BV(D)

and

e 2) = 3 L @)L ()

The proof of 2 follows the same steps of the proof of |23, Theorem 4].
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2.2. The Neumann problem for the nonlocal total variation flow for
non—degenerate kernels

Motivated by problems in image processing, the Neumann problem for the total
variation flow is studied in [3] (see also [4]):

( D
vt:div( ”) in Q x (0,7),

| D]
(2.18) ! Dv
-n=0 o) x (0,T
Do) " on 9§ x (0, T),
v(-,0) = ug in €.

\

Dv
| Dol

The aim of this section is to study the nonlocal version of problem (2.18), which
can be written formally as

[l )
ut(x,t)—/QJ( y)|u(y,t)—u(x,t)\dy’ cQ, t>0,
| u(@,0) = uplz), = el

The operator div ( ) is also known as 1-Laplacian: Ajwv.

(2.19) <

Here, again, J : RY — R is a nonnegative continuous radial function with compact
support, J(0) > 0 and [,y J(z)dz = 1.
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2.2.1. Existence and uniqueness.

DEFINITION 2.12. A solution of (2.19) in [0, T is a function
w € WH(0,T; LY(Q))
which satisfies u(x,0) = ug(x) a.e. x € {2 and

up(x,t) = / J(x —y)g(x,y,t)dy ae. inQ x(0,7T),
0

for some g € L>®(€) x €2 x (0,T)) with ||g||oc < 1 such that g(x,y,t) = —g(y, z, 1)
and

J(z —y)g(x,y,t) € J(x —y)sgn(uly, t) — ulz,1)),
where sgn is the multivalued sign function.

To prove the existence and uniqueness of this kind of solutions, the idea is to take
the limit as p \ 1 to the solutions of (2.1) studied previously, and use again Nonlinear
Semigroup Theory.

So, we begin by introducing an operator in L*(€) associated to our problem.
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DEFINITION 2.13. We define the operator Bf in LY(Q2) x LYQ) by 4 € B{u if
and only if u, 7 € L*(Q), and there exists g € L>®(Q2 x Q), g(x,y) = —g(y, z) for
almost all (x,y) € Q x Q, ||g]|l < 1, such that

(2.20) J(x—y)g(z,y) € J(x —y)sen(u(y) — u(x)) ae. (x,y) € Q2 x

and
u(x) = — / J(x—y)glx,y)dy ae x €
0

[t 1s not difficult to see that:
(2.20) is equivalent to

// r—y)g(x,y)dyu(zr) // r—y)|uly) — u(x)| dy d;

_ Ll )
- Blj is closed in L'(Q) x LY(Q);
- and By is positively homogeneous of degree zero.



2.26 2. NONLOCAL p—-LAPLACIAN PROBLEMS

THEOREM 2.14. The operator B{ is completely accretive and satisfies the range

condition
L>(Q) c R(I + BY).

PROOF. Let 4; € B{u;, i = 1,2. Then there exists g; € L>(Q x ), ||gilloc < 1,

gi(x,y) = —gi(y,x), J(x — y)gi(x,y) € J(x — y)sgn(u;(y) — u;(x)) for almost all
(z,y) € Q x Q, such that

u(r) = — / Jx—y)gi(z,y)dy ae xef), 1=1,2.
0
Let ¢ € Fy. We have

/ () — () g(s (&) — un())
Q

1

> / / Iz = )91 y) — ga(,y) (alur(y) — waly)) — qlun() — us(e))) dedy
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Therefore,

/ (i) — () (s (&) — ws())
Q

1
-5/ / I~ 9)(on(r.) — ool v)
{(z.y):u1(y)#u1 (@) ua(y)=ua(x) }
X

(q(ui(y) — ua(y)) — qlui(x) — ua(x))) do dy

1
w5 1~ y)(or(z. ) ~ ool )
{(z):ur(y)=u1 (), uz(y) Fuz ()}

X (q(ui(y) —ua(y)) — qlui(z) — ua(z))) dody

1
=y T~ y){or(z. ) ool )
{(z.y)un (y)Fur (2),u2(y) Fuo(2) }
X

(q(ur(y) — ualy)) — q(ua(z) — ua(x))) da dy,
> 0.

Hence, By is a completely accretive operator.

2.27
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Let us prove not that By satisfies the range condition.
We will see that for any ¢ € L>((2),

lim (I + B)) "¢ =(I+B{)"'¢ weakly in L(<).

p—1+

Write u, := ([+ B‘]) ¢ for 1 < p < +o00. Then

%wwiéJu—ywww—uﬁ@%%%wwwwwww:¢u>aexe@

Thus, for every £ € L>((2), we can write

[ wt - // (@ = ) wly) — wl@)yly) = uy(z)) dy€(a) do

=/Q¢f.

We have u, < ¢. Hence, by Proposition 1.16, there exists a sequence p,, — 1 such
that

(2.21)

—u  weakly in L'(Q), u < ¢.

n

Up

Consequently, we also have ||uy, || zoo(q), |1 ro@) < (|0 Lo
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Now, since

“upn(y> o uPn('CC)‘pn_Z <upn<y> o upn<x))‘ S (2||¢||00>pn_1 )
there exists g(x, y) such that

[, () = tp, ()" (up, (y) =y, (%) — g(2,y)

weakly in L' (Qx Q), g(z,y) = —g(y, z) for almost all (x,y) € QxQ, and ||g||s < 1.
Passing to the limit in (2.21) for p = p,, we get

(2.22) /u§ // r—y)g(x,y)dy&(x d:z:—/gb§

for every £ € L*(Q)), and consequently

u(x) — /Q J(x—y)g(x,y)dy = p(x) ae in Q.

Then, to finish the proof we have to show that

(2.23) // v — y)g(z.y) dyulz) // v — luly) — u(x)| dy da.
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In fact, by (2.21) with p = p,, € = u,,, and (2.22) with £ = u,

5 [ ]I ) — @l dy o
:/ngupn—/upnupn /¢u—/uu—/¢u—’“pn
o [ outu =) - / (1= ) (1 — )

<~ [ [ e =wgtendyuia)ds = [ ot + [ 20—,

and so,

lim sup = // =) |uy, (y) — up, ()" dy dx

—/Q/QJ(:E—y)g(x,y) dy u(x) dx.
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By the monotonicity Lemma 2.3,

— [ [ 3= lotw) = ) oly) = pla)) dy (uy, 2) = pla) o

<= [ T = )l ) = 0P 00 (0) 0 (20) 1, ) = pl)

Therefore, taking limits in n,

— [ 3= wyssng(ota) = pla)) dy (ulz) = pla) da

< —/Q/QJ(:U —y)g(@, y) dy (u(z) — p(z)) dz.

Taking p = u £+ Au, A > 0, and letting A — 0, we get (2.23), and the proof is
finished.

[]
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THEOREM 2.15. Let ug € LY(Q). Then there exists a unique solution of (2.19).
Moreover, if u; is a solution in [0,T] of (2.19) with initial data u;y € L'(9),
1= 1,2, then

/Q(U1<t> —uy(t))" < /(Ulo —ugp)"  for everyt € [0,T].

Q

PROOF. As a consequence of the above results, by Theorem 1.7, we have that the
abstract Cauchy problem

u'(t) + Biu(t) 20, te(0,7T),
(2.24)
u(0) = uy,

has a unique mild solution u for every initial datum uy € L'(Q2) and T' > 0. Moreover,
due to the complete accretivity of the operator Bi], »» the mild solution of (2.24) is a
strong solution and a solution in the sense of Definition 2.12.

[]
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2.2.2. Rescaling the kernel. Convergence to the total variation
flow.

Let € be a smooth bounded domain in RY. We will see that the solutions of
problem (2.19):

[t et
ut(aj,t)—/QJ( y)\u(y,t)—u(a:,tﬂdy’ e, t>0,

L u(z,0) = ug(x), =€,
with the kernel J rescaled in a suitable way, converge, as the scaling parameter goes
to zero, to the solutions of the Neumann problem for the total variation flow (2.18):

( D
Ut:div( U) in Q x (0,7,

| Do)
D
) |DU|-77:O on 052 x (0,7,
v
L v(-,0) = ug in (2.

Solution to (2.18) were also obtained in [3] using the techniques of completely
accretive operators and the Crandall-Liggett semigroup generation theorem. To this
end, the following operator in L'(Q) was defined:
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The 1-Laplacian operator with Dirichlet boundary conditions.

(v,0) € By ifand only if v,0 € LYQ), Tp(v) € BV(Q) for all & > 0 and there
exists ¢ € L>®(Q, RY) with ||¢||s < 1 such that

0= —div(¢) in D/(Q)

and

/Q (€ — Ty(w))ode < / (- Véde — |DTy(0)|(Q),
Ve e WHHQ) N L), Vi > 0.

And it was proved:

THEOREM 2.16. The operator By is m-completely accretive in L'(Q) with dense
domain. For any ug € L(Q) the semigroup solution v(t) = e Plug is a strong
solution of problem (2.18).
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Now we return to the analysis of the nonlocal problem and set

Do) = 2 (5,

with Cy1 7" := 2 [on J(2)|2n] dz being a normalizing constant.

Let u. be the solution of problem (2.19) with J replaced by J; . and the same initial
condition ug. The main result now states that these functions u. converge strongly
to the solution of the local problem (2.18).

THEOREM 2.17. Suppose J(x) > J(y) if || < |y|. Let T > 0 and ug € L'(Q).
Let u. be the unique solution in |0,T] of (2.19) with J replaced by Ji . and v the
unique solution of (2.18). Then

lim sup (||[ug(-,t) —v(-,t)|| 710y = 0.
iy s () = ol )2

Arguing as in the proof of Theorem 2.11, since the solutions of the above theorem
coincide with the semigroup solutions, by Theorem 1.12, to prove Theorem 2.17 it is
enough to obtain the following result:

THEOREM 2.18. Suppose J(x) > J(y) if |x| < |y|. Then, for any ¢ € L*=(S),

]
(1 + Bi]“) 6= (I+B) "¢ inLYQ) ase — 0.
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PROOF. Given € > 0, we set u. = (I+BJ15> ¢. Then there exists g, €
L>®(Q x Q), g-(x,y) = —g-(y, x) for almost all z,y € Q, ||g-]|cc < 1, such that

7 (x - y) g(z,y) € J (5” - y) sen(u.(y) — u(z)) forae z,y € O

E E

and

(2.25) —gii[/QJ (:1: ; y) g-(x,y)dy = ¢(x) —u(x) forae. x €.

Moreover u. < ¢. Hence, by Proposition 1.16, there exists a sequence &, — 0 such
that

u., — v weakly in L'(€), u < ¢.

