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1. Introduction

We consider the following degenerate nonlinear diffusion problem with a
nonlinear gradient term and source

(I)




ut = ∆um − ‖∇uα‖q + up in Q = Ω × (0,∞)

u = 0 on S = ∂Ω × (0,∞)

u(x, 0) = u0(x) ≥ 0 in Ω,

where Ω is a bounded smooth domain inRN , N ≥ 1, m ≥ 1, α > 0,
p ≥ 1 and q ≥ 1.

Equation (I) without the gradient term has been extensively studied (see
for instance [Sa] and the references therein). It is known that ifp < m there
exists a global mild solution for initial datau0 ∈ L1(Ω) and if p > m
solutions may blow up in finite time.

For the casem = α = 1, equation (I) was introduced by M. Chipot and
F. B. Weissler [ChW] in order to investigate the effect of a damping term
on existence or nonexistence of solutions. On the other hand, Ph. Souplet in
[So2] proposes a model in population dynamics, where this type of equations
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describes the evolution of the population density of a biological species
under the effect of certain natural mechanism.

In the nondegenerate semilinear case, several authors have studied the
existence of nonglobal positive solutions, giving conditions for blow-up
under certain assumptions onp, q, N and Ω (see for instance [ChW],
[KP], [F], [Q1], [Q2], [So1], [So2], [SW1], [SW2]). Global existence for
nonnegative initial data has been proved in the caseq ≥ p > 1 (see [F],
[Q2], [SW2]). Now, in the degenerate case we only know the blow-up results
of M. Wiegner ([W1], [W2]) and Ph. Souplet and F. B. Weissler ([SW2])
for classical solutions. In particular, in [SW2] and [W2] it is remarked that
problem (I) does not admit global classical solutions in the following cases:

(i) p > m ≥ 2, αq < p,

(ii) α = m
2 , q = 2, p > m,

(iii) α = m
2 , q = 2, p = m, m > 2.

On the other hand, the existence of solutions of the Cauchy problem for
the equation

ut = ∆um + ‖∇uα‖q

has been studied by D. Andreucci in [An] under optimal assumptions on
initial data.

Concerning equation (I), we want to stress that the diffusion term∆um

degenerates foru = 0, so that one can not expect in general an existence
result for classical solutions.

The aim of this paper is to prove the existence of global weak solutions
for nonnegative initial data inLm+1(Ω) under the assumptions:

(H) m ≥ 1, α >
m

2
, 1 ≤ q < 2 and 1 ≤ p < αq.

Remark that a more natural assumption would be1 ≤ p < max{m,αq}.
We assume (H) for the rest of the paper since in the case1 ≤ p < m the
existence of solutions of problem (I) follows by comparison with solutions
of ut = ∆um + up.

Finally, let us notice that, to our knowledge, the question of uniqueness
of solutions of this kind of equations is still an open problem.

To finish this introduction we give some of the notation and definitions
used later. Concerning the vector-valued functions we follow the notation
and definitions of [Br]. We denote byD′(]0, T [;X) the space of theX-
valued distributions on]0, T [, i.e., the space of all continuous linear func-
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tions from D(]0, T [) into X. Given a distributionu ∈ D′(]0, T [;X), its
derivative is denoted by∂tu and it is defined as the distribution

〈∂tu, ϕ〉 = −〈u, ϕ′〉, ∀ ϕ ∈ D(]0, T [).

If u ∈ W 1,1(0, T ;X), there exists almost every where the derivative ofu,
defined by

du

dt
(t) = lim

h→0

u(t+ h) − u(t)
h

,

moreover,du
dt ∈ L1(0, T ;X). We will use later the following result given in

[Br, Proposition A.6].

Lemma 1.1.Given u ∈ L1(0, T ;X), if ∂tu ∈ L1(0, T ;X), then there
exists ũ ∈ W 1,1(0, T ;X), such thatu = ũ and ∂tu = dũ

dt a.e. in ]0, T [.

This paper is organized as follows. Some a priori estimates for smooth
solutions are obtained in Section 2. In the third section we establish the
existence of global weak solutions for initial data inLm+1(Ω). In Section
4 we present a model in population dynamics involving problem (I). In
appendix A, we prove the existence of weak solutions for initial data in
L1(Ω) under the restrictionm < αq. Without this assumption the existence
of mild solutions is obtained. Finally, in appendix B, using a modification
of the Bernstein technique due to Ph. Bénilan, it is shown more regularity
for the solution in the one dimensional case.

2. A priori estimates for smooth solutions

In this section we shall establish a priori estimates for the smooth solutions
which will be fundamental for the rest of the paper. From now on we assume
Ω to be a bounded domain inRN with smooth boundary∂Ω of classC1.

For k ∈ R, 0 < k ≤ 1, let f ∈ C1(R), satisfying f(k) = 0
and f(r) ≤ (r − k)p for all r ≥ 0 and F ∈ C1(RN ,R), satisfying
‖ξ‖q − 1 ≤ F (ξ) ≤ ‖ξ‖q for all ξ ∈ R

N . Consider the problem

(P )




ut = ∆um − F (∇uα) + f(u) in QT = Ω × (0, T )

u = k on ST = ∂Ω × (0, T )

u(x, 0) = u0(x) ≥ k in Ω.
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Proposition 2.1.Let u be a smooth solution of problem (P). Under the
assumptions:

(H1) m ≥ 1, α > 0, q ≥ 1 and 1 ≤ p < αq,

for any 1 ≤ s < ∞ and τ > 0, there exists a constantC(τ, s) such that

(2.1) ‖u(t)‖Ls(Ω) ≤ C(τ, s) for every t ≥ τ > 0.

Moreover, if u0 ∈ Lm+1(Ω), then

(2.2) ‖u(t)‖Lm+1(Ω) ≤ C(‖u0‖Lm+1(Ω)) for every t ≥ 0.

