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1. Introduction

We study the behavior of solutions of the following parabolic problem

= A(u"~"u) = Aul?~'u in @ x10,T[= Or,

3 m—1
0(|u|6;1u) =|u|’"'u on 0Q x10,T[ = Sr,

u(x,0) =up(x) in Q, (1.1)

where Q2 is a bounded domain with smooth boundary, d/0n is the outer normal deriva-
tive, m = 1, p, A and ¢ are positive parameters and uq is in L°°(Q).

Problems of this form arise in mathematical models in a number of areas of science,
for instance, in models for gas or fluid flow in porous media [3] and for the spread of
certain biological populations [13]. In the semilinear case (that is for m=1), there is an
extensive literature about global existence and blow-up results for this type of problems,
see among others, [5,9,16] and the literature therein. For the degenerate case (that is for
m # 1), with a nonlinear boundary condition, local existence and uniqueness of weak
solutions which are limit of solutions of nondegenerate problems has been established
in [1]. Also in [2] existence and uniqueness of global weak solutions for a similar
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problem but with opposite sign in the source term and in the boundary condition are
studied.

Our aim is to study existence of globally bounded weak solutions or blow-up,
depending on the relations between the parameters m, p,q,A. For this purpose, we
construct adequate supersolutions and subsolutions using ideas from [18]. To prove
uniqueness we use the technique introduced in [2], for the sake of completeness we
give the proofs of some of the technical lemmas we need to establish the uniqueness
result. We also prove results about uniqueness and nonuniqueness in the case of null
initial data in the line of the ones obtained in [6] (see also [4]).

This paper is structured as follows. In the next section we state our main results on
existence, uniqueness and blow-up. In the thrid section we prove the local existence
and uniqueness results. In the next section we give the proof of the blow-up results.
Finally, the last section is devoted to prove the results about global existence of weak
solutions.

2. Statements of main results
In this paper, we use the following definition of weak solution.

Definition 2.1. Given uy € L*°(Q), by a weak solution of problem (1.1) on Oy we
mean a function u € C([0,T];L'(2)) N L>(Qr) such that |u|"~'u € L*(0,T; H'(Q))
and satisfies the identity

/(V(|u|m_1u)qu—u(b,—l—/1|u|”_lu(b)—/ |u|q_lu¢>:/uo(x)(b(x,0)dx
QT ST Q

for any test function ¢ € L*(0,T; H'(Q)) N W10, T;L'(2)) with ¢(T)=0.
We shall say that u is a global weak solution of problem (1.1) if u is a weak solution
on Qr for all positive 7.

With respect to local existence and uniqueness our main result is the following.

Theorem 2.1. Given uy € L°°(Q) there exists a local weak solution of (1.1) defined in
[0, t0(ug)) where ty(ug) depends on uy. Moreover, for ¢ = m, if u and v are weak so-
lutions of (1.1) with initial data ug, vy, respectively, and 0 < T < min{to(uo), to(vo)},
then there exists a constant C such that

((2) = v()) 0y < € lIeo = 10)* |1
and
[Jut) — U(f)”Ll(Q) < e lug — U0||L'(Q)

for all t € [0,T]. Therefore, in this case we have uniqueness of weak solutions.

In the case ¢ <m we only know uniqueness or nonuniqueness for initial datum
uy = 0 for some range of parameters. More precisely, we have the following result.
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Theorem 2.2. Let g < m.

(@) If 2g <m+1, m> 1 and p > 1, there exists infinite weak solutions with zero
initial datum obtained as limit of nondegenerate problems.

(b) If 2g = m + 1, the weak solution with initial datum uy = 0 which is obtained
as limit of nondegenerate problems is unique.

Next, we present the global existence and blow-up results depending on the range
of the parameters. For blow up of solutions we mean that the solution is defined in
(0,7),0 < T < o0, and at that time 7 we have,

lim sup||u(-, f)”Loo(Q) = 100
t/T

Theorem 2.3. Let g > m.

(a) If p <2q — m, there exist solutions of (1.1) that blow up in finite time for
initial data large enough.

(b) If p > 2q — m, for every initial datum in L*°(Q), there exists a weak solution
which is globally bounded.