Consequently, ||ug, || o), |Vl 2@y < @]l @)

Observe that
(2.26)

// (x_ )95"“’3 y)dy vz, (@ // (:,;_ >|u5n<> ue, (x)| dy dz.
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Changing variables and having in mind (2.26), we get

/RN/C“” 2)Xa(x +e,2)
- L= ()

= /(¢(x) — U, (T))ue, () de < M, Vn e N.
0
Therefore, by Theorem 2.9, v € BV (2),
CJl

ﬂgn(aj + 5nZ> — Ueg, (ﬂf)
En

dx dz

e, (y) — e, ()

dx dy

H<°5n<aj + EnZ> - u5n<aj> OJl
€n

——J(2)Xa(x + €,2) ——J(2)z - Dv

weakly as measures and
u., — v  strongly in L*(€2).
Moreover, we also can assume that
J(2)Xa(x + €,2)7., (x, 2+ ,2) = Az, 2)
weakly* in L=(Q2) x L¥(RY), with A(z, z) < J(z) almost everywhere in  x R¥.
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From (2.25) we have

le/ / )Xoz +€,2)7., (¢, 2+ €,2) dz o +en2) — () dx
RN

€n

- [ (616) = e (@)g(o) Ve € L¥(Q)
And passing to the limit we get

(2.27) C“/RN/ z,2)z - V& )dxdz—/(gb( ) — v(z))é(x) da

for all smooth & and, by approximation, for all £ € L>(Q) N W1(Q).
We denote by ¢ = ((1, . .., () the vector field defined by

(i) = Cra

2 RN
Then ¢ € L*(Q,RY), and from (2.27),
—div({)=¢ —v in D'(Q).

Nz, 2)z;dz, i=1,...,N.

Let us show that
(2.28) I¢lloe < 1.
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Given ¢ € RV \ {0}, consider R¢ the rotation such that Ri(§) = e1|¢]. Then, if we
make the change of variables z = R¢(y), we obtain

- Ch Cra

2 A, 2)e-€de =<2 [ Ale, Rely)Rely) - € dy
RN RN

Clx) - €

C
=== | M@, Re(y)lé] dy.
RN

On the other hand, since J is a radial function and A(zx, z) < J(z) almost everywhere,

1
lel = §/RN J(2)|z1| dz

and

Cri

Cl@) &l = =+ RNJ@)\ylldylé’I:\f\ a.c. T €.

Therefore, (2.28) holds.
Since v € L>(2), to finish the proof we only need to show that

/Q(g —v)(¢p —v)dr < /Qg .Védr — |Dv|(Q) VE e WH(Q) N L®(Q).
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For w smooth we have that

/ (0(2) — e, (1)) (w() — e, (2)) d

CJl/ / )Xoz + ,2)7. (z, 2+ €,2) dz D +en2) = wiz) dx
RN

€n

- C e n e
Jl// XQx+5n)u”(x+5Z> Ue, (%) Ir.
RN
Then, taking limits as n — 0o, we get
/(w—v)@—v)dac
C C
Jl// (x,2)z - Vw(x) da:dz—i |J(2)z - Dv|
RN RN

:/C-dex—@ |J(2)z - Dv| = /C de:z:—/]Dv\
RN

for all smooth w and, by approximation, for all w € W1(Q) N L>(Q
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2.3. The Dirichlet problem for fractional 1-Lapacian evolution

Our aim here is to study the evolution equation associated to a nonlinear ver-
sion of the fractional Laplacian, the fractional 1-Laplacian with Dirichlet boundary
conditions, that formally we write as

( 1 t) — t
u(x,t) = / e uy,t) — ulz, | dy, x€Q,t>0.
9299 RN |$ o y’ ’u<y7t> o U(Zl?,t>|
(229 4 wia,t) =0, reRV\Q, ¢ >0,
. ’LL(QL‘,O) — uO('CC)a T < Q)

where 0 < s < 1 and Q is a bounded smooth domain in R¥,

Changing the ambient space. We have to change the underlying space, now L? is
not adequate for these kind of nonlocal problems but they will be fractional Sobolev
spaces. Let the (s, p)-Gagliardo seminorm of a measurable function « in €2 be

1
u(y) —u(z)|” )T’
Ulys. = dxd :
[ulyrsr) (/Q 0 |z —y[Nte Y

We consider the fractional Sobolev space
W=P(Q) = {u € LP(Q) : [ulyspq) < +00},

which is a Banach space respect to the norm ||u||wsriq) = [u]wss) + |1/l 22)-
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We also consider by W:7(€) the closure of C3°() in the norm
w = [Wyso@yy + l|ull o)

Functions in the space W;(€) can be defined in the whole space W*P(RY) by
extending then by zero outside €2, as we will consider.

See [32] and [24] for a good overview of fractional Sobolev spaces.

For 1 < p < 0o, we can define the fractional p-Laplacian Aju  trough the Euler-
Lagrange associated to the minimization of [u]

5 1
Au(z) = P.\/./R

N |z — gV
_ PrOPOSITION 2.19 ([48]). For any f € L*(Q), there exists a unique u €
Wy P(Q) N L*(Q) solving the Dirichlet problem

u(z) — Aju(z) = f(z) in
u(z) =0 in RY\ Q,
in the following sense:

%/RN /RN P ;‘Nﬁp [uly) — u(@)["*(uly) — u(2))(p(y) — ¢(z)) dyds = /<f — )P,

Q

p .
Ws,p(RN) :

[u(y) — u(@)"(uly) — u(z)) dy, =€ RY.

for all o € WEP(Q) N L2(Q).
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We now define formally the fractional 1-Laplacian operator of order s of a func-
tion u € W*L(RY):
1 uly) — u(z) N
Aju(x) = / dy, zeR".
D= o T = o fuly) = ula)]
Solutions to the Dirichlet problem associated with this operator Aj will be in a
larger space than W ’1(9), they live in the space

Wi Q) = {u e LY(Q) : [ulysagyy < 00 and u =0 a.e. in RY\ Q1.

DEFINITION 2.20. Given v € L2(9), we say that u € W' (Q) is a weak solution
to the Dirichlet problem

(2:30) u(z) =0 in R\ Q.

if there exists n € LOO(IR{N XRN), n(z,y) = —n(y, x) for almost all (z,y) € RN xRN
]| o (RN xRN) < 1, such that

n(z,y) € sign(u(y) — u(z)) ae (z,y) € RY x RY, and

,/RN /RN |:1:— ‘N+s (@, y)(e(y) — ¢<$)>dyd$:[20(x)¢(x) dx
for all o € Wi (Q) N L2(Q).

{ —Aju(z) =v(x) in
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DEFINITION 2.21. Given uy € L*(Q), we say that u is a solution of the Dirichlet
problem (2.29) in [0, 77, if w € W10, T; L*(Q)), u(0,-) = ug, and, for almost all
e (0,7),

ut<t7 > — A‘iU(t, ) in {2,

u(t,-) =0 in RV \ Q,

in the sense of Definition 2.20; that is, if there exists n(t,-,-) € L®°(RY x RY) such
that
n(t,z,y) = —n(t,y,x) for almost all (z,y) € RY x R,

In(t, -, ')HLOO(RNXRN) <1

n(t r,y) € sign(u(t,y) — u(t,z))  forae (t,z,y) € RT x RY x RY,

/ / — sz, y)(ey) — ele) dyde = —/ut(t,x)gp(az) dx
RN RN |z | 0
for all ¢ € Wo Q) N L*(Q).
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2.3.1. Existence and uniqueness. To study the Dirichlet problem (2.29) we
consider the energy functional:

1 1 | 1
5 - i ROIPALS:
Di(u) = 2/RN/RN 7= gy () —ul@)ldedy it € WeR(E) 0 L),
oo if u € LA(Q)\ Wy (Q).

D5 is convex and lower semi-continuous in L?(Q2). Then, the subdifferential D5 is
a maximal monotone operator in L*(2). We characterize the subdifferential D5 in
the following way:.

DEFINITION 2.22. We define in L*(Q2) x L*(Q) the operator D s as:
(u,v) € D1y <= u,v € L*(Q) and u is a weak solution to problem (2.30).

THEOREM 2.23. The operator Dy is m—completely accretive in L*(Q) with
dense domain. Moreover,

Dy, = 0D;.

PROOF. The proof of the complete accretiveness is similar to the one in the previous
section. 5o, let us see that the operator D ¢ satisfies the range condition

(2.31) L*(Q) C R(I + Dy).
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In what follows, C' will denote a constant independent of p that may change from
one line to another.

Set p* = N]\_f . > for the fractional critical exponent for 1 < p < %

For 1 < p < £ take s, ::%. We have 0 < s, < 1 forall 1 < p < (N*) =
N N °

N+s—1 — s
Then, given f € L*(Q), for 1 < p < (N*)', applying Proposition 2.19, there exists

U, € ng’p(ﬂ) N L*(Q) such that (since N + s,p = (N + s)p)
232) 5 [ | e )= @)y (0) — () o)l e = [ (7=

for all p € W(fp’p(@) N L*(Q). Moreover, u, < f and, hence,
©33)  lupliow < Ifl@  V1<p< (N, forany1<q<2

By (2.33), there exists a sequence p,, | 1, such that

up, = u weakly in L*(Q), and [lufl 20y < £l 120

On the other hand, taking ¢ = u, in (2.32) we have
(2.34)

1 1 *\/
§/RN ./RN |z — y| (N |up(y)—up(z)|” dydx = /g)(f_up)up <C VI<p<(N7).
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Now, since

1
/Q/Q o — gy [up(y) — upl@)| dydz

1 1/p /
: </Q/Q |z — y| (Vo [up(y) — up(@) [’ dydaz) Q% Q7
from (2.34) we get

||UpHWs,1(Q> < C V1l < p < (N*>/.
Hence, by the compact embedding Theorem 2.7 in [24], we have that for a subsequence
of {p,}, denoted equal,

u,, — u strongly in LNQ) and u e W)'(Q).
For k > 0 we set
Cop = {(x,y)ERNXRN: >k}.
Then, by (2.34),
(2.39) Cpil <

up(y) — up()
|.CE‘ _ y|N+s

C
ﬁ.
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On the other hand,

wy(y) — uy(2) [

|£L’ _ y|N+s

Up\Y ) — UplT )
Ti >_ y,prs >XRN><RN\Cp’k<CU; y)| < kP L V(x,y) € RV RN

Therefore, for any k € N there exists a subsequence of {py},, denoted by {p, «};,
J
such that

—2
upn;i;(y) — Up 4 (z) [ Up i (y) — Up i (z) .
‘7 : ] Xpvaric, (@)= (@, y)
x — y|V+s |z — y|N+s RYXRYN Pk ’ » 9

weakly* in L®(RY x RY), with 7, antisymmetric such that [|9; || e gy gy < 1.

Now there exist a subsequence of {7 }x, {7, }; such that,

) — 00

Mk, "X weakly® in L°(RY x RY),
with 7 antisymmetric and
H77||LOO(RN><RN) < L

Let us finally pass to the limit in (2.32).