Proof.By the maximum principle we havek ≤ u. Given s > 0, multiplying
the equation of (P) by(uα − kα)s and performing obvious manipulations
it yields

d

dt

∫
Ω
Φs(u(t)) +

(
q

s+ q

)q ∫
Ω

‖∇((u(t)α − kα))
s+q

q ‖q ≤

≤ C1

∫
Ω

(u(t)α − kα)s+ p
α + C1

∫
Ω

(u(t)α − kα)s,

where

Φs(r) =
∫ r

k
(τα − kα)s dτ.

Now, by the Poincaŕe inequality, we have∫
Ω

(u(t)α − kα)s+q ≤ C2

∫
Ω

‖∇(u(t)α − kα)
s+q

q ‖q.

Thus, we have

(2.3)

d

dt

∫
Ω
Φs(u(t)) + C3(s)

∫
Ω

(u(t)α − kα)s+q ≤

≤ C1

∫
Ω

(u(t)α − kα)s+ p
α + C1

∫
Ω

(u(t)α − kα)s.

On the other hand, sincep < αq, using Young inequality, we have for every
ε > 0,

(2.4)

∫
Ω

(u(t)α − kα)s+ p
α +

∫
Ω

(u(t)α − kα)s ≤

≤ ε

∫
Ω

(u(t)α − kα)q+s + C(ε, s)
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Then, takingε small enough, by (2.3) and (2.4), we get

(2.5)
d

dt

∫
Ω
Φs(u(t)) + C4(s)

∫
Ω

(u(t)α − kα)s+q ≤ C5(s).

Now, sinceαq > 1, by Hölder inequality, it is not difficult to see that

C6(s)
∫

Ω
(u(t)α − kα)s+q + C7(s) ≥

( ∫
Ω
Φs(u(t))

)α(s+q)
αs+1

.

Hence, from (2.5) we get the following differential inequality,

d

dt

∫
Ω
Φs(u(t)) + d1(s)

( ∫
Ω
Φs(u(t))

)α(q+s)
αs+1

≤ d2(s),

which implies, from a lemma of Ghidaglia [T, Lemma 5.1], that

∫
Ω

∫ u

k
(τα − kα)sdτ ≤

(
d2(s)
d1(s)

) αs+1
α(q+s)

+

+
(
d3(s, ‖u0‖Lαs+1(Ω)) + d1(s)

(
α(q + s)
αs+ 1

− 1
)
t

)− αs+1
αq−1

.

From here, by convexity, we finish the proof of (2.1).
On the other hand, in the caseu0 ∈ Lm+1(Ω), we obtain

∫
Ω

∫ u

k
(τα − kα)

m
α dτ ≤ d4(m) +

(
d5(‖u0‖Lm+1(Ω))

)− m+1
αq−1

,

and consequently (2.2) holds.

Our main goal now is to get uniform estimates for smooth solutions
independent on time when the initial data are inL∞(Ω), and also anLm+1−
L∞ regularizing effect.

Proposition 2.2.Assume that (H1) holds. Letu be a global smooth solution
of problem (P). Then

(i) If u0 ∈ L∞(Ω), there exists a constantC, depending only on‖u0‖L∞(Ω),
such that

(2.6) ‖u‖L∞(Q) ≤ C.
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(ii) If u0 ∈ Lm+1(Ω) and τ > 0, there exists a constantC =
C(τ, ‖u0‖Lm+1(Ω)), such that

(2.7) ‖u(t)‖L∞(Ω) ≤ C for all t ≥ τ.

Proof. (i) The casep < m is a consequence of [Sa, Theorem 1.3] and the
maximum principle.

If m ≤ p, we consider the functionw(x) = Cea·x, where C is a
constant anda ∈ R

N is a fixed vector. LetL be the differential operator

L(v) = vt −∆ϕ(v) + F (∇vα) − f(v)

with F, f choosen as above andϕ ∈ C∞(R), ϕ(r) = rm for r ≥ k and
ϕ′ ≥ c > 0. It is easy to see that

L(w) ≥ −m2Cm‖a‖2emR‖a‖ − CpepR‖a‖ + αqCαq‖a‖qe−αqR‖a‖,

where R > 0 is such thatΩ ⊂ B(0, R). Consequently, sincep < αq,
choosingC large enough it follows that‖u0‖L∞(Ω) ≤ w and L(u) ≤
0 ≤ L(w). Then, by the maximum principle,u ≤ w and the conclusion
holds.

(ii) Let τ > 0 fixed, applying the above proposition, [K, Theorem 1]
and the maximum principle,

‖u(τ)‖L∞(Ω) ≤ C(τ, ‖u0‖Lm+1(Ω)).

Now, if we consider problem (P) with initial datumu(τ), by (i) the proof
is concluded.

In the next result we obtain some estimates for the gradients.

Proposition 2.3.Assume (H1) holds. Letu be a smooth solution of problem
(P) in QT with initial datum u0 ∈ Lm+1(Ω). Then, for any0 < ε ≤ m
there exists a constantK, depending on‖u0‖Lm+1(Ω), T and ε, such that

(2.8)
∫ T

0

∫
Ω

‖∇um+ε
2 ‖2 ≤ K.

In particular, if u0 ∈ L∞(Ω) and α > m
2 , then

(2.9)
∫ T

0

∫
Ω

‖∇uα‖2 ≤ K.
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Proof.By the maximun principle we haveu(t)ε −kε ≥ 0. Hence, multiply-
ing the equation of (P) byu(t)ε−kε and performing obvious manipulations
it yields

(2.10)

∫ T

0

d

dt

∫
Ω
Ψ(u(t)) +

4mε
(m+ ε)2

∫
QT

‖∇(u(t))
m+ε

2 ‖2 ≤

≤
∫

QT

f(u(t))(u(t)ε − kε) +
∫

QT

(u(t)ε − kε),

where

Ψ(r) =
∫ r

k
(τ ε − kε) dτ.

On the other hand, multiplying the equation of (P) by(u(t)α − kα)
m
α and

working as in the proof of Proposition 2.1, it is not difficult to obtain

(2.11)
∫

QT

uαq+m ≤ C(T, ‖u0‖Lm+1(Ω)).

Finally, from (2.10) and (2.11), (2.8) is obtained. (2.9) is a consequence of
(2.8) and (i) of Proposition 2.2.

