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Introduction

We study the large time behaviour of solutions of the initial-boundary-value
problem for a system of nonlinear partial differential equations of the form

∂𝑢1
∂𝑡

−Δ𝜙1(𝑢1) + 𝛾(𝜙1(𝑢1)− 𝜙2(𝑢2)) ∋ 0 in Ω× (0,∞)

∂𝑢2
∂𝑡

−Δ𝜙2(𝑢2)− 𝛾(𝜙1(𝑢1)− 𝜙2(𝑢2)) ∋ 0 in Ω× (0,∞)

−∂𝜙1(𝑢1)
∂𝜂

∈ 𝛽1(𝑢1) on ∂Ω× (0,∞) (𝐼)

−∂𝜙2(𝑢2)
∂𝜂

∈ 𝛽2(𝑢2) on ∂Ω× (0,∞)

(𝑢1(0), 𝑢2(0)) = (𝑢01, 𝑢02) in Ω,

where Ω is a bounded domain in ℝ𝑁 with smooth boundary ∂Ω, ∂/∂𝜂 denotes
the Neumann boundary operator, 𝛽𝑖, 𝜙𝑖 and 𝛾 are maximal monotone graphs in
ℝ×ℝ with 0 ∈ 𝛽𝑖(0), 0 ∈ 𝜙𝑖(0) and 0 ∈ 𝛾(0) . A particular case of system (I) is
proposed by E. DiBenedetto and R. E. Showalter in [12] as a mathematical model
for heat conduction in a composite material consisting of two components and
under the assumption that the first component occurs in small isolated parts that
are suspended in the second component, which implies the change of phase occurs
in the second component. In this situation 𝑢1 and 𝑢2 represent the temperatures
in the first and second components, respectively, 𝜙1 ≡ 0 and 𝜙2(𝑠) = 𝑏𝑠+𝐿𝐻(𝑠)
where 𝑏 > 0, 𝐿 > 0 and 𝐻 is the multivalued Heaviside step function. Based on
the physical analysis in [12], one may still view (I) as a mathematical description of
diffusion processes within a medium composed of two components which involves
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phase change. In this connection, 𝛾 is related to the surface area common to the
two components. Thus, 𝛾 is a measure of the homogeneity of the material.

The special structure of the system (I) enables us to handle the problem via
nonlinear semigroup theory. For the particular case of Dirichlet boundary condition,
the study of the well-posedness of system (I), via nonlinear semigroup theory, is
studied by X. Xu in [10] basing on the results on semilinear elliptic equations in
𝐿1 due to H. Brezis and W. Strauss [10], and Ph. Bénilan, M. Crandall and P.
Sacks [5]. We use here the same method, but we consider more general boundary
conditions and more general phase changes. The boundary conditions in system (I)
are very general. Different choices of 𝛽’s give different boundary conditions. For
instance, 𝛽 = ℝ × {0} gives Neumann condition, 𝛽 = {0} × ℝ gives Dirichlet
condition and 𝛽 = {0}×] − ∞, 0] ∪ [0,+∞[×{0} gives the unilateral boundary
conditions corresponding to variational inequalities introduced by J. L. Lions and
G. Stampacchia in [14]. Also, different choices of 𝜙’s correspond to equations that
arise in many applications. For instance, if 𝜙(𝑟) = ∣𝑟∣𝑚𝑠𝑖𝑔𝑛0(𝑟), we have: 𝑚 > 1
is the porous medium equation, since it first arose in the study of gas flows in
homogeneous porous media ([16], [2]); 𝑚 = 1 is the classical equation of heat
conduction, and 0 < 𝑚 < 1 is the so-called fast diffussion equation which occurs
in the modelling of plasma ([7]).

The aim of this paper is to obtain stability results for the solutions of system
(I). In [1] we have obtained stability results for the filtration equation using the
Lyapunov method for semigroups of nonlinear contractions introduced by A. Pazy
[19]. Here we will use the same method.

As it was said, our abstract framework is the theory of nonlinear semigroups. We
refer the reader to [6], [11] and [3] for background material on nonlinear contraction
semigroups.

The plan of the paper is as follows. The first section deals with the well-posedness
of problem (I). We associate to system (I) an m-T-accretive operator. The mild-
solution obtained via the Crandall-Liggett exponential formula for this operator
will be the solution of system (I). In the second section we study the stability of
solutions of system (I), showing that they stabilize as 𝑡 → ∞ by converging to a
constant which is related with the boundary condition involved by 𝛽𝑖, the phase
change 𝛾 and the diffusions 𝜙𝑖.

1. Semigroup approach to systems of PDEs
governing diffusion processes with phase change

From now on, Ω will be a bounded domain in ℝ𝑁 (𝑁 ≥ 1) with smooth
boundary ∂Ω. In this section we show that system (I) is well posed and is governed
by an order-preserving contraction semigroup in 𝑋 := 𝐿1(Ω) × 𝐿1(Ω), i.e., we
associate with system (I) an m-T-accretive operator in 𝑋. To do that, firstly we
need the following definition given in [10].

Definition 1.1. Let 𝑢 ∈𝑊 1,1(Ω), 𝑣 ∈ 𝐿1(Ω) and 𝑤 ∈ 𝐿1(∂Ω). We say that 𝑢
is a weak solution of the Neumann problem

−Δ𝑢 = 𝑣, in Ω,

∂𝑢

∂𝜂
= 𝑤, on ∂Ω,
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provided the following identity holds for all 𝑓 ∈ 𝐶1(Ω):∫
Ω

∇𝑢 ⋅ ∇𝑓 =

∫
Ω

𝑣𝑓 +

∫
∂Ω

𝑤𝑓.

Now, we define the operator 𝐴 associated with system (I) in 𝑋.

Definition 1.2. 𝐴 is the operator in 𝑋 defined by: ((𝑢1, 𝑢2), (𝑣1, 𝑣2)) ∈ 𝐴 if for
𝑖 = 1, 2, there exist ℎ𝑖 ∈ 𝜙𝑖(𝑢𝑖), 𝑤𝑖 ∈ 𝐿1(∂Ω), 𝑧 ∈ 𝐿1(Ω), such that ℎ1 is a
weak-solution, in the sense of Definition 1.1, of

−Δℎ1 = 𝑣1 − 𝑧 in Ω,

∂ℎ1
∂𝜂

= 𝑤1 on ∂Ω,

and ℎ2 is a weak-solution of

−Δℎ2 = 𝑣2 + 𝑧 in Ω,

∂ℎ2
∂𝜂

= 𝑤2 on ∂Ω,

with −𝑤𝑖 ∈ 𝛽𝑖 ∘ 𝜙−1
𝑖 (ℎ𝑖), a.e. on ∂Ω and 𝑧 ∈ 𝛾(ℎ1 − ℎ2), a.e. on Ω.

The definition above uses the fact that the trace of ℎ𝑖 ∈ 𝑊 1,1(Ω) on ∂Ω is
well defined ( Theorem 4.2 of [17] ). Observe that we use the same notation ℎ𝑖
for ℎ𝑖 and its trace when convenient.