J. JULIAN TOLEDO 2.49
Let us first take ¢ € D(€2). For afixed 1 < ¢y < N+]\;—17 we can extend ¢ as 0 outside

), and then ¢ € WoO(RY) with ry = (N+Sq)jo_N < 1. Fix k € N. From (2.32):
(2.36)

-2
Up k(y) — Up k([l?) pn;? Up k(y> — Up k(x) _
/ nj n; n n Yoo (x y)gp(y) (IO(I) dydgj
RN RN ’x—y‘N—FS ‘x_y’N—FS RY xR \Cpnéﬁ}’k ) ’x—y‘N+S
- /(f - upn;?)SO
Q J
—2

1 Up k(y) — U k<5’7) oy, k(y) — Up k(g;) _
— __/ g n; n; n XC (CE y)@(y> gO(.fU) dydgj

2 Jyv | o= gl g X (@) dyd

J

Now, for p_r < qo, using Holder’s inequality, (2.34) and (2.35),
J

_ P k=2 _
/ Upn§ (y) upn§ ()| upTL? (y) Upn§ (m)X a y)gp(y) — Lo
gy | v — gV o — gV Tt T g — g N

_ 90D k
k (P k=1)/p i n'

Up i (y) — Up & (z) ") J J _ 0 1/q0
RN xRN RN xRN "

’$—y‘N+S |Jf—y‘N+TOQO

< L
= 1-pi/wo’
j
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Therefore, taking limits as j — oo in (2.36), we get

1 1 -
‘éfRN /RN [z — y| N+ (2, ) (p(y) — o)) dydr — /Q(f — u)g@‘ < ?90.
In particular,
1 1 .
|§/RN /RN |z — y|N+s Mk, (T, y) (P(y) — ¢(x)) dydz — /Q(f — u%p' < k_j.

Therefore, taking now the limit as 7 — oo, we obtain that

230 5| | e — o) dyde = [ (1= =0

Suppose now that ¢ € W' (Q) N L*(Q). As in [24, Lemma 2.3], there exists
©n € D(Q)) such that

on — @ in L*(Q) asn — 4o,

and

[Qpn]WS,l(RN) — [SO]WSJ(RN) as n — +0oQ.
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By Fatou’s Lemma and (2.37), we have

1 1 1
é/RN /RN (‘x — y|N+s o(y) — ()] = |z — y’]\mrsn(xay)(%p(y) - 90(33))) dydx

1 1 1
< liminf - n(y) = enl@)] - 9)(@nly) = nlw)) | dyd
< limin Q/RN /RN (\x—ylms [n(y) = @ul2)] p— n(z, y)(enly) — @ (@)) yda

=5 [ [ mmrtetn — etolduda [ (7w

which implies

5 | L e o) — ela) duda > [ (7=

for all ¢ € W 1(@) N L?(Q2). But we obtain an equality, since the above inequality is
also true for —.

To finish the proof of (2.31), we only need to show that

(2.38) n(x,y) € sign(u(y) —u(z)) ae. (x,y) € RY x RY.
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BY (2.34) for p,, and taking ¢ = u in (2 37) we have
2 /RN /RN z — y‘ (N+s)p |upn(y> — up, (2)["" dydz = /g}(f(@ — Up, (7)) up, (x)dx

Z/Q(f dm—/f ) — Uy, (

/ ) (ul) — 1)) — / (0(e) = (@)

_Z/RN/RNIZE—?JIN+S @, y)luly) —ulz dydx_/f 7) =t

/Q ()((u(z) — uy, (2))de.

Then, taking limit as n — oo, we get

lim sup o /RN/RN \:C—yl e o (Y) = up, ([ dydz

<3 — dydz.
— Q/RN/RN ’x_y‘N—i—snx’y (u(y) — u(x)) dydzx
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On the other hand, given € > 0 we can find A D Q with |A| < 400 such that

€

1
dy < Vel
/RN\A [z — y|Vte 1fll 21

Then,

1 1
5 /]RN /RN |a: — y|N+s ‘upn@) o upn<37>| dydx
1
1 1
1
[ ([, o)
1 1

1 1
§e+—// Up, (Y) — Up, ()| dydz.
9 AA‘x_y|N+S‘p<> p()l
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By the lower semi-continuity in L'(R™) of [-Jy«1q), we have

1 1
2 — dyd
2 /RN /RN |z — y|Vts lu(y) — u(z)| dydz
: hgglogf /RN /RN |z — y‘N—I‘S [, (y) = up, (2)| dydz

< e+ liminf = //\:13— ‘N+s uy, (y) — uyp, (x)| dydz

n—oo

1/pn
< €+ liminf = - Pn dyd A x AV
€ + liminf 5 (/RN /RN |l,_y, oy [Wa(Y) — up, () dy ar) [A X Al

1
S 2 /RN /RN |z — y‘N+S ) ety) = ) dyd
Therefore,
1 1 Jod
5‘/RN/RN |$—y‘N+S |U(y) —u(a:)| yax

<ers [ mmme e ) (u) — ) dyds

from where it follows (2.38), since € was arbitrary.
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Finally, let us see that D, ; = 0Dj.

Given (u,v) € Dy, there exists n € L¥(RY x RY), n(x,y) = —n(y, z) for almost
all (z,y) € RY X RY, [|n]| o xrvy < 1, such that

%/RN /RN v — z‘ms"(ﬂfa Y)(p(y) — ¢(x)) dyde

_ /Q o(@)p(x)dr  forall o € WINQ) N LA(Q),

and

/RN /RN \x_y|N+s [uly) - u($)|dyda:=/9v(x)u(x) da.

Then, given w € WO ) N L3(€2), we have

| va)wls) — uw)do = 5 ANAN|x—y|N+S (#,9) (wly) ~ w()) dydz — Di(u)

< Dj(w) — Di(uw).
Therefore, (u,v) € 0Dj, and consequently Dy, C 0Dj. Then, since D; 4 is m—
accretive in L*(§2), we have 0Df = D1 . .
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THEOREM 2.24. For every uy € L?*(Q)) there exists a unique solution of the
Dirichlet problem (2.29) in (0,T) for any T > 0. Moreover, if u;g € L*(2) and
u; are solutions of the Dirichlet problem (2.29) in (0,T) with initial data w;y,
1 = 1,2, respectively, then

/Q(ul(t) —us(t))" < /(uw — ugg)"  for everyt e (0,T).

Q

2.3.2. Rescaling.

We now study the limit as s — 1 in the nonlocal fractional 1—Laplacian evolution
problem

(w(t,z) = Ly Aju(t,z) in (0,T) x €,
(2.39) < u(t,z) =0 in (0,7) x (RV\ Q),
L u(0, ) = up(x) in €,
where the scale factor is Ly = ﬁ(l —s), Kin = ﬁ fSN—l ey - o|dHY o).
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THEOREM 2.25. Given s, — 17, let u, be the solution of (2.39) for s = s,.
Then, if u is the solution of the Dirichlet 1-Laplacian problem

(w(t, ) = Alt,z), in (0,T) x Q,
< ult,x) =0, on (0,7T) x 09,
u0,2) =uwfz), i 9
we have  limy, o SUPkejo 7y [|tn(t) — u(t)]| 2y = 0.

We have full convergence as s — 1 (without the need of considering subsequences)
since the solution to the limit problem is unique.

Results in this direction have been obtained in [41] in the stationary case (see also
22] and [24)).

PROOF. Consider the energy functionals

L, ol 1

dxdy it HQ) N L9

Oy, (u) = KlN /RN/RN \x—y|N+8n rdy itu € Wy () (£2),
if ue L*(Q)\ )/\/(‘)S"’I(Q)7

and
| Dul (€2 / lu| if ue BV(Q)N L),

d(u) =
" +00 if ue L*(Q)\ BV(Q).
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Then, u, is the strong solution of the abstract Cauchy problem
u, (t) + 0P (un(t)) 30, ae te(0,7T),
{ u,(0) = uy,
and also (see [4]) u is the strong solution of the abstract Cauchy problem
u'(t) + 0P(u(t)) 20, ae te(0,T),
{ u(0) = .
Let us now check the Mosco convergence of the functionals ®; to ®, that is,

Vu € Dom(®) FJu, € Dom(Py ) : u, — v and P(u) > limsup Py, (uy);

n—oo
and

(2.40) if u, = u then ®(u) <liminf &y (u,).

n—oo

Set 2 := Q + B(0,1). Observe that

o41) @, w<>+2“‘s”>/(/ 1 d)|<>|d

. s, (u) =Wy (u u(x)|de,
Kin  Jo \Urma |z —y|Vten /

e I — u(y) — u(z)|
Sn u(y) — ulx

U, (u) = / dzxdy.

() Kin JaJa |z —y[Vre ’
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Observe also that

) 2<1 T Sn) / (/ 1 )
2.42 lim d ulz)|dx = 0.
(242) n—oo Kiny o Jo \Jrma |z —y|Vten ) lu)

Given u € Dom(®*!) = BV(Q) N L)), we consider u, = uXq; we have u,, €
WS”’l(Q) N L*(€2). Now, in [31] (see also [23]) J. Ddvila proves that

lim W, (uy,) = |Dul|(S).
n—oo

But |Dul|(Q2) = | Dul|( )+ [o0 |uldHY 1, hence
lim &g (u,) = P(u).
n—oo

To prove (2.40) we can suppose that {®, (u,) : n € N} is bounded. Therefore,
{U (u,) : n € N} is also bounded and consequently, from [23] and [51],

u, — u  strongly in L(Q)
and
| Dul|(Q) < lim inf \If%l(un).

Now, since | Dul(2) = |Du|(Q2) + [, |ul, from (2.41) and (2.42), we get (2.40). O
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2.4. Poincaré type inequalities

For several classical partial differential equations the solutions belong to appro-
priate Sobolev spaces. Hence, Poincaré type inequalities play a key role in their
analysis. When considering nonlocal problems with non-degenerate kernels, we look
for solutions in L? spaces; however, we can prove nonlocal analogs of Poincaré type
inequalities that also play a role for these problems.

Let J : RY — R be a nonnegative continuous radial function with compact support,
J(0) > 0 and [on J(z)dz = 1.