In the particular caseq = 1, we can obtain the following energy esti-
mates.

Proposition 2.4.Let u be a smooth solution of problem (P) inQT with
initial datum u0 ∈ L∞(Ω). Under the assumptions:

(H2) m ≥ 1, α >
m

2
, q = 1 and 1 ≤ p < α,

given τ > 0, there exist constantsC and K such that

(2.12) ‖∇u(t)m‖L2(Ω) ≤ C(τ, ‖u0‖L∞(Ω)), ∀ τ ≤ t ≤ T.

(2.13)
∫ T

τ

∫
Ω
ut(um)t ≤ K(τ, T, ‖u0‖L∞(Ω)).

Proof.Multiplying the equation of (P) by(um)t we get

(2.14)
0 ≤

∫
Ω
ut(um)t =

= −
∫

Ω
∇um·∇(um)t −

∫
Ω
F (∇uα)(um)t +

∫
Ω
f(u)(um)t.
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If we set

G(r) =
∫ r

0
f(τ)mτm−1 dτ,

from (2.14) it follows that

(2.15) 0 ≤
∫

Ω
ut(um)t = − d

dt
E[u(t)] −

∫
Ω
F (∇uα)(um)t,

where the energyE[u(t)] is defined by

E[u(t)] =
1
2

∫
Ω

‖∇u(t)m‖2 −
∫

Ω
G(u(t)).

On the other hand, by Young inequality, we have for anyε > 0,

(2.16)
∣∣∣∣
∫

Ω
F (∇uα)(um)t

∣∣∣∣ ≤ 1
2ε2

∫
Ω
F (∇uα)2 +

ε2

2

∫
Ω

((um)t)
2.

Now, by Proposition 2.2, there is a constantM1 > 0 such that

(2.17) ‖u‖L∞(QT ) ≤ M1.

Hence,

((um)t)
2 = mum−1ut(um)t ≤ M2ut(um)t.

Thus, takingε such that ε2

2 M2 <
1
2 , from (2.15) and (2.16) it follows that

(2.18) 0 ≤ 1
2

∫
Ω
ut(um)t ≤ − d

dt
E[u(t)] +M3

∫
Ω
F (∇uα)2.

Consequently

(2.19)
d

dt
E[u(t)] ≤ M3

∫
Ω
F (∇uα)2.

Now, as a consequence of (2.17), there exists a constantN > 0, such that
E[u(t)] +N ≥ 0, and from (2.19), we can write

(2.20)
d

dt

(
E[u(t)] +N

)
≤ M3

∫
Ω
F (∇uα)2.
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On the other hand, by Proposition 2.3, it is easy to see that

(2.21)
∫ t+h

t

(
E[u(s)] +N

)
ds ≤ C1h+ C2

and

(2.22)
∫ t+h

t

∫
Ω
F (∇uα)2 ≤ C3h+ C4.

Then, from (2.20), (2.21), (2.22) and the uniform Gronwall’s Lemma [T,
Lemma 1.1], we obtain (2.12). Finally, integrating (2.18) over]τ, T [, we
get

∫ T

τ

∫
Ω
ut(um)t ≤ 2

(
E[u(τ)] − E[u(T )]

)
+ 2M3

∫ T

τ

∫
Ω
F (∇uα)2.

From here, using (2.12) and (2.22), we obtain (2.13).

3. Existence of global weak solutions

In this section we prove the existence of a global weak solution of problem
(I) when the initial datum is inLm+1(Ω) and is nonnegative. Since we only
get the second energy estimate in the particular caseq = 1 ( Proposition
2.4 ), we can not apply the classical compactness methods. To overcome
this difficulty, we use a modification of the method introduced by H. W. Alt
and S. Luckhaus in [AL].

Definition. Given 0 ≤ u0 ∈ Lm+1(Ω), by a weak solution of problem (I)
on QT we mean a functionu ∈ L∞(]τ, T [×Ω) for every 0 < τ < T ,
such thatum ∈ L2(0, T ;H1

0 (Ω)), uα ∈ Lq(0, T ;W 1,q
0 (Ω)) and satisfies

the identity∫
QT

(u0 − u)ξt + ∇um·∇ξ + ‖∇uα‖qξ − upξ = 0

for any functionξ ∈ L2(0, T ;H1
0 (Ω)) ∩L∞(QT ) ∩W 1,∞(0, T ;L∞(Ω))

with ξ(T ) = 0.

We shall say thatu is a global weak solution of problem (I) ifu is a weak
solution onQT for all positive T .

Let us now state our existence result.
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Theorem 3.1 (Global Existence).Assume that (H) holds. For every non-
negative initial datumu0 ∈ Lm+1(Ω) there exists a global weak solution
of problem (I) such that, for everyτ > 0

(3.1) ‖u‖L∞(]τ,T [×Ω) ≤ C(‖u0‖Lm+1(Ω), τ).

Moreover, if u0 ∈ L∞(Ω) then

(3.2) ‖u‖L∞(Q) ≤ C(‖u0‖L∞(Ω)).

Proof. To prove the existence of solution we will consider a sequence of
approximated nondegenerate problems which can be solved in a classical
sense. For simplicity we consider the caseq > 1 for which it is not necessary
to approximate the norm. To avoid the degeneracy we consider a sequence
of functions u0,n ∈ D(Ω), satisfying:

u0,n → u0 in L1(Ω) and ‖u0,n‖m+1 ≤ ‖u0‖m+1 ∀ n ∈ N.

Consider also sequences of functions(ϕn), (fn) and (gn) satisfying:




ϕn ∈ C∞(R), ϕ′
n(r) ≥ cn > 0 ∀ r > 0, ϕn(0) = 0,

and ϕn(r) = rm ∀ r ≥ 1
n

fn ∈ C∞(R), fn(r) = (r − 1
n)p ∀ r ∈ [ 1

n ,Mn], fn(r) ≤ (r − 1
n)p

and fn(r) constant forr > Mn + 1
n

gn ∈ C∞(R), gn(r) = rα for all r ∈ [ 1
n , Nn]

and gn(r) constant forr > Nn + 1
n .