Many of the partial differential equations that can be studied by mean of Crandall-
Liggett Theorem satisfy a “comparison principle”. This fact is equivalent to the
order preserving property of the semigroup (𝑒−𝑡𝐴)𝑡≥0 generated by 𝐴. The
operators which generate order-preserving semigroups are the following:

Let 𝐸 be a Banach lattice and let 𝐴 be an operator in 𝐸. 𝐴 is called
T-accretive if

∥(𝑥− �̂�+ 𝜆(𝑦 − 𝑦)
)+∥ ≥ ∥(𝑥− �̂�)+∥, for 𝜆 ≥ 0, 𝑦 ∈ 𝐴𝑥, 𝑦 ∈ 𝐴�̂�.

It is clear that 𝐴 is T-accretive if, and only if, its resolvents 𝐽𝜆 := (𝐼 + 𝜆𝐴)−1

are T-contractions, i.e.,

∥(𝐽𝜆𝑥− 𝐽𝜆𝑦)
+∥ ≤ ∥(𝑥− �̂�)+∥, for 𝜆 ≥ 0, 𝑥, 𝑦 ∈ 𝒟(𝐽𝜆).

Now, since every T-contraction is order-preserving, we have that if 𝐴 is m-T-
accretive then each 𝑒−𝑡𝐴 is order-preserving. In general, T-accretivity does not
imply accretivity, but in some Banach spaces T-accretivity implies accretivity, this
is the case for the spaces 𝐿𝑝(Ω) for 1 ≤ 𝑝 ≤ ∞.

The following notation wil be used whenever it is meaningful:

𝑠𝑖𝑔𝑛0(𝑠) =

⎧⎨⎩
1 if 𝑠 > 0

0 if 𝑠 = 0

−1 if 𝑠 < 0

𝑠𝑖𝑔𝑛+0 (𝑠) =

{
1 if 𝑠 > 0

0 if 𝑠 ≤ 0
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Proposition 1.3. If 𝛾 is a nondecreasing function with 𝛾(0) = 0, then the
operator 𝐴 is T-accretive in X.

Proof. Let ((𝑢1, 𝑢2), (𝑣1, 𝑣2)), ((�̃�1, �̃�2), (𝑣1, 𝑣2)) ∈ 𝐴 be. It is enough to prove that

∥[(𝑢1, 𝑢2)− (�̃�1, �̃�2)]
+∥ ≤ ∥[(𝑓1, 𝑓2)− (𝑓1, 𝑓2)]

+∥

where 𝑓𝑖 = 𝑢𝑖 + 𝑣𝑖 and 𝑓𝑖 = �̃�𝑖 + 𝑣𝑖. By definition of 𝐴, there exist ℎ𝑖 ∈
𝜙𝑖(𝑢𝑖), 𝑤𝑖 ∈ 𝐿1(∂Ω), −𝑤𝑖 ∈ 𝛽𝑖 ∘ 𝜙−1

𝑖 (𝑢𝑖), 𝑧 ∈ 𝐿1(Ω), 𝑧 ∈ 𝛾(ℎ1 − ℎ2) and

ℎ̃𝑖 ∈ 𝜙𝑖(�̃�𝑖), �̃�𝑖 ∈ 𝐿1(∂Ω), −�̃�𝑖 ∈ 𝛽𝑖 ∘ 𝜙−1
𝑖 (�̃�𝑖), 𝑧 ∈ 𝐿1(Ω), 𝑧 ∈ 𝛾(ℎ̃1 − ℎ̃2) such

that, in weak sense

𝑢1 −Δℎ1 + 𝑧 = 𝑓1,
∂ℎ1
∂𝜂

= 𝑤1,

�̃�1 −Δℎ̃1 + 𝑧 = 𝑓1,
∂ℎ̃1
∂𝜂

= �̃�1,

and consequently

𝑢1 − �̃�1 −Δ(ℎ1 − ℎ̃1) + 𝑧 − 𝑧 = 𝑓1 − 𝑓1,

∂(ℎ1 − ℎ̃1)

∂𝜂
= 𝑤1 − �̃�1.

Let 𝜎1 ∈ 𝐿∞(Ω) given by

𝜎1(𝑥) = 𝑠𝑖𝑔𝑛+0 (𝑢1(𝑥)− �̃�1(𝑥) + ℎ1(𝑥)− ℎ̃1(𝑥))

and 𝜏1(𝑥) = 𝑠𝑖𝑔𝑛+0 (ℎ1(𝑥)− ℎ̃1(𝑥)), 𝑥 ∈ ∂Ω. It follows from [5, Lemma D] that∫
Ω

(𝑢1(𝑥)− �̃�1(𝑥))𝜎1(𝑥) +

∫
Ω

(𝑧(𝑥)− 𝑧(𝑥))𝜎1(𝑥) ≤

≤
∫
Ω

(𝑓1(𝑥)− 𝑓1(𝑥))𝜎1(𝑥) +

∫
∂Ω

(𝑤1(𝑥)− �̃�1(𝑥))𝜏1(𝑥).

Hence, ∫
Ω

(𝑢1(𝑥)− �̃�1(𝑥))
+ +

∫
Ω

(𝑧(𝑥)− 𝑧(𝑥))𝜎1(𝑥) ≤
∫
Ω

(𝑓1(𝑥)− 𝑓1(𝑥))
+.

Similarly∫
Ω

(𝑢2(𝑥)− �̃�2(𝑥))
+ −

∫
Ω

(𝑧(𝑥)− 𝑧(𝑥))𝜎2(𝑥) ≤
∫
Ω

(𝑓2(𝑥)− 𝑓2(𝑥))
+.

Since (𝑧(𝑥) − 𝑧(𝑥))(𝜎1(𝑥) − 𝜎2(𝑥)) ≥ 0 almost everywhere in Ω, adding the
above expressions we conclude the proof.

Our next step is to proof the range condition for the closure 𝐴 of the operator
𝐴.

Let 𝜙 and 𝛽 be maximal monotone graphs in ℝ × ℝ with 0 ∈ 𝛽(0) and
0 ∈ 𝜙(0) . In order to study the filtration equation from the point of view of
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nonlinear semigroup theory, Ph. Bénilan [4] and Ph. Bénilan, M. G. Crandall and
P. Sacks [5], define the following operator in 𝐿1(Ω):

𝐴𝜙,𝛽 = {(𝑢, 𝑣) ∈ 𝐿1(Ω)×𝐿1(Ω) : there exists ℎ ∈ 𝜙(𝑢) and there exists 𝑤 ∈ 𝐿1(∂Ω) : ℎ is a

weak solution of −Δℎ = 𝑣 in Ω,
∂ℎ

∂𝜂
= 𝑤 on ∂Ω; and−𝑤(𝑥) ∈ 𝛽∘𝜙−1(ℎ(𝑥)) a.e. on ∂Ω}.