(¢) If p=2q — m, the existence of blowing up solutions depends on A, that is,
there exists a critical value Jg = q/m such that, for every A small, 1 < gq/m, there
exist blowing up solutions in finite time for initial data large enough and for every 1
large, A > q/m, for every initial datum in L°°(Q) there exists a global weak solution
which is globally bounded.

Theorem 2.4. Let g < m.

(a) If p> q, then for every initial datum in L>°(Q) there exists a global weak
solution which is globally bounded.

(b) If p<gq, for g > 1 there are solutions with blow-up in finite time for initial
data large enough, for q < 1 there exists a global weak solution for every initial
datum in L*>°(Q) that it is unbounded if uq is large.

() If p=q and q < 1, there exists a global weak solution for every initial
datum in L*°(Q) and the boundedness depends on 1, for /. small and uy large there
are unbounded solutions and for 1 large there are bounded solutions for any initial
datum.

(d) If p=q and q > 1, the existence of blowing up solutions depends on 2, if A is
small there are solutions with finite time blow-up for initial data large enough, while
if A is large there exists a global weak solution globally bounded for every initial
datum in L>°(Q).

Remark 2.5. In the case we have uniqueness and p =2g —m or p =gq with ¢ > 1,
there exists a critical value 4y such that for every A < o there exist solutions of (1.1)
which blow up in finite time. For 4 > Ay, every solution of (1.1) is global. This is
a consequence of the fact that positive solutions of (1.1) with 4 replaced by /. are
subsolutions of (1.1) for every 4 < 4.

In the case p=2q—m with ¢ > m, we have that 4y does not depend on the domain,
in fact 2o = q/m.
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In the case p =g¢q with 1 <g <m, if we have uniqueness (see Remark 3.1) the
critical value depends on @ in the following way, consider Q, = {x/ux € Q} then
40(2y) = p1Ao(L).

This follows using that if u(x,7) is a solution of (1.1) in Q with parameter A then

v(x, 1) = ,u_l/(m_q)u(,wc, ﬂ(m—2q+1)/(m—q)t)

is a solution of (1.1) in €, with parameter uA.
Finally, in the case 1 < p=gq =m, the critical value 1y depends on the domain. For
instance, if 2 = B(0,R) we have that

N N
—, 1y <ApR)< — + 1.
maX{R,} o(R) R+

3. Local existence and uniqueness

In this section, we prove Theorems 2.1 and 2.2.
3.1. Local existence

In proving local existence for degenerate parabolic equations as (1.1) one standard
approach is to approximate the problem with a sequence of nondegenerate problems
which can be solved in a classical sense. To do that we consider sequences of functions

(@n), (f») and (g,) with
1
Pa(r) =" fur) = PP () =TT < <,
n

(¢n), (@), (fx) and (g,) converging uniformly on compact subsets of R to
N S N AL

respectively, and satisfying the conditions of [14, Theorem 7.4].
Using the same technique as in the proof of [8, Proposition 3], we can find functions
U, € C3(Q), 0,0/l o) < lltoll (o) + 1, satisfying the compatibility condition

a n n
e ;UO, ) = gn(uo,») on 0Q
n

and
llueo,n — Mo||L1(Q) — 0 asn— oo
Consider the approximated problems
(un)t = AQD,,(M,,) - }fn(un) in QT:
a n n
ICT) on S, 3.1)
an
Un(x,0) = ug ,(x) in Q.

(Pn)

By [14, Theorem 7.4], for any 7 > 0, (P,) has a unique smooth solution u, in Q7.
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First, we claim that there exists a time 7' > 0 and a constant C depending on 7" and
lluol| ., such that

()| ey < € W E[0,T], ¥n e N. (3.2)

This claim is proved easily using a comparison argument between u,, and w, w solutions
with initial data w(x,0) greater than |[u|| .+ 1 and W(x,0) less than —|uo|  —1 veri-
fying the compatibility condition (we can take an extension of w(x, 0) = g(dist(x, 0Q))
for an appropriate election of g) to obtain —C < W(¢) < u,(t) < w(t) < C for every
n = ny and for every ¢ in [0, T].

Next, we prove the following energy estimates.