By a classical result [LSU, Theorem 6.1], the problem




vt = ∆ϕn(v) − ‖∇gn(v)‖q + fn(v) in QT = Ω × (0, T )

v = 1
n on ST = ∂Ω × (0, T )

v(x, 0) = u0,n(x) + 1
n in Ω

has a unique smooth solutionun in QT satisfying

1
n

≤ un(x, t) ≤ Nn(T ) for all (x, t) ∈ QT ,
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with Nn(T ) independent ofNn. Hence, takingNn = Nn(T ), un is a
smooth solution of the problem



wt = ∆wm − ‖∇wα‖q + fn(w) in QT = Ω × (0, T )

w = 1
n on ST = ∂Ω × (0, T )

w(x, 0) = u0,n(x) + 1
n in Ω.

Then, by Proposition 2.2, forτ > 0 we have

un(x, t) ≤ C(‖u0‖m+1, τ) for all n ∈ N, x ∈ Ω andt ≥ τ .

Consequently we get thatun is a smooth solution of the problem

(Pn)




(un)t = ∆um
n − ‖∇uα

n‖q + (un − 1
n)p in QT = Ω × (0, T )

un = 1
n on ST = ∂Ω × (0, T )

un(x, 0) = u0,n(x) + 1
n in Ω.

Moreover, as a consequence of Propositions 2.2 and 2.3, the following esti-
mates hold:

(3.3)
‖un(t)‖L∞(Ω) ≤ C(‖u0‖Lm+1(Ω), τ), for all t ≥ τ > 0 and n ∈ N,

(3.4)
∫ T

0

∫
Ω

‖∇um
n ‖2 ≤ K1(‖u0‖Lm+1(Ω), T ) for all n ∈ N,

(3.5)∫ T

τ

∫
Ω

‖∇uα
n‖2 ≤ K2(‖u0‖Lm+1(Ω), τ, T ) for all T ≥ τ > 0 andn ∈ N.

In the next step we are going to see that

(3.6) {un : n ∈ N} is relatively compact inL1(QT ).

Given τ ∈]0, T [ fixed, we consider the Banach space

W = L2(τ, T ;H1
0 (Ω)) ∩ L( 2

q
)′
(]τ, T [×Ω),

with dual
W ′ = L2(τ, T ;H−1(Ω)) + L

2
q (]τ, T [×Ω).
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Let us see first that

(3.7) ‖(un)t‖W ′ ≤ C2(τ, T, ‖u0‖Lm+1(Ω)) ∀n ∈ N.

In fact: let ξ ∈ W with ‖ξ‖W ≤ 1. Then, since(un)t ∈ L2(τ, T ;L2(Ω)),
using (3.4) and (3.5), we have

|〈(un)t, ξ〉W ′,W | =
∣∣∣∣
∫ T

τ

∫
Ω

(un)tξ

∣∣∣∣ =

=
∣∣∣∣
∫ T

τ

∫
Ω

−∇um
n ·∇ξ − ‖∇uα

n‖qξ + (un − 1
n

)pξ

∣∣∣∣ ≤

≤
( ∫ T

τ

∫
Ω

‖∇um
n ‖2

) 1
2
( ∫ T

τ

∫
Ω

‖∇ξ‖2
) 1

2

+

+
( ∫ T

τ

∫
Ω

‖∇uα
n‖2

) q
2

‖ξ‖
L

( 2
q )′ (]τ,T [×Ω)

+

+ C‖ξ‖L2(]τ,T [×Ω) ≤ K1 +K2 + C.

The first step in proving (3.6) is to show that

(3.8) lim
h→0+

∫ T−h

τ

∫
Ω

|un(r+h)−un(r)|dxdr = 0 uniformly in n ∈ N.

First, we claim that
(3.9)∫ T−h

τ

∫
Ω

(un(r+h)−un(r))(um
n (r+h)−um

n (r))dxdr ≤ C3h
2−q
2 ∀n ∈ N.

In fact: taking 0 < h ≤ 1 and having in mind (3.4) and (3.7), it follows
that ∫ T−h

τ

∫
Ω

(un(r + h) − un(r))(um
n (r + h) − um

n (r)) dxdr =

=
∫ T−h

τ

∫
Ω

( ∫ T

τ
(un)s(s)1[r,r+h](s) ds

)
(um

n (r + h) − um
n (r)) dxdr =

=
∫ T−h

τ
〈(un)s,1[r,r+h](s)(u

m
n (r + h) − um

n (r))〉W ′,W dr ≤

≤
∫ T−h

τ
‖(un)s‖W ′‖1[r,r+h](s)(u

m
n (r + h) − um

n (r))‖W dr ≤

≤ C2

∫ T−h

τ
‖1[r,r+h](s)(u

m
n (r + h) − um

n (r))‖W dr =
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= C2

∫ T−h

τ

[( ∫ T

τ

∫
Ω

‖1[r,r+h](s)∇(um
n (r + h) − um

n (r))‖2 dx ds

) 1
2

+

+
( ∫ T

τ

∫
Ω

|1[r,r+h](s)(u
m
n (r + h) − um

n (r))|( 2
q
)′
dx ds

) 2−q
2

]
dr =

= C2

∫ T−h

τ

[
h

1
2

( ∫
Ω

‖∇(um
n (r + h) − um

n (r))‖2 dx

) 1
2

+

+h
2−q
2

( ∫
Ω

|um
n (r + h) − um

n (r)|( 2
q
)′
dx

) 2−q
2

]
dr ≤

≤ C2h
2−q
2

[
T

1
2

( ∫ T−h

τ

∫
Ω

‖∇(um
n (r + h) − um

n (r))‖2 dx dr

) 1
2

+ CT

]

≤ C3h
2−q
2 .

Therefore, (3.9) holds. Now, to prove (3.8), we consider for largeM the
set

E := {r ∈]τ, T − h[ : ‖um
n (r + h)‖H1

0 (Ω) + ‖um
n (r)‖H1

0 (Ω)+

+
1

h
2−q
2

∫
Ω

(un(r + h) − un(r))(um
n (r + h) − um

n (r)) dx > M}.