Remark 1.4. We have the following relation between the resolvents of the operators
𝐴 and 𝐴𝜙,𝛽 : (𝑢1, 𝑢2) = (𝐼+𝜆𝐴)−1(𝑣1, 𝑣2) if and only if 𝑢1 = (𝐼+𝜆𝐴𝜙1𝛽1)

−1(𝑣1−
𝜆𝑧) and 𝑢2 = (𝐼 + 𝜆𝐴𝜙2𝛽2)

−1(𝑣2 + 𝜆𝑧). In fact, since ((𝑢1, 𝑢2),
1
𝜆 ((𝑣1, 𝑣2) −

(𝑢1, 𝑢2))) ∈ 𝐴, there exist 𝑤𝑖 ∈ 𝜙𝑖(𝑢𝑖), 𝑖 = 1, 2, 𝑧 ∈ 𝛾(𝑤1 − 𝑤2), −𝜂𝑖 ∈
𝛽𝑖 ∘ 𝜙−1

𝑖 (𝑤𝑖), such that (𝑤1, 𝑤2) is weak solution of

−Δ𝑤1 + 𝑧 =
𝑣1 − 𝑢1
𝜆

,
∂𝑤1

∂𝜂
= 𝜂1,

−Δ𝑤2 − 𝑧 =
𝑣2 − 𝑢2
𝜆

,
∂𝑤2

∂𝜂
= 𝜂2,

from which it folows that 𝑢1 = (𝐼+𝜆𝐴𝜙1𝛽1)
−1(𝑣1−𝜆𝑧) and 𝑢2 = (𝐼+𝜆𝐴𝜙2𝛽2)

−1(𝑣2+
𝜆𝑧).

Lemma 1.5. Under the above general conditons, suppose that 𝜙𝑖, 𝜙
−1
𝑖 , 𝛽−1

𝑖 and
𝛾 are Lipschitz continuous functions. Then, for any 𝑓1, 𝑓2 ∈ 𝐿2(Ω) , there exist
𝑣1, 𝑣2 ∈ 𝐻1(Ω) weak solutions of

−Δ𝑣1 + 𝜙−1
1 (𝑣1) + 𝛾(𝑣1 − 𝑣2) = 𝑓1 in Ω,

−∂𝑣1
∂𝜂

= 𝛽1 ∘ 𝜙−1
1 (𝑣1) on ∂Ω,

−Δ𝑣2 + 𝜙−1
1 (𝑣2)− 𝛾(𝑣1 − 𝑣2) = 𝑓2 in Ω,

−∂𝑣2
∂𝜂

= 𝛽2 ∘ 𝜙−1
2 (𝑣2) on ∂Ω.

Proof. Let 𝑉 = 𝐻1(Ω) × 𝐻1(Ω) and define 𝐵 : 𝑉 → 𝑉 ∗ (being 𝑉 ∗ the
topological dual of 𝑉 ) by

⟨𝐵(𝑢1, 𝑢2), (𝑣1, 𝑣2)⟩ =
∫
Ω

∇𝑢1⋅∇𝑣1+
∫
∂Ω

𝛽1∘𝜙−1
1 (𝑢1)𝑣1+

∫
Ω

𝜙−1
1 (𝑢1)𝑣1+

∫
Ω

𝛾(𝑢1−𝑢2)𝑣1+

+

∫
Ω

∇𝑢2 ⋅ ∇𝑣2 +
∫
∂Ω

𝛽2 ∘ 𝜙−1
2 (𝑢2)𝑣2 +

∫
Ω

𝜙−1
2 (𝑢2)𝑣2 −

∫
Ω

𝛾(𝑢1 − 𝑢2)𝑣2,

for all (𝑢1, 𝑢2), (𝑣1, 𝑣2) ∈ 𝑉 , where (., .) denotes the duality pairing between 𝑉
and 𝑉 ∗.

By our assumptions, 𝐵 is well-defined. An easy computation shows that

⟨𝐵(𝑢1, 𝑢2)−𝐵(𝑣1, 𝑣2), (𝑢1, 𝑢2)−(𝑣1, 𝑣2)⟩ ≥ Γ(∥(𝑢1, 𝑢2)−(𝑣1, 𝑣2)∥𝐻1)∥(𝑢1, 𝑢2)−(𝑣1, 𝑣2)∥𝐻1
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where Γ(𝑠) = min{1,𝐾−1
1 ,𝐾−1

2 }𝑠, with 𝐾𝑖 the Lipschitz constant of 𝜙𝑖. Con-
sequently, 𝐵 is strongly monotone. On the other hand, since 𝜙−1

𝑖 , 𝛽𝑖 and 𝛾
are Lispchitz continuous, it is easy to see that the mapping Υ(𝑠) := ⟨𝐵(𝑢1, 𝑢2) +
𝑠(𝑣1, 𝑣2), (𝑤1, 𝑤2)⟩ is continuous for fixed (𝑢1, 𝑢2), (𝑣1, 𝑣2), (𝑤1, 𝑤2) ∈ 𝑉 . Hence
𝐵 is hemicontinuous. Then, by [19, Theorem 6. 10] ( see also [13, Theorem 2.2.1]
), given (𝑓1, 𝑓2) ∈ 𝐿2(Ω) × 𝐿2(Ω), there exists (𝑣1, 𝑣2) ∈ 𝐻1(Ω) × 𝐻1(Ω) such
that 𝐵(𝑣1, 𝑣2) = (𝑓1, 𝑓2), and from here we conclude the proof.

Suppose 𝑢𝑖 = 𝜙−1
𝑖 (𝑣𝑖), 𝑖 = 1, 2, where 𝑣𝑖 are given by the previous lemma.

Then, we have that (𝑢1, 𝑢2) = (𝐼 +𝐴)−1(𝑓1, 𝑓2), i.e., in the weak sense:

−Δ𝜙1(𝑢1) + 𝑢1 + 𝛾(𝜙1(𝑢1)− 𝜙2(𝑢2)) = 𝑓1 in Ω, (1)

−Δ𝜙2(𝑢2) + 𝑢2 − 𝛾(𝜙1(𝑢1)− 𝜙2(𝑢2)) = 𝑓2 in Ω, (2)

−∂𝜙1(𝑢1)
∂𝜂

= 𝛽1(𝑢1) on ∂Ω, (3)

−∂𝜙2(𝑢2)
∂𝜂

= 𝛽2(𝑢2) on ∂Ω. (4)

Now, we will proceed to derive estimates for 𝑢1, 𝑢2, that are independent of
𝜙𝑖, 𝛽𝑖 and 𝛾. This enables us to relax the assumptions on 𝜙𝑖, 𝛽𝑖 and 𝛾 later
on.

Lemma 1.6. Under the assumptions of Lemma 1.5, if (𝑢1, 𝑢2) is given by (1)-(4),
then

∥(𝑢1, 𝑢2)∥𝑋 ≤ ∥(𝑓1, 𝑓2)∥𝑋 .

Proof. Let 𝜎(𝑥) = 𝑠𝑖𝑔𝑛0(𝑢1(𝑥)) in Ω and 𝜏(𝑥) = 𝑠𝑖𝑔𝑛0(𝜙1(𝑢1(𝑥))) on ∂Ω .
Then by [5, Lemma D] applied to (1) and (3) we obtain∫
Ω

∣𝑢1∣+
∫
Ω

𝛾(𝜙1(𝑢1)−𝜙2(𝑢2))𝑠𝑖𝑔𝑛0(𝑢1) ≤
∫
Ω

∣𝑓1∣+
∫
∂Ω

∂𝜙1(𝑢1)

∂𝜂
𝑠𝑖𝑔𝑛0(𝜙1(𝑢1)) ≤

∫
Ω

∣𝑓1∣.

Similarly, ∫
Ω

∣𝑢2∣ −
∫
Ω

𝛾(𝜙2(𝑢1)− 𝜙2(𝑢2))𝑠𝑖𝑔𝑛0(𝑢2) ≤
∫
Ω

∣𝑓2∣.