PROPOSITION 2.26. Let ¢ > 1 and Q a bounded domain in R'.
1. Let v € LY(Q;\ Q). There exists \(J,$2,q) > 0 such that

A Juta Pm</ﬁjw—hw)ﬂdW@M+LMI@Wy

for all u € L4()
2. There e:msts B(J, 2, q) > 0 such that

5/) of <3 [ [ aa= iy - upay s,

for every u € L4(S)

u_—

IQ\




PROOF.
Proof of the first inequality. Take r, o > 0 such that J(x) > « in B(0,r). Let

={zcQ;\Q : dz,Q) <r/2},

={z €Q : d(z,By) < r/2},

and

J—1
Bj{QfEQ\UBkid<QZ,Bj1><T/2}, j:2,3,

k=1

Observe that we can cover 2 by a finite number of nonnull sets { B; }2?":1
Now, for y =1,...,1,,

2.61

// (@ = Yluyly) —ul ‘qdydw// y)lus(y) — ulx)|" dy da,
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/B, /B.l J(@ = y)lup(y) — u(x)|" dy dz

B-/B. (@ = y)lule ‘qdydf’?_/ / y)luy(y)|* dy dz
:% 5 (/leJ(af—y)dy> Iu(rfc)|‘1d;c—/le (/B

J

J(x —y) dﬂf) [y (y)|* dy

> | |uz)|de -5 |uy(y)|* dy,
B] Bj—l
where
1
@j:_miﬂ/ J(x—1y)dy >0
q TEDB; Bj_4

(since J(x) > « in B(0,r)) and

b= J(x)dx.

RN
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Hence

/Q/QJ J(x —y)uy(y) — u(x)|!dy dz > «; Lj ju(x)|? dx — B/le [y (y)|4 dy.

Therefore, since uy(y) = ¥(y) if y € Bo, uypy) = uly) ity € B, j=1,...,1,
B;N B; =10, forall i # j and |2\ [JJ_; Bj| = 0, it is easy to see, by cancelation,
that there exists A = A\(J, §2, q) > 0 such that

)
YAEyY o —ylus(s) —u)dyde+ [l

Proof of the second inequality. It is enough to prove that there exists a constant

¢ such that
/u ) Vu € LY(Q).
0

(2.43)
1/q
fil < ( ([ [ 76 wluto) ~ stoypagas) -+
Let » > 0 be such that J(x) > a > 0 in B(0,r). There exists {x;}/"; C {2
such that Q C |J, B(x;,7/2). Take 0 < § < 7“/2 such that B(x;,0) C Q for all

i=1,...,m. Then,foranyﬁ:iEB(xi,é) i=1,...,m,

(2.44) Q) = U (&,
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Let us argue by contradiction. Suppose that (2.43) is false. Then there exists
w, € L), with ||u,||ze) = 1, satisfying
/ Uy, Vn e N.
Q

L=mn ((/ﬂ /Q J(x —y)|uny) — un(fE)quydaﬁ) " +
2.5 i [ [ @ =yt~ )ty do =0

Consequently,

and
lim/ u, = 0.
noJo
Let
Fo(z,y) = J(x = y)"|un(y) — un(z)]
and

ful) = / T — ) unly) — wn(2)|? dy.

From (2.45), it follows that
fo— 0 in L'(Q).
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Passing to a subsequence if necessary, we can assume that
(2.46) folx) =0 Ve eQ\ B, B;null
On the other hand, by (2.45), we also have that

F, — 0 in LYQ x Q).

So we can assume that, up to a subsequence,

(2.47) Foz,y) >0 V(z,y) € QxQ\C, C null
Take By C () the null set satisfying
(2.48) for all z € Q\ By, the section C,. of C' is null.

Let 1 € B(x1,0) \ (B U By); then there exists a subsequence such that, in the
same notation,

Un(Z1) = A € [—00, +00].

Consider now zs € B(x9,d) \ (B U Bsy); then, up to a subsequence, we can assume
that

Up(T2) — Ay € [—00, 3.

So, successively, for z,, € B(x,,0) \ (B1 U By), there exists a subsequence, again
denoted the same way, such that

Un(T) — A € [—00, +00.
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By (2.47) and (2.48),
un(y) = N Yy € (B(x;,r)NQ)\ Ci.
Now, by (2.44),

Q= (B(@,r)NQ)U (U(B(:i:z-, r) N Q)) .
i=2
Hence, since €2 is a bounded domain, there exists i € {2, ..., m} such that

(B(z1,7) N Q)N (B(Zi,,7) N Q) £ 0.

Therefore, Ay = \;,. Let us call ¢; := 1. Again, since

Q= ((B(zi,r) N Q) U ((B(z,r) N Q) U U (B(z;,m)NQ) |,
ie{l,...m\{i1,io}
there exists i3 € {1,...,m} \ {i1, 42} such that

(B, 1) Q) U (Bl ) N Q) N (Blaig, 1) 1) £ 0.
Consequently, A;; = A, = Aj;. And using the same argument we get
M=X=-=)\, = A\
If [A\| = 400, we have shown that

U, (y)|? — 4o for almost every y € €,



which contradicts ||uy || req) = 1 for all n € N. Hence A is finite.
On the other hand, by (2.46), f,(z;) — 0,7 =1,...,m. Hence,
Fo(21,-) = 0 in LY(2).
Since u, (1) — A, from the above we conclude that
U, = A in LY B(z;,r)NQ).

Using again a compactness argument we get

u, — A in LY(€2).
By (2.4), A =0, so

u, — 0 in LI()),
which contradicts ||uy || ) = 1. ]






THEME 3

Some applications

3.1. A nonlocal version of the Aronsson-Evans-Wu model for
sandpiles

The continuous models for the dynamics of a sandpile introduced by G. Aronsson,
L. C. Evans and Y. Wu in [15] (see also (|53]) is a model in the form of a variational
inequality based on the requirement that the slope of sandpile is at most one.

However, a “more realistic model” would require the slope constraint only on a
larger scale. This is grosso modo the case for the nonlocal model presented here.

This nonlocal model is the counterpart of the local Aronsson-Evans-Wu model
obtained as the limit as p — oo of Cauchy problems for the p—Laplacian evolution.

By reescaling, the local sandpile model can be recovered from the nonlocal one.

3.1
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3.1.1. The Aronsson-Evans-Wu model for sandpiles.

Assume that ug (the initial state of the sandpile) is a Lipschitz function with com-
pact support such that
Vgl < 1,
and f (the source of sand) is a smooth nonnegative function with compact support
in RY x (0,T). Set vo(x,t) to describe the amount of the sand at the point z at
time ¢, the main assumption being that the sandpile is stable when the slope is less
than or equal to one and unstable if not. This model states that v, satisfies

3) {f(wt) (Vo )i(-,t) € OFoc(vos(+, 1)) e t € (0,7,
Voo (T, 0) = up(x) in RY

where Fofo) = { 0 if v e l:ﬂ(RN) NWE(RY), V| <1,

+o0o  otherwise
that is,
{ f(,t) = (Voo )i+, 1) € Ol (voo(+, )  ae. t € (0,7,

Voo (T, 0) = up(x) in RY,

where

Ko :={ue L*RY)nW"*RY) : |Vu| <1}.
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Problem (3.1) is obtained by taking limits, as p — 00, to
(Upe = Dpup = f InRY x (0, T),
vy(2,0) = up(x) in RY,

where f is adding material to an evolving system, where mass particles are continually
rearranged by the p—Laplacian diffusion.

(3.2)

Let us define for 1 < p < oo the functional
1
— Vo(y)|Pd if ve L2RY)NWHP(RY),
YR -3 M\ COIR (®RY) (R
+00 if ve L2 (RY)\ WHP(RY).
The PDE problem (3.2) is the abstract Cauchy problem associated to OF):
f( 1) — (vp)(-,t) € OF,(vy(-,t)) ae te (0,T),
vp(2,0) = up(x) in RY.
They prove the existence of a sequence p; — 400 and a limit function v, such
that, for each 17" > 0,

Vp, — Voo in LA (RN x (0,7)) and a.e.,

Vo, = Vs, (0,)i = (ao)r  weakly in L*(RY x (0, 7)),
and v, satisfies (3.1).
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3.1.2. Limit as p — oo in a nonlocal p—Laplacian Cauchy problem.

Let J:RY - R be a nonnegative continuous radial function with support B(0, 1),
J(0) > 0 and [pn J(z)dz = 1.

In [11] we study the existence and uniqueness of solutions of the following nonlocal
p—Laplacian Cauchy problem

(3.3)
(what) = [ T = Dl t) = e, O (o) — uylo. O)dy + £(z,0)
X reRYN t>0,
u,(0) = ug € LP(RY) N L*(RY).

\

If we set

1 p
=g [ [ e luty) - )P dy .

then problem (3.3) is the abstract Cauchy problem associated to G

FO.1) = (uph(,1) € 0G, (uy(+, 1)) ae. t€(0,T),

uy(x,0) = up(z) in RY.
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Formally, taking limits to

1 p
Giw =g [ | Ja=yluly) - ula) dyds,

we get the functional

0 if |u(z)—uly) <1, for |z —y| <1,
Goolu) =

+o0o  otherwise,

that can be seen as the indicatrice of

Ky :={ue L*R"Y) : |u(@)—uly)| <1lfor |z —y| <1}.
Then the nonlocal limit problem should be

f( ) — (-, t) € Ol (u(-,t)) ae te(0,7T),
(3.4)
u(x,0) = up(x).
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LEMMA 3.1. Given u € L*(Q) such that
{(z,y) € x Qs ulx) —u(y)| > 1, |z —y[ <1}
is a null set of Q) x (2, there exists u € K4,()) such that w =1 a.e. in €.
THEOREM 3.2. Let T > 0, f € L2(0,T: LARY) N Lo(R)), uy € L*(RY) N
L®(RY) such that |ug(x) — ug(y)| < 1 for |z —y| < 1, and let u, be the unique
solution of (3.3), p > 2. Then,

lim sup |lu,(-,¢) — u%<'7t>|‘L2(RN) =0,
P30 te[0,T]

where Uy, is the unique solution of (3.4).

PROOF. To prove the result it is enough to show that the functionals
1
Gl =y [ [ I yluly) - @) dy do
D JRN JRN

converge to
0 if |u(z)—u(y)| <1 for |z —y| <1,
G () = \(.) ()] [z —y|
+o0o  otherwise,

as p — o0, in the sense of Mosco.
First, let us check that

(3.5) Epi(GL,) C s-liminf Epi(G3).

pP—00



J. JULIAN TOLEDO 3.7

To this end let (u, ) € Epi(GL.). We can assume that v € K; and A > 0 (since
Gl (u) = 0). Now for R(p) > 0 take

Up = UXB(0,R(p)) and )\p = G;(Up> + A

Then, as A > 0, we have (vp, A,) € Epi(G;). It is obvious that if R(p) — +oo as
p — +00, we have
v, = u in L*R"Y),

and, if we choose R(p) =

) = piv
Gl =5 [ [Tl — o)l dyds < T2
<

— 0
%

as p — 00, and (3.5) holds.
Finally, let us prove that

w-limsup Epi(G;) C Epi(GL,).

P—00
To this end, consider a sequence (uy;, Ap;) € Epi(G]{j) (pj — 00), that is,
GJ (up]) )\pj7
with u,, — wand A, — A. Therefore we obtain that 0 < A\, since
J
0< Gpj(upj) <Ay, = A
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On the other hand, we have that

(/RN /RN J(x—y) }Upj(y) — upj(x)}pj dy da:) " < <ij>1/pj.