By (3.9) we have

λ1(E) ≤ C4

M
,

where λ1(E) is the measure ofE, and consequently, by (3.3)

∫
E

∫
Ω

|un(r + h) − un(r)| dx dr ≤ C5

M
.

On the other hand, by [AL, Lemma 1.8] we have forr ∈]τ, T − h[\E∫
Ω

|un(r + h) − un(r)| dx ≤ ωM (h
2−q
2 ),

with continuous functionsωM satisfying ωM (0) = 0. Therefore,

∫ T−h

τ

∫
Ω

|un(r + h) − un(r)| dx dr ≤ TωM (h
2−q
2 ) +

C5

M
,

which yields (3.8) by appropriate choice ofM and h.
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Now, by (3.3), (3.4) and [Si, Theorem 3] we can suppose ( up to extraction
of a subsequence, if necessary ) that

un → u a.e. in QT .

Then, by the Vitali Convergence Theorem, we have that

(3.10) un → u in L1(QT ).

So, by (3.4) we can suppose ( up to extraction of a subsequence, if necessary)
that

(3.11) ∇um
n → ∇um weakly in L2(QT ).

Consequently,um ∈ L2(0, T ;H1
0 (Ω)).

For τ ∈]0, T [ fixed, we consider the Banach spaceW defined as above.
By (3.7) we can suppose ( up to extraction of a subsequence, if necessary )
that

(3.12) (un)t → w with respect toσ(W ′,W ).

Consider the Banach space

X := H1
0 (Ω) ∩ L( 2

q
)′
(Ω),

with dual
X ′ := H−1(Ω) + L

2
q (Ω).

It is easy to see that

(3.13) W ′ ⊂ L1(τ, T ;X ′).

Since u ∈ Lm+1(QT ), we have u ∈ D′(]τ, T [;X ′). Thus, there exists
∂tu ∈ D′(]τ, T [;X ′). Let us see thatw = ∂tu. Take ϕ ∈ D(]τ, T [) and
ψ ∈ X. Then, sinceϕψ ∈ W , we have

〈w,ϕψ〉W ′,W = lim
n→∞〈(un)t, ϕψ〉W ′,W =

= − lim
n→∞

∫
Ω

∫ T

τ
un(x, t)ϕ′(t)ψ(x) dtdx =

= −
∫

Ω

∫ T

τ
u(x, t)ϕ′(t)ψ(x) dtdx = −

∫ T

τ
ϕ′(t)〈u(t), ψ〉X′,X dt =

= −〈
∫ T

τ
ϕ′(t)u(t) dt, ψ〉X′,X .
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Now, by (3.13) the mapt → ϕ(t)w(t) belongs toL1(τ, T ;X ′), hence

〈w,ϕψ〉W ′,W =
∫ T

τ
〈w(t), ϕ(t)ψ〉X′,X dt = 〈

∫ T

τ
ϕw(t) dt, ψ〉X′,X .

Consequently,w = ∂tu. Therefore,u ∈ L1(τ, T ;X ′) and∂tu ∈ L1(τ, T ;
X ′). So, as a consequence of Lemma 1.1, there existsũ ∈ W 1,1(τ, T ;X ′)
such that

u = ũ and ∂tu =
dũ

dt
a.e. in ]τ, T [.

Therefore

ũ(t) − ũ(τ) =
∫ t

τ
∂su(s) ds ∀ t ∈ [τ, T ]

and

(3.14) lim
h→0+

∫ T

τ
‖u(t+ h) − u(t)

h
− ∂tu(t)‖X′ dt = 0.

In the next step we are going to see that for almost allτ, t ∈]0, T ], τ < t,
the following formula holds

(3.15)
1

m+ 1

∫
Ω
u(t)m+1 − u(τ)m+1 =

∫ t

τ
〈∂su(s), u(s)m〉X′,X ds.

We have for almost alls ∈]τ, T [ pointwise inΩ

(3.16)
1

m+ 1

(
u(s)m+1 − u(s− h)m+1

)
≤

(
u(s) − u(s− h)

)
u(s)m,

and for s > h

(3.17)
1

m+ 1

(
u(s)m+1−u(s−h)m+1

)
≥

(
u(s)−u(s−h)

)
u(s−h)m.

Integrating in (3.16), we obtain

(3.18)

∫ t

τ

∫
Ω

1
m+ 1

(
u(s)m+1 − u(s− h)m+1

)
≤

≤
∫ t

τ

∫
Ω

(
u(s) − u(s− h)

)
u(s)m.

Now,

lim
h→0+

1
h

∫ t

τ

∫
Ω

1
m+ 1

(
u(s)m+1 − u(s− h)m+1

)
=
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= lim
h→0+

1
h

( ∫ t

t−h

∫
Ω

1
m+ 1

u(s)m+1 −
∫ τ

τ−h

∫
Ω

1
m+ 1

u(s)m+1
)

=

(3.19) =
1

m+ 1

( ∫
Ω
u(t)m+1 − u(τ)m+1

)
.

On the other hand, by (3.14) we have that
(3.20)

lim
h→0+

1
h

∫ t

τ

∫
Ω

(
u(s) − u(s− h)

)
u(s)m =

∫ t

τ
〈∂su(s), u(s)m〉X′,X ds.

Consequently, from (3.18) (3.19) and (3.20), we obtain
(3.21)

1
m+ 1

( ∫
Ω
u(t)m+1 − u(τ)m+1

)
≤

∫ t

τ
〈∂su(s), u(s)m〉X′,X ds.

Similarly, integrating in (3.17) and taking limit ash → 0+, we obtain

1
m+ 1

( ∫
Ω
u(t)m+1 − u(τ)m+1

)
≥

∫ t

τ
〈∂su(s), u(s)m〉X′,X ds.

and (3.15) holds.
In the next step we show that

(3.22) ∇um
n → ∇um in L2

loc(0, T ;L2(Ω))N .