Hence, adding both expressions,

∥(𝑢1, 𝑢2)∥𝑋 +

∫
Ω

𝐺(𝑥) ≤ ∥(𝑓1, 𝑓2)∥𝑋 ,

with 𝐺(𝑥) = 𝛾(𝜙2(𝑢1) − 𝜙2(𝑢2))(𝑠𝑖𝑔𝑛0(𝑢1) − 𝑠𝑖𝑔𝑛0(𝑢2)) ≥ 0 a.e. on Ω, and the
proof is complete.

Lemma 1.7. Let the situation of Lemma 1.6 hold. Then, for any 𝑀 > 0,∫
Ω

[(∣𝑢1∣ −𝑀)+ + (∣𝑢2∣ −𝑀)+] ≤
∫
Ω

[(∣𝑓1∣ −𝑀)+ + (∣𝑓2∣ −𝑀)+].

In particular, ∥(𝑢1, 𝑢2)∥∞ ≤ ∥(𝑓1, 𝑓2)∥∞, where ∥(𝑣1, 𝑣2)∥∞ = sup(∥𝑣1∥∞, ∥𝑣2∥∞).
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Proof. Let 𝜖 > 0 be and define

𝜂𝜖(𝑠) :=

⎧⎨⎩
1 if 𝑠 > 𝜖
1
𝜖 𝑠 if ∣𝑠∣ ≤ 𝜖

−1 if 𝑠 < −𝜖.

By [15, Corollary A.5] 𝜂+𝜖 (𝑢1 −𝑀) ∈ 𝐻1(Ω). Then by (1) and (3), we have∫
Ω

∇𝜙1(𝑢1) ⋅ ∇𝜂+𝜖 (𝑢1 −𝑀) +

∫
∂Ω

(−∂𝜙1(𝑢1)
∂𝜂

)𝜂+𝜖 (𝑢1 −𝑀)+

+

∫
Ω

𝑢1𝜂
+
𝜖 (𝑢1 −𝑀) +

∫
Ω

𝛾(𝜙1(𝑢1)− 𝜙2(𝑢2))𝜂
+
𝜖 (𝑢1 −𝑀) =

=

∫
Ω

𝑓1𝜂
+
𝜖 (𝑢1 −𝑀).

Now, by [15, Corollary A.5],

∇𝜙1(𝑢1) ⋅ ∇𝜂+𝜖 (𝑢1 −𝑀) = 𝜙′(𝑢1)∇𝑢1 ⋅ (𝜂+𝜖 )′(𝑢1 −𝑀)∇𝑢1 ≥ 0.

Moreover, since −∂𝜙1(𝑢1)
∂𝜂 ∈ 𝛽1(𝑢1), also −∂𝜙1(𝑢1)

∂𝜂 𝜂+𝜖 (𝑢1 −𝑀) ≥ 0. Consequently,

we have ∫
Ω

(𝑢1 −𝑀)𝜂+𝜖 (𝑢1 −𝑀) +

∫
Ω

𝛾(𝜙1(𝑢1)− 𝜙2(𝑢2))𝜂
+
𝜖 (𝑢1 −𝑀) ≤

≤
∫
Ω

(𝑓1 −𝑀)𝜂+𝜖 (𝑢1 −𝑀) ≤
∫
Ω

(𝑓1 −𝑀)+.

Similarly,∫
Ω

(𝑢2 −𝑀)𝜂+𝜖 (𝑢2 −𝑀)−
∫
Ω

𝛾(𝜙1(𝑢1)− 𝜙2(𝑢2))𝜂
+
𝜖 (𝑢1 −𝑀) ≤

∫
Ω

(𝑓2 −𝑀)+.

Adding both expressions, using again that

𝛾(𝜙1(𝑢1)− 𝜙2(𝑢2))(𝑠𝑖𝑔𝑛
+
0 (𝑢1 −𝑀)− 𝑠𝑖𝑔𝑛+0 (𝑢2 −𝑀)) ≥ 0 a.e. on Ω,

and taking 𝜖→ ∞, we obtain∫
Ω

(𝑢1 −𝑀)+ +

∫
Ω

(𝑢2 −𝑀)+ ≤
∫
Ω

(𝑓1 −𝑀)+ +

∫
Ω

(𝑓2 −𝑀)+.

A similar argument shows that∫
Ω

(𝑢1 +𝑀)− +

∫
Ω

(𝑢2 +𝑀)− ≤
∫
Ω

(𝑓1 +𝑀)− +

∫
Ω

(𝑓2 +𝑀)−,

and the proof is complete.
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Lemma 1.8. Let the situation of Lemma 1.7 hold. Let Ω′ be an open subset of
Ω such that 𝑑(Ω′, ∂Ω) = 𝑑 > 0. Then∫

Ω′
(∣𝑢1(𝑥+ 𝑦)− 𝑢1(𝑥)∣+ ∣𝑢2(𝑥+ 𝑦)− 𝑢2(𝑥)∣)𝜓(𝑥) ≤

≤
∫
Ω′
(∣𝜙1(𝑢1(𝑥+ 𝑦))− 𝜙1(𝑢1(𝑥))∣+ ∣𝜙2(𝑢2(𝑥+ 𝑦))− 𝜙2(𝑢2(𝑥))∣)Δ𝜓(𝑥)+

+

∫
Ω′
(∣𝑓1(𝑥+ 𝑦)− 𝑓1(𝑥)∣+ ∣𝑓2(𝑥+ 𝑦)− 𝑓2(𝑥)∣)𝜓(𝑥),

for all 𝜓 ∈ 𝐶∞
0 (Ω′), 𝜓 ≥ 0, and for all 𝑦 ∈ ℝ𝑁 , ∣𝑦∣ < 𝑑.

For the proof of this result we refer to [21, Lemma 4.4], taking in account the
change due to the function 𝛾.

Proposition 1.9. Supposse 𝜙𝑖 and 𝛽𝑖 are maximal monotone graphs in ℝ×ℝ,
with 0 ∈ 𝜙𝑖(0), 0 ∈ 𝛽𝑖(0) and 𝐷(𝜙𝑖) = ℝ. Suppose 𝛾 is a nondecreasing
function with 𝐷(𝛾) = ℝ. Then, the following holds:

(𝑖) 𝐿∞(Ω)× 𝐿∞(Ω) ⊂ 𝑅(𝐼 + 𝜆𝐴) and ∥(𝐼 + 𝜆𝐴)−1(𝑓1, 𝑓2)∥∞ ≤ ∥(𝑓1, 𝑓2)∥∞.

(𝑖𝑖) 𝐷(𝐴) = 𝐿1(Ω)× 𝐿1(Ω).

Proof. (i) It is enough to prove (i) for 𝜆 = 1. Let (𝑓1, 𝑓2) ∈ 𝐿∞(Ω) × 𝐿∞(Ω) .
Take 𝜖 > 0 and, for 𝑖 = 1, 2, let 𝜙𝑖𝜖, 𝛽𝑖𝜖 and 𝛾𝜖 be the Yosida approximations
of 𝜙𝑖, 𝛽𝑖 and 𝛾, respectively; that is

𝜙𝑖𝜖 = (𝐼 − (𝐼 + 𝜖𝜙𝑖)
−1/𝜖, 𝛽𝑖𝜖 = (𝐼 − (𝐼 + 𝜖𝛽𝑖)

−1/𝜖, 𝛾𝜖 = (𝐼 − (𝐼 + 𝜖𝛾)−1/𝜖.