Now, fix a bounded domain 2 C RY and ¢ < p;. Then, by the above inequality,

(/ﬂ /ﬂ T (x = y) [uy;(y) =y, (2)|" dy dx> )
< </Q /Q J(z —y) dy dg;) (pj—a)/pja (/RN /]RN T (2 —y) [, (y) — up, ()" dy dx) 1/p;

(pj—q)/pjq
< (//J(:U—y) dydw) (Cpjy)'/7i.
QJ0

Hence, we can extract a subsequence, if necessary, and consider p; — oo to obtain

</Q/QJ<”“” ¥ luly) —u(@)[" dy dw) e (/Q [I6@=v dydx) "

Now, just letting ¢ — oo, we get
lu(z) —u(y)] <1 ae (z,y) € Q2 xQ, x—y €supp(J).
As () was arbitrary, we can conclude that
u € K;. []



3.1.3. A nonlocal sandpile problem.
For € > 0 we rescale the functional G as follows:
{ 0 if |u(z)—uly)| <e, for|z—y| <e,
Goo(u) = |
+00 otherwise.
In other words, G = I, where
K. ={ue L*RY) : |u(z) —uly)| <e, for |z —y| <el.
Consider the gradient flow associated to the functional G¢_ with a source term f
f( 1) —ue(-,t) € Olg (u(-,t)) ae te(0,T),
(36) { u(z,0) = ug(x) in RY,

and the problem
{ J 1) — (Voo)t(+, 1) € Ol (Voo(+5 1)) a.e. t € (0,7),

(37) Voo, 0) = up(x) in RY,

where
Ko = {ue L’ RY)nW"*RY) : |Vu| <1}.

Observe that if u € Ky, then |Vu| < 1. Hence, |u(x) — u(y)| < | — y|, and then
u € K.. That is, Ky C K.. We have the following theorem.
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THEOREM 3.3. Let T > 0, f € L*(0,T; L*(RY)), ug € L*RY) n WL=(RY)
such that ||Vuglleo < 1 and consider us o the unique solution of (3.6). Then, if
Uso 1S the unique solution of (3.7), we have

lim sup Huoo,é‘('v t) - voo('a t)HLQ(]RN) = 0.
e=04el0,7]

Consequently, we are approximating the sandpile model described in Subsection 3.1.1
by a nonlocal model.

In this nonlocal approximation a configuration of sand is stable when its height
satisfies |u(x) —u(y)| < eif |z —y| <e.

This is a sort of measure of how large is the size of irregularities of the sand; the sand
can be completely irregular for sizes smaller than € but it has to be arranged for sizes
greater than €.

The nonlocal version of the Aronsson-Evans-Wu model for sandpiles has been char-
acterized by N. Ighida in [39], where, moreover, the connection with the stochastic
process introduced in [36] is shown, see also [38].

For a model under homogeneous Dirichet boundary condtions see [12].
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PROOF OF THEOREM 3.3. Since ug € Ky, we have that uy € K, for all € > 0,
and consequently the existence of u . is guaranteed.

By Theorem 1.13, to prove the result it is enough to show that Ik, converges to I,
in the sense of Mosco. It is easy to see that

(3.8) K. C K., if ¢ <eo.
Since Ky C K. for all e > 0, we have
Ky C ﬂ K..
e>0

On the other hand, if

uEﬂKS,

>0
we have

u(y) —u(@)| < |y — =], ae z,yeRY,
from which it follows that u € K. Therefore,
(3.9) Ko=) K-

e>0

Note that
(3.10) Epi(]IKO) = Ky x [0,00), Epi(lg.) = K. x[0,00) Ve > 0.
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By (3.9) and (3.10), we obtain
Epi(Ig,) C s-lim Oinf Epi(Ig.).
E—r

On the other hand, given (u,A) € w-limsup,_,,Epi(lx.) there exists (u., , Ax) €
K., x [0,00) such that e, — 0 and

—u in LARY), A\ — A inR
By (3.8), given € > 0, there exists ko, such that u., € K. for all £ > ky. Then, since

K. is a closed convex set, we get u € K., and, by (3.9), we obtain that u € K.
Consequently;,

Ue

w-lim sup Epi(Ix_) C Epi(Ig,).

e—0
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3.2. A Monge-Kantorovich mass transport problem for a discrete
distance

3.2.1. A mass transport interpretation of the sandpile model.

The Monge mass transport problem, as proposed by Monge in 1781, deals with
the optimal way of moving points from one mass distribution to another so that a
total work done is minimized. In the classical Monge problem the cost function used
to define the work for transport one unit of mass from a point x to a point y is
the Euclidean distance d.(z,y), and this problem has been intensively studied and
generalized in different directions that correspond to different classes of cost functions,
specially convex cost functions.

Here we deal with a cost that lacks of convexity. The purpose is to transport an
amount of sand located somewhere to a hole at other place taking into account the
number of steps needed to move each part of sand to its final destination, and trying
to do it making as less as possible steps, that is, we will define the work using:

(0 if 2= v,
1 it O<|xz—y|l <1,
W@y =92 it 1< Ix—z} <9,

that count the number of steps.
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Monge problem.

Given two measures (for simplicity, take them absolutely continuous with respect
to Lebesgue measure in RY) f,, f_ in RY, and supposing the overall condition of

mass balance
Fode = / Fdy,
RN RN

the Monge problem associated to a distance d is given by

minimize / A, s(x)) [, (x)da
among the set of maps s that transport f, into f_, that is, among s such that
[ stonsiards = [ wi)f-w)dy
RN RN
for each continuous function h : RY — R.

In general, the Monge problem is ill-posed. In 1942, L. V. Kantorovich ([44])
proposed to study a relaxed version of the Monge problem and, what is more relevant
here, introduced a dual variational principle:
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Monge—Kantorovich problem.

Let #(fT, f7) the set of transport plans between f* and f~, that is the set of non-
negative Radon measures y in € x € such that proj,(u) = f*(x) dx and proj, (i) =
f~(y)dy. The Monge-Kantorovich problem looks for a measure (optimal transport
plan) p* € 7(f*, f~) which minimizes the cost functional

Kalys) = /Q oy dula.g).

in the set =(f™, f7).
In general, inf{/Cq(pt) : pw € n(f, f)} <inf{FyT): T € A(f*, f)}.
On the other hand, if d is a lower semicontinuous cost function, we have existence of

an optimal transport plan p* € «(f*, f7) solving the Monge-Kantorovich problem,
and we have following dual formulation of this minimization problem:

(311)  min{Ka(w): pe(ft, )} = max / () (foe) — (),

uGKd
where

Kq(Q) == {u e L*(Q) : |u(z) —uly)] <d(z,y) forall z,y € Q}.

The maximizers u* of the right-hand side of (3.11) are called Kantorovich poten-
tials.
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For Il () the indicator function of K;(€2) we have that the Euler-Lagrange equation
associated with the variational problem

sup { P+ p-(u) : u € Kq(Q)}
is the equation

(3.12) fr—f €0lg,au).
That is, the Kantorovich potentials of (3.11) are solutions of (3.12).
For the distance dy, Ky, is given by

Ky = {ue L*RY) : |u(z) —u(y)| < 1for |z —y| <1},

thast is just K7 given in the nonlocal model for sandpiles studied above.

So we can interprete that nonlocal model for sandpiles using these new terminology
(as for the local problem). Remember that the height u of the sandpile evolves
following

{ f(t,-) —wlt, ) € Ok, (u(t,-)) ae te(0,T),
u(x,0) = ug(x),

where f is a source. Then, at each moment of time ¢, the height function wu(¢,-) of
the sandpile is deemed also to be the potential generating the Monge-Kantorovich
reallocation of f(t,-) to w(t,-) when the cost distance considered is dj.
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The Evans and Gangbo approach.
For the Euclidean distance d, Evans and Gangbo ([34]) found a solution of

(3.13) FHo e Ol o)
as a limit, as p — o0, of solutions to the following local p—Laplacian problem with
Dirichlet boundary conditions in a sufficiently large ball B(0):

{ Apup = f7— f~ Br(0),
Uy = O 833(0)

Moreover, they characterized the solutions to (3.13) by means of a PDE:

THEOREM 3.4. (Evans-Gangbo Theorem). There exists u* € Lip,(£2,d,)
such that

[ @@ @) de = max{ [ )7 @) - £ @) dos ueLip@d |
and there exists 0 < a € L>(Q)) such that

(3.14) fm—f~=—=div(aVu*) in D'(Q).
Furthermore |Vu*| =1 a.e. on the set {a > 0}.

The function a that appear in the previous result is the Lagrange multiplier corre-
sponding to the constraint |Vu*| < 1; it is called the transport density.
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Moreover, Evans and Gangbo use this PDE to find a proof of existence of an
optimal transport map for the classical Monge problem, different to the first one
given by Sudakov in 1979 by means of probability methods.

Our main aim is to perform such program for the discrete distance, but now the
potentials cannot be characterized with standard differentiation. We give an Euler-
Lagrange equation for the Kantorovich potentials obtained as a limit of nonlocal
p—Laplacian problems. In [40] we show how this result allows to construct optimal
transport plans .

3.2.2. A nomnlocal version of the Evans-Gangbo approach to optimal
mass transport.

Let J : RY — R be a non-negative continuous radial function with supp(J) =
B1(0), J(0) >0 and [pv J(z)dz =1.

PROPOSITION 3.5 ([40]). Let f € L*(Q)) and p > 2. Then the functional

Fy(u Qp// v — y)luly) — ulz |pdyda:—/f

has a unique minimizer u, in S, = {u € LP(Q) : [ u(z)dz =0}.
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THEOREM 3.6. Let fT, f~ € L*(Q) be two non-negative Borel functions satis-
Jying the mass balance condition. Let u, be the minimizer in Proposition 3.5 for
f=f"—f",p>2 Then, there exists a subsequence {u,, }nen having as weak
limit a Kantorovich potential u for f* and the metric cost function d;, that is,

/ u(@)(f*(2) — f(2)) dz = max / o(@)(fH(x) — f(2)) d.
Q Q

ve Ky
PROOF. For ¢ > 1, we set

lullly = (/Q/QJ@??J)U(y)U(@qufvdy)é-

By Holder’s inequality, for r > ¢

], < (/Q/Qm—ynu(y)—u<x>fdxdy)% (/Q/Qﬂx—wdxdy)r’”q,

that is,

»
rq
(3.15) mumqs|||u|||r(/Q/QJ<x—y>dxdy) for (r,q), 7 > ¢

Using that Fj,(u,) < F,(0) = 0 and the Poincaré’s inequality (2.26).2 we get

2p||f”2
lluyl[5 < 2 / f(@)un(z) do < 20| fallupll2 < Gl
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Then, for 2 < ¢ < p, using (3.15) twice (for (p, q) and for (g,2)),

I <wupmp(// r—y dxdy)
9 s
(fﬁ”fl”;m p||\2<// vy dxdy)

pP—q
_ 20051 )T
( 1/2“‘ pmq CIZ’— Lray :
Consequently,

3.16 Hlupmqs(fﬁ[fh) (/ / ry dxdy) |

Then, {|||upyl|l; : p > ¢} is bounded. Hence, by Poincaré’s inequality (2.26).2, we
have that {u, : p > ¢} is bounded in L9(€2). Therefore, we can assume that u, — u
weakly in L4(€)). By a diagonal process, we have that there is a sequence p, — o0,
such that u,, — u weakly in L™(f2), as n — +oo, for all m € N. Thus, u € L*(12).
Since the functional v +|||v]||, is weakly lower semi-continuous, having in mind

(3.16), we have
1
q
llll, < (//J<x—y>dxdy)
QJO
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Therefore, lim, o0 |||u|||; < 1, from where it follows that |u(z) — u(y)| < di(z,y)
a.e. in €2 x €2. Now, thanks to Lemma 3.1 we can suppose, that u € Kg,(€2).