Multiplying the equation of (Pn) by (um
n −( 1

n)m−um), integrating and using
the regularizing effect, (3.5), (3.10) and the Vitali Convergence Theorem,
we get
∫ t

τ

∫
Ω

(un)s(um
n − (

1
n

)m − um) = −
∫ t

τ

∫
Ω

∇um
n · ∇(um

n − um) + o(n).

Now, by (3.11) it follows that
∫ t

τ

∫
Ω

(un)s(um
n − (

1
n

)m − um) =

= −
∫ t

τ

∫
Ω

‖∇(um
n − um)‖2 +

∫ t

τ

∫
Ω

∇um · ∇(um
n − um) + o(n) =

= −
∫ t

τ

∫
Ω

‖∇(um
n − um)‖2 + o(n),
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where the Landau symbolo(n) as usual denotes any term converging to
zero asn → ∞. On the other hand,∫ t

τ

∫
Ω

(un)s(um
n − (

1
n

)m − um) =

=
1

m+ 1

∫
Ω
un(t)m+1 − un(τ)m+1 + o(n) −

∫ t

τ

∫
Ω

(un)su
m.

Since,
(un)s → us with respect toσ(W ′,W ),

using (3.15), we have that

lim
n→∞

∫ t

τ

∫
Ω

(un)su
m = − 1

m+ 1

∫
Ω
u(t)m+1 − u(τ)m+1.

Consequently,

lim
n→∞

∫ t

τ

∫
Ω

(un)s(um
n − (

1
n

)m − um) = 0

and (3.22) holds.
Let us see now that

(3.23) ‖∇uα
n‖q → ‖∇uα‖q in L1(QT ).

We first consider the caseα ≤ m. Taking A := {(x, t) ∈ QT : u(x, t) =
0}, by (3.22) we have ( up to extraction of a subsequence, if necessary) that

∇uα
n → ∇uα a.e. inQT \A.

Moreover, if E ⊂ QT \A is measurable,

∫
E

‖∇uα
n‖q ≤

( ∫
E

‖∇uα
n‖2

) q
2

µ(E)
2−q
2 .

Then, by (2.8), applying the Vitali Convergence Theorem, we have

(3.24) ‖∇uα
n‖q → ‖∇uα‖q in L1(QT \A).

On the other hand, sinceα > m
2 , we takeγ > m

2 such that

0 < α− γ ≤ m

q(2
q )′ .

Hence
‖∇uα

n‖q = (
α

γ
)q(un)(α−γ)q‖∇uγ

n‖q.



720 F. Andreu et al.

Therefore, by Ḧolder inequality and (2.8), we obtain

∫
A

‖∇uα
n‖q ≤ (

α

γ
)q

[ ∫
A

(
u(α−γ)q

n

)( 2
q
)′] 1

( 2
q )′

[ ∫
A

‖∇uγ
n‖2

] q
2

≤

≤ K2

[ ∫
A

(
u(α−γ)q

n

)( 2
q
)′] 1

( 2
q )′ → 0 as n → ∞.

Moreover, by the Stampacchia Theorem∫
A

‖∇uα‖q = 0.

From here and (3.24), (3.23) follows forα ≤ m. Consider now the case
α > m. By (3.22) it follows (up to extraction of a subsequence, if necessary)
that

∇uα
n → ∇uα a.e. inQT .

Let us see that

(3.25) lim
λN (E)→0

∫
E

‖∇uα
n‖q = 0 uniformly in n ∈ N.

In fact: for k ∈ N, k ≥ 2, we consider the function

Gk(r) =




0, if 0 ≤ r ≤ k − 1
r − (k − 1), if k − 1 ≤ r ≤ k
1, if r > k.

Multiplying the equation of (Pn) by Gk(un) and performing obvious ma-
nipulations it yields∫

{un>k}
‖∇uα

n‖q ≤
∫

QT

‖∇uα
n‖qGk(un) ≤

≤
∫

{un≥k−1}
up

n +
∫

{u0,n≥k−1}
u0,n.

Hence

lim
k→+∞

∫
{un>k}

‖∇uα
n‖q = 0 uniformly in n ∈ N.

On the other hand, fork fixed∫
{un≤k}∩E

‖∇uα
n‖q ≤ k(α−m)q

∫
E

‖∇um
n ‖q ≤
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≤ k(α−m)q
( ∫

QT

‖∇um
n ‖2

) q
2

λN (E)
2−q
2 ,

which converges to0 uniformly in n ∈ N when λN (E) → 0. Conse-
quently, (3.25) holds, and applying the Vitali Convergence Theorem, (3.23)
follows.

Finally, since un is a smooth solution of problem (Pn), for any test
function ξ ∈ L2(0, T ;H1

0 (Ω)) ∩ L∞(QT ) ∩ W 1,∞(0, T ;L∞(Ω)) with
ξ(T ) = 0, we have

−
∫

QT

unξt −
∫

Ω
u0,nξ(0) =

∫
QT

(un)tξ =

= −
∫

QT

∇um
n .∇ξ −

∫
QT

‖∇uα
n‖qξ +

∫
QT

(un − 1
n

)pξ.

From here, passing to the limit whenn → ∞ we obtain thatu is a weak
solution of problem (I).

4. A model in population dynamics

As we said in the introduction, Ph. Souplet in [So2] proposes a model in
population dynamics in which the evolution equation satisfied by the density
of the population is a nondegenerate semilinear equation. We are going
to give arguments in support of a degenerate nonlinear partial differential
equation of type (I) for the Souplet model. The model is as follows: Consider
a population of a biological species, living on a territory represented by some
domain Ω ⊂ R

N . The space density of the population at timet ≥ 0 is
denoted byu(., t). The evolution of this density is the result of three types
of mechanisms: displacements, births and deaths. Respect to displacements,
Souplet considers, for simplicity, that dispersal is due to random motion of
individuals, i.e., the population flux is given by the constitutive relation

φ = −∇u.