For 𝑖 = 1, 2, define 𝜙𝑖𝜖 = 𝜙𝑖𝜖+𝜖𝑠, then 𝜙𝑖𝜖 and 𝜙−1
𝑖𝜖 are Lipschitz continuous.

By Lemma 1.5, there exists (𝑢1𝜖, 𝑢2𝜖), a weak solution of

−Δ𝜙1𝜖(𝑢1𝜖) + 𝑢1𝜖 + 𝛾𝜖(𝜙1𝜖(𝑢1𝜖)− 𝜙2𝜖(𝑢2𝜖)) = 𝑓1 in Ω,

−Δ𝜙2𝜖(𝑢2𝜖) + 𝑢2𝜖 − 𝛾𝜖(𝜙1𝜖(𝑢1𝜖)− 𝜙2𝜖(𝑢2𝜖)) = 𝑓2 in Ω,

−∂𝜙1𝜖(𝑢1𝜖)
∂𝜂

= 𝛽1𝜖(𝑢1𝜖) on ∂Ω,

−∂𝜙2𝜖(𝑢2𝜖)
∂𝜂

= 𝛽2𝜖(𝑢2𝜖) on ∂Ω.

Now, by Lemma 1.7

∥(𝑢1𝜖, 𝑢2𝜖)∥∞ ≤ 2𝜇(Ω)1/2∥(𝑓1, 𝑓2)∥∞. (5)
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Moreover, since 𝜙𝑖𝜖(𝑠) → 𝜙∘𝑖 (𝑠) ( 𝜙∘𝑖 (𝑠) denoting the element of 𝜙𝑖(𝑠) of
minimun norm ) we have that

∥𝜙1𝜖(𝑢1𝜖)∥∞ + ∥𝜙2𝜖(𝑢2𝜖)∥∞ ≤ 𝐶, (6)

with 𝐶 a constant only depending on Ω and 𝜙∘𝑖 (±∥(𝑓1, 𝑓2)∥∞), for 𝜖 small
enough.

Also, since 𝛾𝜖(𝑠) → 𝛾(𝑠), we have that

∥𝛾𝜖(𝜙1𝜖(𝑢1𝜖)− 𝜙2𝜖(𝑢2𝜖))∥∞ ≤ 𝐾, (7)

with 𝐾 a constant only depending on Ω and 𝛾(±(𝜙∘𝑖 (±∥(𝑓1, 𝑓2)∥∞)), for 𝜖
small enough.

Now, by Remark 1.4, 𝑢1𝜖 = (𝐼+𝐴𝜙1𝜖𝛽1𝜖)
−1(𝑓1−𝑧𝜖) and 𝑢2𝜖 = (𝐼+𝐴𝜙2𝜖𝛽2𝜖)

−1(𝑓2+
𝑧𝜖). Then, by [8, Theorem 12], 𝜙𝑖(𝑢𝑖𝜖) ∈ 𝐻2(Ω) and there exist constants 𝐾1 and
𝐾2 such that

∥𝜙1𝜖(𝑢1𝜖)∥𝐻2 + ∥𝜙2𝜖(𝑢2𝜖)∥𝐻2 ≤

≤ 𝐾1{∥𝑓1 + 𝜙1𝜖(𝑢1𝜖) + 𝑢1𝜖 − 𝛾𝜖(𝜙1𝜖(𝑢1𝜖)− 𝜙2𝜖(𝑢2𝜖))∥2+

+∥𝑓2 + 𝜙2𝜖(𝑢2𝜖) + 𝑢2𝜖 + 𝛾𝜖(𝜙1𝜖(𝑢1𝜖)− 𝜙2𝜖(𝑢2𝜖))∥2}+𝐾2,

Hence, by (5),(6) and (7), {(𝜙1𝜖(𝑢1𝜖), 𝜙2𝜖(𝑢2𝜖))}𝜖>0 is bounded in 𝐻2(Ω)×𝐻2(Ω).
On the other hand, proceeding as in the proof of [21, Theorem 2.4], we have that

{(𝑢1𝜖, 𝑢2𝜖)}𝜖>0 is precompact in 𝑋. Moreover, by (7), {𝛾𝜖(𝜙1𝜖(𝑢1𝜖)−𝜙2𝜖(𝑢2𝜖))}𝜖>0

is weakly sequentially compact in 𝐿1(Ω). Then, there exists 𝜖𝑛 → 0, such that

(𝑢1𝜖𝑛 , 𝑢2𝜖𝑛) → (𝑢1, 𝑢2) strongly in 𝑋,

𝛾𝜖𝑛(𝜙1𝜖𝑛(𝑢1𝜖𝑛)− 𝜙2𝜖𝑛(𝑢2𝜖𝑛)) → 𝑧 weakly in 𝐿1(Ω),

(𝜙1𝜖𝑛(𝑢1𝜖𝑛), 𝜙2𝜖𝑛(𝑢2𝜖𝑛)) → (𝑤1, 𝑤2) strongly in 𝑋,

(𝜙1𝜖𝑛(𝑢1𝜖𝑛), 𝜙2𝜖𝑛(𝑢2𝜖𝑛)) → (𝑤1, 𝑤2) strongly in 𝐿2(∂Ω)× 𝐿2(∂Ω),

(
∂𝜙1𝜖𝑛(𝑢1𝜖𝑛)

∂𝜂
,
∂𝜙2𝜖𝑛(𝑢2𝜖𝑛)

∂𝜂
) → (

∂𝑤1

∂𝜂
,
∂𝑤2

∂𝜂
) strongly in 𝐿2(∂Ω)× 𝐿2(∂Ω).

Consequently, by [5, Lemma G], 𝑤1 ∈ 𝜙1(𝑢1), 𝑤2 ∈ 𝜙2(𝑢2), 𝑧 ∈ 𝛾(𝑤1−𝑤2), −∂𝑤1

∂𝜂 ∈
𝛽1 ∘ 𝜙−1

1 (𝑤1), −∂𝑤2

∂𝜂 ∈ 𝛽2 ∘ 𝜙−1
2 (𝑤2). Therefore, in the weak sense

−Δ𝑤1 + 𝑢1 + 𝑧 = 𝑓1 in Ω,

−Δ𝑤2 + 𝑢2 − 𝑧 = 𝑓2 in Ω,

−∂𝑤1

∂𝜂
∈ 𝛽1(𝑢1) on ∂Ω,

−∂𝑤2

∂𝜂
∈ 𝛽2(𝑢2) on ∂Ω.
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From where it follows that 𝐿∞(Ω)×𝐿∞(Ω) ⊂ 𝑅(𝐼+𝐴). Also, since ∥(𝑢1𝜖, 𝑢2𝜖)∥∞ ≤
∥(𝑓1, 𝑓2)∥∞, we have that ∥(𝑢1, 𝑢2)∥∞ ≤ ∥(𝑓1, 𝑓2)∥∞, and the proof of (i) is com-
plete.