Proposition 3.1. Let u, be the solution of problem (P,) in [0,T]. Then, given t > 0,
there exist constants depending only on ||ug||,q), T and t, such that

||V(Pn(un(t))HL2(Q) < C(Ta T’”uO”LOO(Q))» V T 2 t 2 T, (33)

T
/ /Q(un)t(pn(un)t < K(7 T, ||uo || oo y)- (3:4)

Proof. Multiplying the equation of (P,) by ¢,(u,); we get
0 < /g Uit = — /Q Va0V (910
+ / )~ 2 /Q Folw)@ulw)). (3.5)
If we set
Fur) =7 /0 Feleds G = /0 " 4u()0 () d,
from (3.5) it follows that

41 2
& (3 [1vowr = [ Gw)+ [ Ran) <o (.6)

Now, by (3.2), there are constants M;, M, > 0, depending only on ||u0|\LOO(Q), T and
7, such that

*Ml < / Gn(un) < Mla *M2 < /Fn(un) < MZa
oQ Q
and consequently
M- [ G =0 [ R+t >0
oQ Q

Moreover, from (3.6), we can write

d /1
3, </ |V(Pn(un)|2+Ml _/ Gr1(un)+/Fn(un)+M2) < 0.
dr \2 Jg 0 Q



546 F. Andreu et al. | Nonlinear Analysis 49 (2002) 541-563

On the other hand, multiplying the equation of (P,) by ¢,(u,), integrating over
1t,t + h[ x © and using the uniform bound for u,, (3.2), it is easy to see that

/tw (i /Q IV @u(un)|? + My — /m Gnlin) ¢ /st"(un) : MZ)

< C(h, T, [[uol| poo )

for ¢t > 1. Then, by the uniform Gronwall’s Lemma ([17]), we obtain (3.3).
Finally, integrating (3.5) over ]z, T[, we get

T
| [anosu 5 [ (VoamP = [9o,au()7)
T Q Q

- / (Gaun(T)) — Go(tn(2))) — / (Fo(tn(t)) = Fa(un(T))) = 0.
o Q
Hence, by (3.3), (3.4) holds. O

Using the uniform estimate (3.2) multiplying the equation in (P,) by ¢,(u,) and
integrating, we get

T
/ / |v§0n(un)|2 < C, VmeN.
0 Q

By compactness arguments, working as in [2], it follows that (up to extraction of a
subsequence)

On(uy) — /™ 'u in L*(Q x 10,T[) and a.e.in Q x 10,7,
Vou(u,) — V(|lu|"'u) weakly in (L*(Q x 10,T[))",
Gn(uy) — [u|7 ' in L2(0Q x 10, T),

(@) — (Jul"""u),  weakly in L*(Q x ]z, T[).

Since u, is a smooth solution of (P,), it clearly satisfies

/OT /Q(an(un)V¢—un¢t+)»fn(un)¢)_/oT /mgn(un)qﬁ

_ / U0 (X)(x, 0) dx
Q

for any test function ¢. From here, passing to the limit when n — oo we obtain that
u satisfies the same equality. Moreover, u € C(]0,T]; L' (Q)).

Let us see that u(¢) is also continuous at ¢ =0. If uy € C'(2), the above arguments
give us the continuity at 0 since we can impose that |V ¢,(uo )| is bounded in L*(Q).
In order to get the general case we need the following lemmas.



F. Andreu et al. | Nonlinear Analysis 49 (2002) 541-563 547

Lemma 3.1. Let ¢, ¢ : R — R be continuous increasing functions, F, F € L'(Qr), G,
G € LY(Sr) and vy, 6y € L>®(RQ). Suppose v and ¢ are smooth solutions of the
problem

v =A¢p() = F in Or,

op(v)
on

v(x,0) =vo(x) in Q,

=G onSy,

and

ﬁ(g;v) =G onSr, 0(x,0)=700(x) inQ,

b, =A¢(®) — F in Or,
respectively. Let € C3(Q), ¥ > 1 on Q such that
o

% = Ly on 0Q, (3.7)

where L > 0 is a given constant. Then
A ' (D))
Jeo=sorvee [ [ wow- ooy
_ At ' o ()T C(F — P\<ont(n —
< [eo=t v+ [ [ 10w - o) 1491 = (F = Fysien’ 0~ oy
+/t (G — G)sign™ (v — D)W
0 oQ

for every 0 <t <T.