However, as was pointed out in the classical paper of M. E. Gurtin and R. C.
MacCamy [GMc], there is ample evidence that for some species migration to
avoid crowding, rather than random motion, is the primary cause of dispersal.
So they propose the constitutive relation of the form

φ = −∇um.
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The population supply due to births is assumed to be proportional to the
number of couples ( or more generally of p-tuples ). Hence, the correspond-
ing contribution is given by

C1u
p.

In the population decline due to deaths, Souplet distinguishes between
natural and accidental deaths. The natural deaths are assumed to be propor-
tional to the number of individuals. So the corresponding contribution is
given by

−C2u.

For the accidental deaths he supposes that the individual can be destroyed
by some predators during their displacements. Hence, the density of preda-
tors is an increasing functionD of the intensity of the flow of preys. Taking
into account the diffusion law he proposes a contribution of the form

−C3‖∇u‖D(‖∇u‖).

Now, having in mind the diffusion law of Gurtin and MacCamy and also
that the decline by accidental deaths should be a function of the density
of predators and preys, it seems that the contribution by accidental deaths
should be of the form

−C3uD(‖∇um‖).

Therefore, summing up the different contributions one obtains the equation

(4.1) ut = ∆um + C1u
p − C2u− C3uD(‖∇um‖).

If we suppose that functionD(r) is of the form rq, i.e., the predator’s
density is ‖∇um‖q, then the equation (4.1) takes the form

(4.2) ut = ∆um + C1u
p − C2u− C4‖∇uα‖q,

with

α =
qm+ 1
q

.

Consequently, problem (I) corresponds to the above model, with no natural
deaths and a nonviable enviroment in the boundary zone ( since we have
homogeneous Dirichlet’s boundary conditions ). Observe that sincep > 1,
our existence result is also true for equations of the form (4.2), i.e., also
cover the case with natural deaths.

Finally, observe that in this particular case the assumptions (H) corre-
spond to

m ≥ 1, 1 ≤ q < 2 and 1 ≤ p < qm+ 1.
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5. Appendix A

In this appendix we are going to see that for initial data inL1(Ω), under
condition (H) and assumingm < αq, we can also prove the existence of a
global weak solution of problem (I) in the following sense.

Definition. Given 0 ≤ u0 ∈ L1(Ω), by a weak solution of problem (I) on
QT we mean a functionu ∈ L∞(]τ, T [×Ω) for every 0 < τ < T , such
that um, up ∈ L1(QT ), ‖∇uα‖q ∈ L1(QT ) and u satisfies the identity∫

QT

(u0 − u)ξt − um∆ξ + ‖∇uα‖qξ − upξ = 0

for any function ξ ∈ L∞(0, T ;W 2,∞
0 (Ω)) ∩ W 1,∞(0, T ;L∞(Ω)) with

ξ(T ) = 0.

We shall say thatu is a global weak solution of problem (I) ifu is a weak
solution onQT for all positive T .

Proposition 5.1.Assume that (H) holds andm < αq. For every nonnegative
initial datum u0 ∈ L1(Ω) there exists a global weak solution of problem
(I).

Proof.Working as in the proof of Theorem 3.1, we getun smooth solution
of problem (Pn). Multiplying the equation of (Pn) by T (un − 1/n), where
T (r) = min{|r|, 1}sign(r), we obtain∫

QT

|∇(G(un − 1
n

))α|q ≤
∫

Ω
u0,n + C1 + C2

∫
QT

(G(un − 1
n

))p,

whereG(r) = r − T (r).
From here, using Poincaré and Young inequalities, it follows∫

QT

(G(un − 1
n

))αq ≤ C3.

Consequently, ∫
QT

uαq
n ≤ C4.

Now, using the regularizing effect (Proposition 2.2) which also works for
u0 ∈ L1(Ω) and proceeding as in the proof of Theorem 3.1, we can obtain
the following convergences

un → u a.e. inQT ,
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∇un → ∇u a.e. inQT .

Then, with a slight modification of the proof of (3.23) we can conclude that

‖∇uα
n‖q → ‖∇uα‖q in L1(QT ).

From here the proof concludes.

Observe that the restrictionm < αq is only needed in order to pass
to the limit in the second order term. Of course, this assumption is not
necessary if the datumu0 ∈ Lr(Ω) with r > 1. Without this restriction,
for u0 ∈ L1(Ω), the existence of a mild solution is obtained in the following
sense.

Definition. A measurable functionu is a mild solution of problem (I) if for
any T > 0,

(i) −‖∇uα‖q + up ∈ L1(QT ),

(ii) u(., t) = S(t;u0,−‖∇uα‖q + up), 0 ≤ t ≤ T,

whereS(t;u0, f) is the mild solution in the sense of nonlinear semigroups
(see [Cr]) of the problem



ut = ∆um + f in QT

u = 0 on ST

u(x, 0) = u0(x) ≥ 0 in Ω.

In fact, if un is the smooth solution of problem (Pn), by the above
proposition,un → u in L1(QT ) and if Fn(x, t) = −‖∇uα

n‖q + (un −
1/n)p,

Fn → −‖∇uα‖q + up in L1(QT ).

Now, by [BG], there is a unique strong solutionwn of problem


(wn)t = ∆ψn(wn) + Fn in QT

wn = 0 on ST

wn(x, 0) = u0,n(x) ≥ 0 in Ω,

whereψn(r) = |r+1/n|m sing(r+1/n)− (1/n)m. Consequently,wn =
un − 1/n. From here, applying [BCS, Theorem I],wn → v in L1(QT ),
where v = S(t;u0,−‖∇uα‖q + up). Now, since un → u in L1(QT ),
v = u.
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6. Appendix B

In the one-dimensional case, take for exampleΩ = (−1, 1), we can prove
more regularity for the solution given in Theorem 3.1: the gradient ofum

is bounded inL∞
loc(Q) as in the case of the porous medium equation (see

[Ar], [Be]). In general we are not able to prove that the solution is strong
(i.e. ut is a function) as in [Be] because we can not prove the second energy
estimate forq > 1.

Proposition 6.1. If N = 1, Ω = (−1, 1) and α ≥ m then the global
solution given in Theorem 3.1 satisfies for anyτ > 0 and δ ∈ (0, 1)

(6.1) |(um)x(x, t)| ≤ C(τ, δ)u(x, t) ∀ (x, t) ∈ [−δ, δ] × [τ,∞).