(ii) Let (𝑣1, 𝑣2) ∈ 𝐿∞(Ω) × 𝐿∞(Ω) . Then by (i), (𝐼 + 𝜆𝐴)−1(𝑣1, 𝑣2) =
(𝑢1, 𝑢2) ∈ 𝐿∞(Ω) × 𝐿∞(Ω). Now, 𝑢1 = (𝐼 + 𝜆𝐴𝜙1𝛽1)

−1(𝑣1 − 𝜆𝑧) and 𝑢2 =
(𝐼 + 𝜆𝐴𝜙2𝛽2)

−1(𝑣2 + 𝜆𝑧), with 𝑧− ∈ 𝛾(𝑤1 − 𝑤2), 𝑤𝑖 ∈ 𝜙𝑖(𝑢𝑖), 𝑖 = 1, 2. Hence,
(𝐼 + 𝜆𝐴𝜙1𝛽1)

−1(𝑣1) → 𝑣1 (see [5, Teorema B’]) and 𝑣1 − 𝜆𝑧 → 𝑣1. Therefore
(𝐼 + 𝜆𝐴𝜙1𝛽1)

−1(𝑣1 − 𝜆𝑧) → 𝑣1, and similarly (𝐼 + 𝜆𝐴𝜙2𝛽2)
−1(𝑣2 + 𝜆𝑧) → 𝑣2. From

here, since (𝐼 + 𝜆𝐴)−1(𝑣1, 𝑣2) ∈ 𝐷(𝐴), it follows that (𝑣1, 𝑣2) ∈ 𝐷(𝐴).

Now we can stablish the main result of this section.

Theorem 1.10. Suppose 𝜙𝑖 and 𝛽𝑖 are maximal monotone graphs in ℝ × ℝ,
with 0 ∈ 𝜙𝑖(0), 0 ∈ 𝛽𝑖(0) and 𝐷(𝜙𝑖) = ℝ. Suppose 𝛾 is a nondecreasing
function with 𝐷(𝛾) = ℝ. Then the operator 𝐴 is m-T-accretive in 𝑋 and

𝐷(𝐴) = 𝐿1(Ω)× 𝐿1(Ω).

Proof. Since the closure of a T-accretive operator is T-accretive, by the above
proposition 𝐴 is T-accretive in 𝑋. On the other hand, by the above proposition
we have

𝑋 = 𝐿∞(Ω)× 𝐿∞(Ω) ⊂ 𝑅(𝐼 + 𝜆𝐴) = 𝑅(𝐼 + 𝜆𝐴).

Consequently, 𝐴 is m-T-accretive in 𝑋.

As consequence of the Crandall-Liggett Theorem and the above theorem we have
that for every initial data u0 = (𝑢01, 𝑢02) ∈ 𝑋 the system (I) has a mild-solution
given by

u(𝑥, 𝑡) = 𝑆(𝑡)u0,

being
(
𝑆(𝑡)

)
𝑡≥0

the order-preserving contraction semigroup generated by 𝐴.

2. The Stabilization Results

In this section we stablish that the mild-solutions of system (I) stabilize as
𝑡 → ∞ by converging to a constant function. We use the Lyapunov method
for semigroups of nonlinear contractions introduced by A. Pazy [19].

In all this section we assume that we are under the assumptions of Theorem 1.10,(
𝑆(𝑡)

)
𝑡≥0

is the order-preserving contraction semigroup generated by 𝐴 and 𝐽𝜆

is the resolvent of the operator 𝐴.
In order to prove the stabilization theorem we need the orbits to be relatively

compact. This result is obtained using the decomposition of Remark 1.4 and the
precompactness result obtained in [1] for the Filtration Equation.

Theorem 2.1. Suppose 𝜙𝑖 : ℝ → ℝ are increasing continuous functions for
𝑖 = 1, 2. Then,

(i) If 𝐵×𝐵′ ⊂ 𝐿∞(Ω)×𝐿∞(Ω) is bounded, 𝐽𝜆(𝐵×𝐵′) is a relatively compact
subset of 𝑋.

(ii) For every u0 = (𝑢01, 𝑢02) ∈ 𝑋 the orbit 𝛾
(
u0

)
= {𝑆(𝑡)u0 : 𝑡 ≥ 0} is a

relatively compact subset of 𝑋.
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Proof. (i) Let 𝐵 × 𝐵′ ⊂ 𝐿∞(Ω) × 𝐿∞(Ω) be bounded. Take (𝑣1𝑛, 𝑣2𝑛) ∈
𝐵 × 𝐵′, 𝑛 = 1, 2, . . . , and (𝑢1𝑛, 𝑢2𝑛) = 𝐽𝜆(𝑣1𝑛, 𝑣2𝑛). By Remark 1.4, 𝑢1𝑛 =
(𝐼 + 𝜆𝐴𝜙1𝛽1)

−1(𝑣1𝑛 − 𝜆𝑧𝑛) and 𝑢2𝑛 = (𝐼 + 𝜆𝐴𝜙2𝛽2)
−1(𝑣2𝑛 + 𝜆𝑧𝑛), with 𝑧𝑛 ∈

𝛾(𝜙1(𝑢1𝑛) − 𝜙2(𝑢2𝑛)). Now, {𝑣𝑖𝑛 ± 𝜆𝑧𝑛} are bounded sequences in 𝐿∞(Ω).
Hence, by [1, Theorem 2.6], there exists a subsequence of {(𝑢1𝑛, 𝑢2𝑛)} which
converges in 𝑋.

(ii) First consider u0 ∈ 𝒟(𝐴) ∩ (
𝐿∞(Ω)× 𝐿∞(Ω)

)
. Then, since

∥𝑆(𝑡)u0∥∞ ≤ ∥u0∥∞ for all 𝑡 ≥ 0,

as consequence of (i), we have that 𝐽𝜆(𝛾(u0)) is a relatively compact subset of 𝑋
for all 𝜆 > 0. Moreover,

∥𝑆(𝑡)u0 − 𝐽𝜆𝑆(𝑡)u0∥1 ≤ 𝜆 inf{∥v∥1 : v ∈ 𝐴u0}.
Hence, 𝛾(u0) is relatively compact in 𝑋.

On the other hand, it is easy to see that 𝒟(𝐴)∩ (
𝐿∞(Ω)×𝐿∞(Ω)

)
is dense in

𝑋. Thus, given u0 ∈ 𝑋 and 𝜖 > 0, there exists v0 ∈ 𝒟(𝐴)∩ (
𝐿∞(Ω)×𝐿∞(Ω)

)
such that ∥u0 − v0∥1 < 𝜖. So we have,

sup
𝑡≥0

inf
𝑠≥0

∥𝑆(𝑡)u0 − 𝑆(𝑠)v0∥1 ≤ sup
𝑡≥0

∥𝑆(𝑡)u0 − 𝑆(𝑡)v0∥1 ≤ ∥u0 − v0∥𝑋 < 𝜖.

From where it follows that 𝛾(u0) is relatively compact in 𝑋.

Now we come to the main result.

Theorem 2.2. Let 𝛽𝑖 be maximal monotone graphs in ℝ× ℝ with 0 ∈ 𝛽𝑖(0)
and 𝜙𝑖 : ℝ → ℝ increasing continuous functions with 𝜙𝑖(0) = 0. Suppose also that
𝛾 : ℝ → ℝ is a nondecreasing continuous function. Let (𝑢01, 𝑢02) ∈ 𝑋. Then, if
u(𝑥, 𝑡) is the mild-solution of system (I), there exists constants 𝐾𝑖, 𝐾𝑖 ∈ 𝛽−1

𝑖 {0}
with 𝛾(𝜙1(𝐾1)− 𝜙2(𝐾2)) = 0, such that

∥u(., 𝑡)− (𝐾1, 𝐾2)∥𝑋 → 0 as 𝑡→ ∞.