Proof. Multiplying the difference of the two equations by sign® (v — #)y, applying
Kato’s inequality and integrating over 2, we get

/(v — D), sign™ (v — D) < —/ V(p(v) — o))" -V
Q Q
LR
+ /ﬁ 5 (0(0) = p()sien” (0= £

- /(F — F)sign™(v—d) .
Q
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Hence

d . . oy .
& [0 < [ —own a— [ Sow o)

+/ (G — G)sign™(v — O — /(F — F)sign™(v — o).
oQ Q
Integrating the above inequality from O to ¢ and using (3.7) the proof concludes. [J

Lemma 3.2. Given ugy, iig € L>(Q), let u and i be the limit of the smooth solutions
of the approximated problem

(un)t = A(pn(un) - j-fn(un) in QT:

(Qn) an(un) = gn(un) on Sr,
an
Uy(x,0) = 1 ,(x) in Q
and

(ﬁn)t:Aﬁon(ﬁn)*/lfn(ﬁn) in QT’
) {8 =g on Sr,

uAn(x: 0) = ﬁO,n(x) in Q,

respectively, where uy, — ug, o, — U in LY(Q), uo, and iy, are bounded in
L>°(Q) independently on n, and verify the corresponding compatibility conditions.
Then

e = i)y < Ka(T. ] s 0] s ) + Ko@)t — 1 gy

Proof. Using Lemma 3.1 with L = 0, the uniform estimate (3.2) and taking n — oo,
we have

/Q (u(t) — i(1))" < /0 t /Q (™)) — ([P~ 2)(s)) " | A

+/0 /m((lulq’lu)(s)—(Iﬁlq”ﬁ)(s))*twr/gmo—ﬁ0|./,

< Kit + Kaluo — diol| 1 q)-
Interchanging the role of u and # the proof is concluded. [J
Let us finish the continuity at zero. If uy € L°°(L), there exists a sequence of

smooth functions uy , such that up, — up in L'(Q). The corresponding u,, constructed
as above, are continuous at 0, then applying Lemma 3.2 we get

Ju(t) = uolly < fJut) — un(Ol; + un(t) — vonlly + lluo.n — uoll
< Kit + Kallug — uoully + [[ua(?) — uonlly + [luo.n — uoll,

and the continuity of u at 0 follows. [J
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3.2. Uniqueness
We start with the following definition of weak solution,

Definition 3.1. Let ¢ : R — R a continuous and increasing function, F € L*°(Qr), G €
L*>°(S7) and vy € L>(Q2), we say that v is a weak solution of the problem

v, =A4¢(v) —F in Qr,
S((paFaGavo) = on ST»

v(x,0) =vp(x) in Q,
if v € C([0, T, L' (2)) NL=(Qr), ¢(v) € L*(0,T; H'(Q)) and satisfies
Vo).V —vd, + F) —/ Gp = / vo(x)¢(x,0)dx
Or Sr Q
for any test function ¢ € L*(0,T; H'(Q)) N W10, T; L'(2)) with ¢(T) = 0.
In order to prove the uniqueness we need the following lemma.
Lemma 3.3. Let ¢, ¢:R—R be continuous and increasing functions, F, FeL>®(0r),
G, G € L(Sr) and vy, 00 € L>(R). If v and ¥ are weak solutions of S(¢,F,G,vo)
and S(@,F,G,0y), respectively, then

T
/Q - D)) ~ ) < /Q (vo — do) /0 (o(v) — $(0)

T
S G Y RCORE DY
Or t
X T
+[6-6) [ (0w - o
Sr t
Proof. It is enough to take as test function

T
/ (0(o(x5.5)) — G(ECes))ds if 0 <i<T,
0 iftt>T

n(x,t) =

and the result follows. [

We can begin with the proof of the uniqueness. Suppose that # and # are two weak
solutions of problem (1.1) on Q7 with initial data ug, i1y € L°°(L2), respectively. Let
F,, F s Gn, Gn smooth functions, F,,, F » bounded in L>*°(Qr) and G,,,G,, bounded in
L°°(S7) uniformly in n, such that

F — Au|?'u, F,— JlalP~'%  in L2(Qr),

G, — |ul'u, G, — |4 " in LX(Sy).
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Let ¢, as before. Using again the same technique than in Proposition 3 of [8], we
can find functions ug,,7, € C3(£2) bounded in L>°(L2) uniformly in » satisfying the
compatibility conditions

9onUon) _ G 0) on o,
on
9onion) _ a0y on o
an
and
Ug,n — Uo, Qo — uy in L'(Q).