Let us now see that u is a Kantorovich potential associated with the metric d;. Fix
v € Kg,(£2). Then,

/fup<—// 2 — )y (y) — ()| dady — /f )uy(x) dr = F(u,)
SFp(v—@ ) Qp// r—y)|lv(y) —v(x)Pdedy — /f
1 [ v

where we have used [, f = 0 for the second equality and the fact that v € Ky (Q)
for the last inequality. Hence, taking limit as p — oo, we obtain that

/ u(@)(f* (@) — f(2)) do > / o(@)(f* (@) — () de. =
Q

Q

We will now characterize the FEuler-Lagrange equation associated with the varia-
tional problem sup {Pf+,f—(u) LU € Kdl(Q)}, that is, we characterize f* — f~ €
a]lel(Q) (’LL)
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Let M (€2 x Q) be the set of bounded antisymmetric Radon measures in €2 x €.
And define the multivalued operator By in L*(€2) as follows: (u,v) € By if and only
if u e Ky, ve L), and there exists ¢ € MY(Q x Q) such that

oc=oc{(r,y) € QA xQ : |[x—y| <1},

/ £(z) do(a, y) = / @) ds,  VEe Q)
Ox 0
and

o[(Q2 x Q) < 2/ v(x)u(x)dx.

Q

THEOREM 3.7. The following characterization holds: (9]1Kd1(g) = bBj.

PROOF. Let us first see that By C 9lg, (). Let (u,v) € By, to see that (u,v) €
Ol 4, (Q) We need to prove that

0 < /Qv(a:)(u(a:) —&(x))dx VE e Kg ().
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By approximation we can assume that £ € Kg,(£2) is continuous. Then,

| va@)ut@) = @) do = Sol@x ) — [ v(@ita)do

Q
Q<)
— sl x ) =3 [ (¢@) — ) doay) 20,

where in the last equality we have used the antisymmetry of o. Therefore, we have
B, C 8]1Kd1(9). Since aHKdl(Q) is a maximal monotone operator, to see that the

operators are equal we only need to show that for every f € L?(Q) there exists
u € Ky,(€2) such that

u+ Bi(u) > f.

Given p > N and f € L*(Q), there exists a unique solution u, € L>(Q) of the
nonlocal p-Laplacian problem

(3.17)

() — / Iz — 1) luply) — up(z)

’p—Q (up(y) — up(z)) dy = T)(f) () Va e
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where Ti(r) .= max{min{k,r}, —r}. We get u € K;,()) such that
(3.18) u, —u in L*(Q) as p — +oo,

with u + 8I[Kd1(g)(u) ) f
Observe that

/Q(f(:c) —u(x))(w(x) —u(z))de <0 Vw e Kj,

and consequently u = Py dl(Q)( f).
Multiplying (3.17) by w, and integrating, we get

1

(3.19) / (T()(w) = () () d = / Tl =)y ly) — uy(z)P dody,

from where it follows that

3200 [ T =) wl) — wl@l dedy+ [ Ju0)P de <17,
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If we set 0,(z,y) = J(x =) |up(y) — uy(z)|P > (u,(y) — uy(z)), by Hélder’s inequal-
1y,

| ey = [ =) o) — )P dudy
QxQ

Qx)
p

< (/ng J(x —y) lup(y) — up()|” dﬂfdy) (/QXQ J(z —y) dwdyy
= (/M J(@ = y) lup(y) — wp(@)]" dfﬂd?J) _

N
Now, by (3.20), we have

S

p—1
| loteldedy < (171Bxe) ”
Qx
Hence, {0, : p > 2} is bounded in L'(2 x ), and consequently we can assume that
(3.21) op(.,.) = o weakly” in My(Q2 x Q).

Obviously, since each o, is antisymmetric, o € M?(€) x €2). And, moreover, since
supp(J) = B1(0), we have 0 = o {(x,y) € O x Q : |z —y| < 1}
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On the other hand, given £ € C.(€2), by (3.17), (3.18) and (3.21), we get
(r)do(z,y) = lim {(z)oy(z,y) dz dy

Ox0 p—=1+00 JOxQ

= lim / T(x =) lup(y) — up(@)|" (uy(y) — uy(2))€ (@) do dy

pP——+00 Ox0

- Ma/kmumw—mmmammw:/um»—wwﬁmww

Then, to finish, we only need to show that |o|(Q2 x Q) <2 [, (f(z) — u(z))u(z) dx.
In fact, by (3.21), we have

pP—+00

01(Q % Q) < hm1nf//|ap(:c,y)]dazdy.
Q
Now, by (3.19),

[ oldsdy < ([ st
QxS QxS

p—1
p

|<w—%@wmw)

v)

:(;mew@—%mw% d%) zg(émﬂwﬂ_wwwﬁﬂda%l
herefore
T 0](Q x Q) < Q/Q(f(x) — u(z))u(z) dz. -
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As consequence of the above result, we have that u* € Ky (€2) is a Kantorovich
potential for dy, f*, f~, if and only if

7= f € B(u").
that is, if u* € K and there exists 0* € M?(€ x ), such that
(o] =10 {(wy) €A x Qs w(a) —ui(y) = 1, o -yl < 1},

o]” = o] d(@,y) € @ xQ - uy) —u(z) =1, |z —y[ <1},

E(a)do* (2. y) /5 J(f* (@) — (@) de Ve € Cu(Q),
Ox)

and

51710 % 0) = [ (7(@) = £ () da

We want to highlight that the above equations plays the role of (3.14). Moreover,
the potential u] and the measure o] encode all the information that is needed to
construct an optimal transport plan associated with the problem (see [40]).
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Of course all these developments can be done in the same way for the discrete
distance with steps of size ¢,

fO lfﬂf:y,
e fo<|z—y|<e
(2, Y) =\ o0 i o < [z —y| < 2,

\

In [40] we give the connection between the Monge-Kantorovich problem with the dis-
crete distance d. and the classical Monge-Kantorovich problem with the Euclidean dis-
tance, proving that, when the length of the step tends to zero, these discrete/nonlocal
problems give an approximation to the classical one; in particular, we recover the
PDE formulation given by Evans-Gangbo.
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3.3. From the Dirichlet problem for the nonlocal p—Laplacian to ...
Let J : RY — R be a nonnegative continuous radial function with compact support,

J(0) > 0 and [pn J(z)dz = 1.

THEOREM 3.8. Given ¢ € L>®(Q2;\ Q)and p > 1, there exists a solution to the
homogeneous nonlocal p-Laplacian Dirichlet problem:
(3.22)

_/Q T(x = y)|(up)p(y) — up(@) " ((wp)y(y) — wp(x))dy =0, x € Q,
up;éb) CUEQJ\Q.

PROOF. Let us consider the functional

Fplu) = %/QJ /QJ J(x — y)|uy(y) — uy(x)|Pdyde, w e LP(S2).

Set

0 .= inf
uelLI}o(Q) Folu),

and let {u,} be a minimizing sequence. Then,

0 = lim F,(u,) and K :=supFy(u,) < +00.
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The Poincarév inequality 2.26.1 yields

A w@p s [ @i -w@pdds [

= 2pF,(uy) + /

QN0

W@W@§%K+/ ()| dy.

0N\

Therefore, we obtain that
/ [ ()P de < C Vn €N,
0

Hence, up to a subsequence, we have

U, = u, in LP(Q).

3.31

[W(y)|F dy

Furthermore, using the weak lower semi-continuity of the functional F,, we get

Fp(up) = uEiL%f(Q) fp(“)-

Thus, given A > 0 and w € LP()) (we extend it to €27 \ Q by zero), we have

Fp(up + A\w) — fp(%)
A b

0 <
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or equivalently,

oz%léléﬂwﬂgPWN“w+AWwD—“%N@”;§%@”V—“%N@V—WNM@VC@m;

Now, since p > 1, we pass to the limit as A | 0 to deduce
0<5 [ I = pllw)ls) = @)@l wm)ulw) — )o@)(w)ly) - (w)o()dyds
Q;Ja;

Taking A < 0 and proceeding as above we obtain the reverse inequality. Consequently,
we conclude that

0=5 [, T Dl — )o@ )ols) = ()o@ (w)s(3) ~ () (@)

== [ o= pl)ls) = @ @P(w)ol) = ()l dy(w) (@)

In particular, since w = 0 in €2 \ €, it follows that

0= / / T — )| () o(y) — )P 2((ap)oly) — wupl)dyw(x)d,

which shows that w, is a solution of (3.22). []

Moreover, for u,, the solution to (3.22) for ¢ € L*>(€Q; \ €2), we have that
uplloo < {[¢h]]oc-



3.3.1. (p = +) A best Lipschitz extension problem for a discrete
distance.

3.3.1.1. From the Dirichlet nonlocal problem to a discrete infinity Laplace prob-
lem. Let Q. :=Q+ B-(0), v € LP(21 \ ) and

B (w)a) == [ T = y)luly) = ula) P Huty) = o)) dy
[ L= plety) -~ ule)l () - @)y, x €
0\Q

We have:
e There exists a unique u; € LP(2) such that
Je 3
B (u,) = 0.

o u, — u. € L>(Q) strongly in any L/(Q) as p — +o0.
® (u:)y = usxa + fXxa.\q is the unique solution of

A u=0 1in €,

U =1 on §2.\ €,

where AZ u(x) = sup,cp. () wy) + Inf,cp ) w(y) — 2u(z) is the discrete infinity
Laplace operator. This is in fact the value function of a TUG-OF-WAR game.
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TUG-OF-WAR GAME.

e There are two players moving a token inside {).. The token is placed at an initial
position xy € ().

o At the kth stage of the game, player I and player II select points vl and z!!
respectively, both belonging to B(xp_1,¢).

e The token is then moved to x;, where xy is chosen randomly between Zlfé or xil

with equal probability.
o After the kth stage of the game, if ;. € () then the game continues to stage k+ 1.

e Otherwise, if z; € .\ 2, the game ends and player II pays player I the amount
Y (xy), where ¢ : €.\ Q — R is the final payoff function of the game.