Proof. Let 𝒱 : 𝑋 → [0,+∞] defined by

𝒱(𝑢1, 𝑢2) =

⎧⎨⎩
∫
Ω
𝑗1(𝑢1) +

∫
Ω
𝑗2(𝑢2), if 𝑗𝑖(𝑢𝑖) ∈ 𝐿1(Ω), 𝑖 = 1, 2

+∞, if 𝑗𝑖(𝑢𝑖) ∕∈ 𝐿1(Ω), 𝑖 = 1 or 2

being ∂𝑗𝑖 = 𝜙𝑖. Since 𝜙𝑖 is increasing, it is easy to see that 𝑗𝑖 is continuous and
convex. Hence 𝒱 is lower semicontinuous (see [9, p. 160]).

Let 𝒲 : 𝑋 → [0,+∞] defined by

1

2

∫
Ω

(∇𝜙1(𝑢1))2 + ∫
∂Ω

𝜌1 ∘ 𝜙1(𝑢1) + 1

2

∫
Ω

(∇𝜙2(𝑢2))2 + ∫
∂Ω

𝜌2 ∘ 𝜙2(𝑢2)+
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+

∫
Ω

𝛾(𝜙1(𝑢1)− 𝜙2(𝑢2))(𝜙1(𝑢1)− 𝜙2(𝑢2)),

when the integrals are finite, and +∞, when they are not, being ∂𝜌𝑖 = 𝛽𝑖 ∘ 𝜙−1
𝑖 .

Let u = (𝑢1, 𝑢2) ∈ 𝐿∞(Ω)× 𝐿∞(Ω) be. By Proposition 1.9, (𝑣1, 𝑣2) = 𝐽𝜆u ∈
𝐿∞(Ω) × 𝐿∞(Ω). Moreover, by Remark 1.4, 𝑣1 = (𝐼 + 𝜆𝐴𝜙1𝛽1

)−1(𝑢1 − 𝜆𝑧) and
𝑣2 = (𝐼 + 𝜆𝐴𝜙2𝛽2)

−1(𝑢2 + 𝜆𝑧), with 𝑧 = 𝛾(𝜙1(𝑢1)− 𝜙2(𝑢2)) ∈ 𝐿∞(Ω).
Since 𝑢𝑖 ∈ 𝐿∞(Ω), (𝑢1, 𝑢2) ∈ 𝒟(𝒱), and by [8, Theorem 12] it follows that

𝐽𝜆u ∈ 𝒟(𝒱) ∩ 𝒟(𝒲). In the next step we prove that

𝒱(𝐽𝜆u) + 𝜆𝒲(𝐽𝜆u)− 𝒱(u) ≤ 0. (8)

Since 𝜙𝑖 is continuous and increasing, it is easy to see that

1

𝜆

(𝒱(𝐽𝜆u)−𝒱(u)) ≤ ∫
Ω

1

𝜆
((𝐼+𝜆𝐴𝜙1𝛽1)

−1(𝑢1−𝜆𝑧)−𝑢1) 𝜙1((𝐼+𝜆𝐴𝜙1𝛽1)
−1(𝑢1−𝜆𝑧))+

+

∫
Ω

1

𝜆
((𝐼 + 𝜆𝐴𝜙2𝛽2)

−1(𝑢2 + 𝜆𝑧)− 𝑢2) 𝜙2((𝐼 + 𝜆𝐴𝜙2𝛽2)
−1(𝑢1 + 𝜆𝑧)) =

=

∫
Ω

1

𝜆
((𝐼 + 𝜆𝐴𝜙1𝛽1)

−1(𝑢1 − 𝜆𝑧)− (𝑢1 − 𝜆𝑧)) 𝜙1((𝐼 + 𝜆𝐴𝜙1𝛽1)
−1(𝑢1 − 𝜆𝑧))+

+

∫
Ω

1

𝜆
((𝐼 + 𝜆𝐴𝜙2𝛽2)

−1(𝑢2 + 𝜆𝑧)− (𝑢2 + 𝜆𝑧)) 𝜙2((𝐼 + 𝜆𝐴𝜙2𝛽2)
−1(𝑢1 + 𝜆𝑧))−

−
∫
Ω

𝑧(𝜙1((𝐼 + 𝜆𝐴𝜙1𝛽1)
−1(𝑢1 − 𝜆𝑧))− 𝜙2((𝐼 + 𝜆𝐴𝜙2𝛽2)

−1(𝑢1 + 𝜆𝑧))).

Now, arguing as in [1, Theorem 3.3], we obtain that

1

𝜆

(𝒱(𝐽𝜆u)− 𝒱(u)) ≤ −𝒲(𝐽𝜆u),

and (8) follows.

Replacing u by 𝐽𝑘−1
𝜆 u in (8) we find

𝒱(𝐽𝑘
𝜆u) + 𝜆𝒲(𝐽𝑘

𝜆u)− 𝒱(𝐽𝑘−1
𝜆 u

) ≤ 0.

Summing these inequalities from 𝑘 = 1 to 𝑘 = 𝑛 and choosing 𝜆 = 𝑡/𝑛, it yields

𝒱(𝐽𝑛
𝑡
𝑛
u) +

𝑛∑
𝑘=1

𝑡

𝑛
𝒲(𝐽𝑘

𝑡
𝑛
u)− 𝒱(u) ≤ 0. (9)

Next we define 𝐹𝑛(𝜏) = 𝒲(𝐽𝑘
𝑡
𝑛
u) for (𝑘 − 1)𝑡/𝑛 < 𝜏 ≤ 𝑘𝑡/𝑛. Then

𝑛∑
𝑘=1

𝑡

𝑛
𝒲(𝐽𝑘

𝑡
𝑛
u) =

∫ 𝑡

0

𝐹𝑛(𝜏) 𝑑𝜏.

On the other hand, by the Crandall-Liggett Theorem

lim
𝑛→∞ 𝐽𝑘

𝑡
𝑛
u = 𝑆(𝜏)u in 𝑋.
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Now, arguing as in Proposition 1.9 we have that {𝜙𝑖((𝐽𝑘
𝑡
𝑛
u)𝑖) }∞𝑛=1 are bounded

sequences in 𝐻2(Ω). Hence there exists subsequences, which we denote again as
before, such that

𝜙𝑖((𝐽
𝑘
𝑡
𝑛
u)𝑖) → 𝜙𝑖((𝑆(𝜏)u)𝑖, in 𝐿2(Ω) for 𝑖 = 1, 2,

𝜙𝑖((𝐽
𝑘
𝑡
𝑛
u)𝑖) → 𝜙𝑖((𝑆(𝜏)u)𝑖) in 𝐿2(∂Ω) for 𝑖 = 1, 2.