Proof.Let c > 0 and consideru a solution of the problem

(6.2) ut = (ϕ(u))xx − F (ϕ(u)x a(u)) + f(u),

where ϕ, F, a, f are smooth functions and0 < ε ≤ u ≤ c. We set

p =
ϕ(u)x

k(u)
, where k is a smooth function, withk(r) > 0 for r > 0. We

have

(6.3) pk(u) = ϕ(u)x

(6.4) pxk(u) + p2k
′(u)k(u)
ϕ′(u)

= (ϕ(u))xx

(6.5) pxxk(u) + 3ppx
k′(u)k(u)
ϕ′(u)

+ p3(
k′k
ϕ′ )′(u)

k(u)
ϕ′(u)

= (ϕ(u))xxx

(6.6) ptk(u) + pk′(u)ut = (ϕ′(u)ut)x.

(6.4), (6.5), (6.6) are obtained by differentiation of (6.2) with respect tox
and t. We now omit for simplicity to write(u) for the functions depending
onu. By (6.2) and (6.6) we get

(6.7) ptk+pk′{(ϕ(u))xx −F (pβ)+f} = {ϕ′ (ϕ(u))xx −F (pβ)+f}x

where β(u) := k(u)a(u). Then using (6.4) and (6.5) we have

ptk + pk′{pxk + p2k
′k
ϕ′ − F (pβ) + f} =
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(6.8) =
ϕ′′

ϕ′ pk{pxk + p2k
′k
ϕ′ − F (pβ) + f}+

+ϕ′{pxxk+3ppx
k′k
ϕ′ +p3(

k′k
ϕ′ )′ k

ϕ′ −F ′(pβ)pxβ−F ′(pβ)p2 β
′

ϕ′k+
f ′

ϕ′ pk}.

Then L(p) = 0, whereL is the parabolic differential operator defined by

L(v) = vt − ϕ′vxx − vvx(2k′ + k
ϕ′′

ϕ′ ) − v3k
′′k
ϕ′ +

(6.9) +v(
k′

k
f − ϕ′′

ϕ′ f − f ′) + vx(F ′(vβ)β
ϕ′

k
)

−v(F (vβ)
k′

k
+
ϕ′′

ϕ′ F (vβ) + F ′(vβ)vβ′).

We take ϕ(r) = rm, f(r) = rp, k(r) = r(e − rm−1) with e =
1 + cm−1, a(r) = (α/m) rα−m with α ≥ m by hypothesis andF
satisfying0 ≤ F (ξ) ≤ |ξ|q and |F ′(ξ)| ≤ q|ξ|q−1. There exists a constant
C depending onc such that

(6.10) |(2k′ + k
ϕ′′

ϕ′ )(u)| ≤ C, |(k
′

k
f − ϕ′′

ϕ′ f − f ′)(u)| ≤ C

(6.11) |F (vβ(u))
k′(u)
k(u)

+
ϕ′′(u)
ϕ′(u)

F (vβ(u))+F ′(vβ(u))vβ′(u)| ≤ C|v|q

(6.12) |F ′(vβ(u))β(u)
ϕ′(u)
k(u)

| ≤ C|v|q−1

and

(6.13) −k
′′k
ϕ′ (u) ≥ C.

Let K > 0 and considerζε = (1+
1
t1/2 )

Kε

1 − x2 where ε = ±1. Then

(6.9), (6.10), (6.11), (6.12) and (6.13) yield

(1 − x2)3εL(ζε) ≥ C{C ′K3(1 +
1
t1/2 )3 −K2(1 +

1
t1/2 )2−

(6.14) −K(1 +
1
t1/2 ) −Kq(1 +

1
t1/2 )q −Kq+1(1 +

1
t1/2 )q+1 − K

t3/2 },
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where C and C ′ are positive constants. By hypothesisq + 1 < 3, then
we can chooseK large enough such that

(6.15) (1 − x2)3εL(ζε) ≥ 0.

We now apply the maximum principle to the solutionsun of approximated

problems, and we get forpn =
ϕn(un)x

k(un)

−Ln(ξ−1) ≤ Ln(pn) ≤ Ln(ξ1) in QT

−∞ = ξ−1 ≤ pn ≤ ξ1 = +∞ on ∂Ω × (0, T ),

whereLn correspond to operatorL with approximated coefficients. Passing
to the limit we obtain for a.e.(x, t) ∈ QT

−K(1 +
1
t1/2 )

k(u)
1 − x2 ≤ (um)x(x, t) ≤ K(1 +

1
t1/2 )

k(u)
1 − x2

and (6.1) is proved.

Acknowledgement.The authors are indebted to the referees for several useful suggestions.
In particular, for pointing out the existence of reference [An].

References

[AL] H. W. Alt and S. Luckhaus, Quasilinear Elliptic-Parabolic Differential Equations,
Math. Z.183(1983), 311–341.

[An] D. Andreucci, Degenerate Parabolic Equations with Initial Data Measures, Trans.
Amer. Math. Soc.349(1997), 3911–3923.

[Ar] D. G. Aronson, Regularity properties of flows through porous media, SIAM J. Appl.
Math.7 (1962), 461–467.

[Be] Ph. B́enilan, A strong regularityLp for solution of the porous media equation, in
“Contribution to nonlinear differential equations”, Research Notes in Mathematics
(C. Bardos, A. Damlamian, J.I. Diaz and J. Hernandez, eds.), vol. 89, Pitman,
Boston, 1983, pp. 39–57.

[BCS] Ph. B́enilan, M. G. Crandall and P. Sacks, SomeL1 Existence and Dependence
Results for Semilinear Elliptic Equations unde Nonlinear Boundary Conditions,
Appl. Math. Optim17 (1988), 203–224.

[BG] Ph. Bénilan and R. Gariepy, Strong Solutions inL1 of Degenerate Parabolic Equa-
tions, J. Diff. Eq.119(1995), 473–502.
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