Dynamic Programming Principle. The value of the game is the minimum (max.)
amount that player I (II) expects to win (lose):

1
sup u:(y) + = inf u(y).

1
us(x) = =
@) 2 yeB. () 2 yeB-(x)
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Peres, Schramm, Sheffield and Wilson ([50]) prove that

lim u. = h,
e—0

where h is the absolutely minimizing Lispchitz extension (AMLE) of 9 to €2,
that is (G. Aronsson [14]):
o hgg =1 and Ly(h,Q) = Ly(¢,0) (h is a minimal Lipschitz extension),
e for every open set D CC (),
Lq(h, D) < Lq(v, D)~ Yv: hpp = vjop,
where L, stands for the Lipschitz constant respect to d.

To obtain this AMLE extension of a datum f, Aronsson proposed to take the limit
as p — o0 1n
{ —Ayu, =0 1in €,
Uy = P on 0.
That is, to obtain (Bhattacharya, DiBenedetto and Manfredi [21]) the unique (Jensen [42])
viscosity solution to

U = P on 0f),

Uy, Uy Uy, is the infinity Laplace operator.

{ —Asollae =0 1n €2,

where Ayou == 30

i,j=1

Is (uz)y the best Lipschitz extension with respect to some distance?
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The distance to be considered is the discrete distance

(0 if =y,
Je it 0<|z—y| e
d=(x,y) = 4 2¢ it e < |x —y| < 2e,

|

We see that (u.), is the best Lipschitz extension to €2 of the function v, defined
on the strip €. \ €2, w.r.t. this distance, but not in the usual sense.

Given u : 2. = R and D C €2, we define

L5<U, D) - Sup |U<ZC> B U<y>|
reD,ye D, 3
-yl <e
(D convex) — sup ‘u<x> _ u<y>| > Ld8<u, D)

r€D,yeD:, x#Y dg(CC, y) N
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3.3.1.2. e—Absolutely minimizing Lispchitz extensions.

DEFINITION 3.9. Let 1 defined on €.\ €2. A function h : . — R is an AMLE.
of ¥ to €. if

(i) h = in Q. \ Q,
(ii) V D € X and v such that v = h in Q. \ D, then L.(h, D) < L.(v, D).
For convex €2, h € AMLE. (¢, Q) iff

(1) b € MLEq. (¢, €2),
(ii) V D C X and v such that v = h in Q. \ D, then L.(h, D) < L.(v, D).

THEOREM 3.10. Let 1 : Q. \ 2 — R be bounded. Then, u is a solution of
(3.23) A u=0 i
' U =1 on €\ €,

of and only if

u: . — R s AMLE. (¥, Q).

PROOF. Without loss of generality we will take € = 1 along the proof. Let us first
take u a solution of (3.23) and suppose that u is not AMLE;(f,€2). Then, there exists
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D cCQandwv:Q — R v=uwiny\ D, such that Li(v,D) < Ly(u, D). Set
0 = Li(u,D) — Li(v,D) > 0, and let n € N, n > 3, such that

(3.24) Sup u — i%fu < (n—1)Li(u, D).
D
Take (zg,y0) € D X 1, |xg — yo| < 1, such that
§
Lyi(u, D) — - < |u(zo) — ulyo)| < Li(u, D).

We have that Al u(zg) = 0 and Al u(yy) = 0 if yo € Q. Let us suppose that
u(yo) > u(xg) (the other case being similar), which implies

0
(3.25) Li(u, D) — - < u(yy) — u(zg) < Li(u, D).
If yo & D, set y; = 1yo. If yo € D, since AL u(yy) = 0 and zy € By(yy), we have
. 0
sup - u(y) —ulyo) = u(yo) — Inf wu(y) = u(yo) —ulzo) = Li(u, D) — —.
y€B1(yo) y€B1(yo) n

Hence, there exists 1, € B(yp) such that

) = uly) 2 Ln(w, D) = =
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Also, since Al u(zg) = 0, we have

0
w(eo)— inf u(w)= swp ulz)—u(sy) > ulw) — u(ze) > Li(w, D)~ 2,
reB1(z0) xEFl(xO) n

and consequently, there exists z; € Bi(xg) such that

(SI]Q> — ’LL<331> > Ll(u D) — %

Following this construction, and with the rule that in the case x; ¢ D or y; ¢ D,
then z; = x; or y; = y; for all ¢ > j, we claim that there exists m < n for
which z,, ¢ D and y,, ¢ D. In fact, if not, then either {x;};—; _,, C D, either
{yz}z 1,.n C D with {xz}z 1,....n and {yi}izl ..... n satisfying

20 — .
u<y2> — U(?Jz— ) > Ll(“’? D> o za Yi € Bl(?/i—l)) L= 17 sy T

20 —
<326> ’U,(JJZ> — u(azz 1) > L1<’LL D) - —, I € Bl<£132'_1>, 1=1,...,n.
n
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Let us suppose the first of these two possibilities, that is, {z;}i=1.., C D. Then,

having in mind (3.24), (3.25) and (3.26), we get
(n = 1)La(u, D) = u(yo) — u(an)
= u(yo) — u(xo) + ulxg) — u(wy) + - +ulzy_1) — ulzy)
> Li(u, D) — 2+ (n+1)(Ly(u, D) — 2),

from where it follows that

.....

2n + 3

n
which is a contradiction since n > 3. Now, for {z;, y; }i=1

0 > 3L1(u, D) > 35,

m, We have

.....

() = 0Gen) = () = u(e) = 2m (Lafu. D) = ) 4 L, D) =

V(Ym) —v(zy) < (2m +1)L1(v, D),
and therefore,

0
2m+1)Li(u, D) — (dm +1)— < (2m + 1)Ly (v, D),

n

that is A »

m +
0=ILi(u,D)— Li(v,D) < —
1w, D) 1(v, D) < 2m + 1n’
which implies n < 224 < 9 which is a contradiction since n > 3.

2m+1
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Let us now consider u an AMLE;(f,§2) and suppose that u is not a solution of
(3.23). Then, {x € Q: ALl u(z) # 0} # 0. Let us suppose without loss of generality,
that,

{:1: € Q : sup u(y) —u(r)>ulr)— inf u(y)} +£ ().

yeB] () y€B1 ()
Then, there exists 4 > 0 and a nonempty set D C €2 such that

(3.27) sup u(y) —u(z) >u(x) — inf wu(ly)+0 foralxe D.
yeB(z) yEeB1(z)

Consider the function v : {31 — R defined by

u(x) if €\ D,
U<$):{u(az)+% ifxeD.

Then, since u is an AMLE;(f,(2), we have Li(u, D) < Li(v, D). Now, there exists
ro € D and yy € Bi(xg) such that

Li(v, D) < Z—l— [v(x0) — v(yo)]-
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Therefore, if v(zg) > v(yo), by (3.27),

) 30
Li(v,D) < 1 +v(zg) — v(yo) < 1 + u(zo) — u(yo)
30 0
< —Fu(xg) — inf wlx)<——4+ sup u(xr)—ulxg) < Li(u, D),
4 r€B1(z0) xEFl(xo)

which is a contradiction, and, if v(xg) < v(yo),
J J
Li(v, D) < 1t v(yo) — vlzo) = -2 v(yo) — ulzo),
o, it 4o ¢ D.
J
Li(v,D) < -3t u(yo) — u(xo) < Li(u, D),
also a contradiction, and if yy € D, since also xy € By(yo), by (3.27),

) 0 .
Li(v, D) < =+ u(yo) — u(xg) < — +ulyo) — inf u(y)
4 4 y€B1(yo)

30
< ——+ sup uly) —uly) < Li(w, D),

y€B1(yo)
again a contradiction. Then, in any case we arrive to a contradiction and consequently
u is a solution of (3.23). ]



3.3.2. (p — 1") Median values and least gradient functions.

It is a well known fact that solutions to some partial differential equations are
related to mean value properties. As a classical example we have that u is harmonic
in a domain  C RY (that is, u verifies Au = 0 in ) if and only if it verifies the
mean value property

u(x) y) dy,
!B )5
for all € > 0 such that B.(x) C ; if and only 1f
1

u(z) = u(y) dy +o(e*), ase — 0.

|B-(x)] Jp.(a)
In [37], solutions to

Du
3.28 Yu = |Duldiv =0
3.25) fu = [Duldiv (o)
are characterized, in dimension 2, in terms of another asymptotic geometric property.
It is proved that
2
. £
u(r) — mediangegp, (nyu(s) = —gﬁfu(a?) + o(e?):;
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here, the median of a continuous function over a measurable set A,
mediange au(s) = m,

is defined as the unique value m such that, for p the 1-dimensional Hausdorftf measure,

pw{r e A:ulx) >m}) > @ and pu({r € A:ulx)<m}) > @

Uniqueness of the value m holds for continuous functions.

On the other hand, in [46] it is proved that the Dirichlet problem for the 1-Laplacian
operator

D
_div(\DZ|) =0, in €2,
u=h, on 0f),

has a solution u € BV(Q) for every h € L'(09). The relaxed energy functional

associated to problem (3.29) is the functional @y : L%(Q) — (—00, +00] defined
by

(3.29)

/ﬂpm+- w— Bl dHY! ifu e BV(Q),
’LL) — Q ox)

+00 if u € L¥1(Q)\ BV(Q).
And these solutions are characterized as the functions of least gradient that appear
in the theory of parametric minimal surfaces.

(3.30) Dyl
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Vu
[Vul
when the gradient vanishes. These difficulties were tackled in |2] (see also [46]) by

means of a bounded vector field z which plays the role of ulg—u“‘. Moreover there are

This problem is quite different from (3.28) since it involves giving a meaning to

extra difficulties for the Dirichlet boundary condition, which has to be considered in
a weak sense.