Consider the functionals

𝒰0(𝑣) =

⎧⎨⎩
1
2

∫
Ω

(∇(𝑣)
)2
, if

(∇(𝑣)
)2 ∈ 𝐿1(Ω)

+∞, if
(∇(𝑣)

)2 ∕∈ 𝐿1(Ω)

𝒰𝑖(𝑣) =

⎧⎨⎩
∫
∂Ω
𝜌𝑖(𝑣), if 𝜌𝑖(𝑣) ∈ 𝐿1(∂Ω)

+∞, if 𝜌𝑖(𝑣) ∕∈ 𝐿1(∂Ω),

and

𝒰3(𝑢1, 𝑢2) =

⎧⎨⎩
∫
Ω
𝛾(𝜙1(𝑢1)− 𝜙2(𝑢2)), if 𝛾(𝜙1(𝑢1)− 𝜙2(𝑢2)) ∈ 𝐿1(∂Ω)

+∞, if 𝛾(𝜙1(𝑢1)− 𝜙2(𝑢2)) ∕∈ 𝐿1(∂Ω),

in 𝐿2(Ω), 𝐿1(∂Ω) and 𝐿1(Ω) × 𝐿1(Ω), respectively. It is easy to see that these
functional are lower semicontinuous; whence

𝒲(
𝑆(𝜏)u

) ≤ lim inf
𝑛→∞ 𝒲(

(𝐽𝑘
𝑡
𝑛
u)

)
= lim inf

𝑛→∞ 𝐹𝑛(𝜏).

Now, by Fatou’s Lemma∫ 𝑡

0

𝒲(
𝑆(𝜏)u

)
𝑑𝜏 ≤

∫ 𝑡

0

lim inf
𝑛→∞ 𝐹𝑛(𝜏) 𝑑𝜏 ≤ lim inf

𝑛→∞

∫ 𝑡

0

𝐹𝑛(𝜏) 𝑑𝜏,

that is, ∫ 𝑡

0

𝒲(
𝑆(𝜏)u

)
𝑑𝜏 ≤ lim inf

𝑛→∞

𝑛∑
𝑘=1

𝑡

𝑛
𝒲(𝐽𝑘

𝑡
𝑛
u). (10)

Hence, taking limits as 𝑛→ ∞ in (9) we obtain that

𝒱(𝑆(𝑡)u)+ ∫ 𝑡

0

𝒲(
𝑆(𝜏)u

)
𝑑𝜏 − 𝒱(u) ≤ 0,

from where it follows that ∫ ∞

0

𝒲(
𝑆(𝜏)u

)
𝑑𝜏 ≤ 𝒱(u).
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Thus, there exists a sequence 𝑡𝑛 → ∞, such that 𝒲(
𝑆(𝑡𝑛)u

) → 0 when
𝑛→ ∞. Now, by Theorem 2.1 there exists a subsequence {𝑡𝑛𝑘

} such that

lim
𝑘→∞

𝑆(𝑡𝑛𝑘
)u = (𝑣1, 𝑣2).

Since 𝒲(
𝑆(𝑡𝑛𝑘

)u
) → 0, we have that {𝜙𝑖((𝑆(𝑡𝑛𝑘

)u)𝑖)}∞𝑘=1 are bounded se-

quences in 𝐻2(Ω). Hence, reasoning as before, it follows that

𝒲(𝑣1, 𝑣2) ≤ lim inf
𝑛→∞ 𝒲(

𝑆(𝑡𝑛𝑘
)u

)
= 0,

and consequently, 𝒲(𝑣1, 𝑣2) = 0.
Therefore, each 𝑣𝑖 is a constant such that 𝑣𝑖 ∈ 𝛽−1

𝑖 (0) and 𝛾(𝜙1(𝑣1)−𝜙2(𝑣2)) =
0. From where it is easy to see that (𝑣1, 𝑣2) is an equilibrium.

Now, since 𝐿∞(Ω) × 𝐿∞(Ω) is dense in 𝐷(𝐴) = 𝑋 and each 𝑆(𝑡) is a
T-contraction, from the above we obtain easily the conclusion in the general case
u ∈ 𝑋.

Remark 2.3. For some particular boundary conditions we can be more precise about
the constants 𝐾1,𝐾2 of the above theorem. In fact: when 𝛽𝑖 = ℝ × {0}, for
𝑖 = 1, 2, then 𝐾1 = 𝐾2 = 0, i.e., with Dirichlet boundary conditions the solutions
of system (I) stabilizes to (0, 0). On the other hand, if we have Neumann boundary
conditions in both diffussion proceses, that is, 𝛽𝑖 = {0} × ℝ, for 𝑖 = 1, 2, we have
the following result.

Theorem 2.4. Suppose we are under the assumptions of Theorem 2.2, and 𝛽𝑖
correspond to Neumann boundary conditions, i.e., 𝛽𝑖 = ℝ× {0}. Then, for every
initial data (𝑢0, 𝑣0) ∈ 𝑋, if u(𝑥, 𝑡) is the mild-solution of system (I) we have

lim
𝑡→∞ ∥u(., 𝑡)− (𝐾1,𝐾2)∥𝑋 = 0,

where 𝐾1 and 𝐾2 are constants satisfying

𝐾1 +𝐾2 =
1

𝜇(Ω)
{
∫
Ω

𝑢0 +

∫
Ω

𝑣0}.

Proof. By a density argument, we can assume that (𝑢0, 𝑣0) ∈ 𝐿∞(Ω)×𝐿∞(Ω). For
𝜆 > 0, define (𝑢𝑖, 𝑣𝑖) by (𝑢0, 𝑣0) = (𝑢0, 𝑣0), (𝑢𝑖+1, 𝑣𝑖+1) = 𝐽𝜆(𝑢𝑖, 𝑣𝑖), 𝑖 = 1, 2, . . . .
Letting u𝜆(𝑡) = (𝑢𝑖, 𝑣𝑖) for 𝑖𝜆 ≤ 𝑡 < (𝑖 + 1)𝜆, we have by the Crandall-Liggett
Theorem that

u(., 𝑡) = lim
𝜆↓0

u𝜆(𝑡) in 𝑋,

and the limit is uniform for 𝑡 in compact subsets of [0,∞[. Now, by Remark 1.4,

𝑢𝑖+1 = (𝐼 + 𝜆𝐴𝜙1,𝛽1)
−1(𝑢𝑖 − 𝜆𝑧𝑖)

𝑣𝑖+1 = (𝐼 + 𝜆𝐴𝜙2,𝛽2)
−1(𝑣𝑖 + 𝜆𝑧𝑖),

with 𝑧𝑖 = 𝛾
(
𝜙1(𝑢𝑖)−𝜙2(𝑣𝑖)

)
. From here, taking 𝑓 ≡ 1 in the definition of 𝐴𝜙𝑖,𝛽𝑖 ,

it follows that ∫
Ω

𝑢𝑖+1 =

∫
Ω

𝑢𝑖 − 𝜆

∫
Ω

𝑧𝑖
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and ∫
Ω

𝑣𝑖+1 =

∫
Ω

𝑣𝑖 + 𝜆

∫
Ω

𝑧𝑖.

Hence, ∫
Ω

𝑢𝑖+1 +

∫
Ω

𝑣𝑖+1 =

∫
Ω

𝑢𝑖 +

∫
Ω

𝑣𝑖.

Consequently,∫
Ω

(
u(., 𝑡)

)
1
+

∫
Ω

(
u(., 𝑡)

)
2
= lim

𝜆↓0

∫
Ω

(
u𝜆(𝑡)

)
1
+

∫
Ω

(
u𝜆(𝑡)

)
2
=

∫
Ω

𝑢0 +

∫
Ω

𝑣0.

Applying Theorem 2.2, we conclude the proof.

Acknowledgement. We want to express our thanks to Prof. F. Andreu for many
stimulating talks.
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