Our aim here is to study solutions to the nonlocal 1-Laplacian with Dirichlet
boundary condition :

(- oy ely) —ul@)
Lﬂ‘ agly) —a( ¥ =" 7€

u(z) = (), x e\ Q,

(3.31) <

and to relate them with a nonlocal median value property and with a kind of
nonlocal least gradient functions. Hereafter, Q C RY is a bounded and smooth
domain. And J : RV — R is a continuous nonnegative radial function, compactly

supported in By(0) with J(0) > 0, verifying [,y J(2)dz = 1.
Let us define the following measure of a set £ C By(0):

(B = [ J(e)d
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For f: RY — R a measurable function (not necessarily continuous), we say that
m is a median value of f with respect to u’} (m € medianug f) if

1

wi{y € Bi(0): fly) =m}) = 5 and pj({y € Bi(0) : fly) <m}) > %

We also define a weak solution to (3.31) as follows:

DEFINITION 3.11. Let ¢ € L'(€2;\ Q). We say that u € LY(€) is a weak solution
to (3.31) if there exists g : 27 x 27 — R such that g € L>®(Q; x Q) with ||g]|s < 1,

(3.32)  J(x—y)g(x,y) € J(x —y)sign(uy(y) —up(z)) ae (z,y) € Qs x Qy,
and

(3.33) —/Q J(x—y)g(z,y)dy =0 acx el

We have the following characterization of weak solutions of the nonlocal 1-Laplacian
with Dirichlet boundary condition in terms of a nonlocal median value property.
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THEOREM 3.12. Given ¢ € LY (Q;\ Q), we have that u is a weak solution to

(3.31) with Dirichlet datum v if and only if, u verifies the following nonlocal
median value property:

(3.34) u(z) € medianugwp(x —), x €l

that is, for x € €,

iy € Bl<x> : uw(y) >u(@)}) 2 5 and  p({y € Bile) uyly) < u(x)}) >
where p5(E) = [, J(x —y)dy for E C By(z).

Y

O | —

If we assume in Definition 3.11 that the function ¢ is antisymmetric, we get a
more restrictive concept of solution, which we call variational solution. It can be
characterized as a minimizer of the functional Ty L)) — [0, 400 given by

(3.35) / / (@ = y)lusly) — uplw)| dedy,

This functional J,; is the nonlocal version of the energy functional ®;, defined by (3.30)

Obviously any variational solution is a weak solution for the nonlocal 1-Laplacian,
and the class of variational solutions is strictly smaller than the class of weak solutions.
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EXAMPLE 3.13. Let 2 =] —2,2[x]| —2,2|, and choose J supported in B1(0) and
¢($> =1 Zf$ E]_272[X<]273[U]_37 _2D7 ,QD(ZE) =1 fo = (]273[U]_37 _2[)X]_272[
and Y(x) = 0 otherwise. In this case the constant function u(x) = 0 in 2 is a
weak solution to the nonlocal 1-Laplacian (any constant function between 0 and
1 is also a solution, though any constant function above 1 or below 0 is not).
However, u = 0 1s not a vartational solution by a stmilar argument to the above
one. The function u(x) =1 is a variational solution.

THEOREM 3.14. Let ¢ € LY(Q;\ Q). Then u € LY(Q) is a variational solution
to (3.31) if and only if it is a minimizer of the functional Jy given in (3.35).

Moreover there is a link between nonlocal and local problems:

THEOREM 3.15 ([45]). Let Q be a smooth bounded domain in RY and W €
L®(0Q). Take a function vp € WHHQ;\ Q) N L¥(Q;\ Q) such that ¥|oq = 1.
Assume also J(x) > J(y) if |x| < |y|. Let ue be a variational solution to (3.31)

for J.(x) = €Nl+1J (f) Then, up to a subsequence,

ue —u in LYQ),
being u a solution to (3.29) with h = 1.



J. JULIAN TOLEDO 3.49

3.3.2.1. Existence of variational solutions.

THEOREM 3.16. Given ¢ € L>*(C2; \ Q) there exists a variational solution,
hence a weak solution, to problem (3.31).

PROOF. The previous result ensures that there exists a subsequence p, — 1, de-
noted by p, such that
u, — u weakly in L'(Q)
and
[(up)o(y) = (up)o (@) ((up)(y) = (wp)y(z)) — g(x,y) weakly in L'(Q x ).
The function g is L°°-bounded by 1, satisfies

—/ J(x—y)glx,y)dy=0 aex €,
Qr

and, moreover, it is antisymmetric.
In order to see that
J(x —y)g(z,y) € J(x —y)sign(uy(y) — up(x)) ae(z,y) € QyxQy,

we need to prove that
(3.36)

-/ J / ool y) dy ) = 5. J / o= lu(s) — ()] dyd
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In fact, it holds that

/QJ/QJ z = Y)|(up)y(y) — (up)y(@)[" dydz

/Q /Q :E o up ) (Up)w(fﬂ>|p_2((up)¢(y) — (Up>¢<ilf)) dy(up)w(x)dgj
- / / J(2 — y)|uy(y) — wy(2) [P (uy(y) — wy(z)) dyip(z) da
Q5\Q

Therefore,
(3.37)

im / / - )lugly) — wyfo)? dydo == [ . / o= lg(a,) dyp (o) da

/ / (z —y)g(x,y) dyuy(z) dz.
QyJQ;

Now, for all p € L>()) we have that

/Q /Q (@ = 9)lpu(y) = pu(@)"(pp(y) — pp(x)) dy ((uy)y(x) = py(z)) do
// (2 = )l (up)u(y) = (up)o (@) P2 ((wp)u(y) — (up)o(@))dy((wy) (@) — py(x))de.
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Taking limits as p — 1 and using (3.37) we get

- / / T — y)signg(puly) — pule)) dy (uy(z) — py(a)) da

</ J / T = u)gla ) dy (o) = (@) da

Taking now p = u 4+ Au, A > 0, dividing by A, and letting A — 0, we obtain (3.36),
which finishes the proof. []

3.3.2.2. Characterization of weak solutions using a median value property.
We will use the following notation: given z € {2 we decompose B(x) as

Bi(z) = E* U E* U E}

where
B = {y € Bila) : ugly) > ula)}

BT = {y € Bi(z) s uy(y) < u(z)},
and
Ey ={y € Bi(z) : uy(y) = u(z)}.
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Hence

L= pj(EY) + ui(EY) + pi(Ey),
and therefore

(3.38) —py(Eg) < pi(E) — py(EY) < pi(Eg),
is equivalent to
U< 25D + p(BD) and 1< 20u5(E7) + i (EY)).

That is,
(3.38) is equivalent to

(330 p5({y € Bule) ugly) > ula)}) > 1

and  15({y € Bi(x) s uy(y) < u(x)}) = 3.
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PROOF OF THEOREM 3.12. Let u be a weak solution to (3.31) with Dirichlet
datum v € L'(Q;\ ), and take g as in Definition 3.11. By (3.33) we have

—/ J(z —y)g(z,y)dy = 0.
By(x)

Thus,
0 = . J(x —y)g(z,y)dy + /E J(x —y)g(z,y)dy + /E J(x —y)g(z,y)dy
= py(EY) — py(EL) + [E J(x —y)g(x,y)dy.

Since g € [—1, 1] in EJ, it holds that

W(E7) = (B + / Tz = y)gla, y)dy < W (ET) + i (ED)

T
0

and
5(BD) = 5 (B) = [ Tl = wlglo.v) dy < w3(E0) + i3 ().
0
that is
—pg(Ey) < pj(EY) — pi(EY) < pi(Ep).
This proves, on account of (3.39), that u satisfies the nonlocal median value property

(3.34).
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Let us show now that the converse is also true.

Let u be satisfying the nonlocal median value property (3.34), that is (on account

of (3.39) again),

—py(Ey) < py(BL) — pi(EY) < pi(Ep).
We want to find a function g(x,y) verifying the conditions of Definition 3.11. For
x such that p%(Ef) = 0 let us define

g(r,y) =

and if % (EF) > 0,

g(w,y) = <

y

\

1 if wuy(y) > uy(z),
0 if uy(y) = uy(x),
—1 if wuy(y) < uy(z),
1 if U¢(y) > U¢<I),
TETY_ % (B .
MJ( u%(E%CJ)( +) if u¢(y) _ u¢($),

—1 if uy(y) < uy(z).

This function g belongs to L> and obviously ||g||sc < 1. In addition, it verifies (3.32),

that is,

J(x —y)g(z,y) € J(x — y)sign(uy(y) — up(x))

a.e (z,y) € Qy x Q.
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Now, we have to check equation (3.33). In the case pu%(Ef) = 0,

i i X X 1
MJ<E+) = MJ(E—) — 57
and we conclude that

/B . J(x —y)g(z,y)dy

Z/x«](:lf—y>g(£v,y)dy+/x J(%—y)g(af,y)dy+/ J(@ —y)g(z,y)dy

X

— [ Ha—yay— [ e —y)dy = p3(ED) - 5(ED) -
In the case+,LL§(E§) > 0, _
/ J(x —y)g(z,y)dy
By (z)
-~ / J(x —y)g(z,y)dy + / J(x —y)g(z,y) dy+/E J(z —y)g(z,y)dy
— /x J(x —y)dy — /x J(x —y)dy + U EE) — i (EL) /xJ(CL’ —y)dy

« z
= py(E7) — pi(EY) + (ui (L) — p3(EY)) =
This completes the proof. []

= 0.

DO | —
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3.3.2.3. Characterization of variational solutions as minimizers of J.

PROOF OF THEOREM 3.14. Let u be a variational solution of problem (3.31).
Then, there exists g € L*>°(£2; x ;) antisymmetric, with ||g||s < 1 verifying (3.32)
and (3.33).

Given w € L'(€), multiplying (3.33) by w(z) — u(x), integrating, and having in
mind (3.32) and the antisymmetry of g, we get

/Q /Q (@ —y)g(z, y)dy(wy(z) — uy(z))dz
_ / / (@ = y)g(z, y)l(wy(y) — wy(x)) - () dyda

(y(y)
< / / (# = plwsty) —wotalldyde =5 [ [ @ = pluoty) - wolo)ldyd
2 2 Ja,Ja,
Therefore, w 1s a minimizer of Jy.

Assume now that « minimizes the functional ;. Theorem 3.16 shows the existence
of a variational solution @ of (3.31). Namely, there exists g : €27 x £2; — R such that
g€ L®Q; xQ7), 9]l <1, g(x,y) = —g(y, z) for (z,y) a.ein Qy x Qy,

(3.40)  J(z —y)g(z,y) € J(x — y)sign(y(y) — Uy(z)) ae (z,y) € QxQy,
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and
(3.41) —/ J(x—y)glx,y)dy =0 aex el
Qy

Since u is a minimizer of Jy, Jy(0) — Jy(u) =
On the other hand, arguing as in the other implication, we obtain that

/Q /Q (x —y)g(z, y) dy(uy(z) — uy(z))dx
/ / J(@ —y)g(z,y)[(Wp(y) — uy(x)) o) — uy ()] dyda

/QJ/QJJ:E— Ny (y) — (2 |dydx——/QJ/QJ 7 — 9)g(@, ¥)(us(y) — up(z))dyda
-3 = [ [ e = st ) 0s0) = )

Therefore,

/ / (z—y)g(z, y)(uy(y)—uy(z))dydr = 5 / / (2—y) Jwy(y) —uy(z)|dyda.
Q7 JQy QJ QJ
’LL¢

Hence, J(z — y)g(x,y) € J(x — y)sign(uy(y) — )ae (x,y) € Qy x Q, which
ﬁmshes the proof. []
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