By classical results (see Theorem 7.4 of [14]), there exist u, and i, smooth solutions
of the problems S(¢,, Fy, G, uo,,) and S((pn,ﬁn,én,ﬁo,n), respectively.

First, using the maximum principle, we prove that u, are bounded in L°°(Qr) uni-
formly in 7. Indeed, there exists C > 0 such that ||F[[;c(g,) < C. [|Gulloe(s,y < C

and [|@n(t0,n)| oo (@) < C. Consider ¥ € C%(Q) satisfying

oy

Yy =C inQand%>lﬂ on 0Q.

Set &, =@ ' (Y + yt) where 7y is a positive constant. For C large enough, we have

(&)= s
(o (lﬁJr“/t)) m(H‘PHLw(Q)"’VT)

5

which implies
(un)t - A‘Pn(”n) +Fn =0 < (én)t - Aﬁon(in) +Fn in QT

for y large enough. On the other hand, we have

Q&) _ 0 o Pouu)
on an an

Consequently, u, < &, < C(||y¥|| 1) ?-T) on Or. Similarly, a lower bound for u,
can be obtained.

Moreover, multiplying the equation by ¢,(u,) and integrating on Qr it is easy to
see that {|V¢,(u,)|: n € N} is bounded in L*(Qr).

Using Lemma 3.3 for u,, the solution of S(¢,,F,, Gy, u,), and for u, the weak
solution of S(¢, [u|?~'u, [u|?""u,uy), we have

(un - u)(q)n(un) - ‘U|m 1 < a, with lim a, = 0.

Or oo

Then, as

(un - u)(|un|milun - ‘u|milu)
Or

(un — )|ttty — @u(un)) + [ (g — w)( Pty — [u|" " u
Or Or
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and {u,: n € N} is bounded in L>°(Qr), we obtain

(uy — u)(‘”n‘m_]un - |u|m—1u) — 0.
Or

By the monotonicity of |r|”~'r we conclude, up to extraction of a subsequence, that
u, converges almost everywhere to u. Consequently, ¢,(u,) — |u|""'u in L*(Qr).
Moreover {|V@,(u,)|: n € N} is bounded in L>(Q7). Hence by Theorem 3.4.5 of [15],
it follows that

On(uy) — [u|™'u  in L*(0,T : L*(0Q)).

Similarly, we obtain the same for #,. Then, applying Lemma 3.1 and passing to the
limit we obtain

/Q (u(e) — G Y + L /0 t / a7y

t
< [ ultu = ity
0 JQ

t
—z/ /(|u|p_1u— |G|P~ ) signT(u — @)y
0 JQ

t
[ dulr = iy s - i+ [ (o )"
0 Joa Q
As g = m and u, 1 are bounded in Qr, we have that

t
[ il iysien -~ i
0 oQ

t
<M/ / (u™ ' — |~y .
0 0Q

Choosing L > M, we obtain

/Q w(t) — i(1))" < € /0 /Q (uls) — ()" + Ca /Q (o — i)

Finally, applying Gronwall’s Lemma we get,
[ i) < [ =i,
Q Q
and the proof of Theorem 2.1 is concluded. [J

We now deal with the proof of Theorem 2.2. We begin by case (a).

We consider uy = 0. The idea of the proof of the nonuniqueness part is, up to some
technical arguments, the following, since there is a comparison principle for problem
(P,), the existence of a nontrivial subsolution would imply the existence of a nontrivial
solution via a standard monotonicity argument.
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Let us first analyze the following ordinary differential equation,

(™) + Buf'(m)=of(n) in[0,+00), (3.8)

where f and o are real numbers.

Solutions of (3.8) provide self-similar solutions of the porous medium equation in
the half-line. Eq. (3.8) has been completely studied in [10—12]. We summarize, in the
form of a lemma, the part of these results that we will need later.

Lemma 3.4 (Gilding, Peletier [11]). If >0 and o >0 then for any U > 0 Eg.
(3.8) has a unique weak solution f such that f is a positive classical solution on an

interval (0,&p), f(0)="U, f(&) =0, (f") (&) =0 and f(n) =0 for n € [&,o0).
Moreover (™) (n) <0 and (f™)'(n) >0 for n € [0,&)).

Let us define the functions

o o
N, N f 0 <z 17 f 0’ ,
hl(n){(fmw(n) el hz(n){(fm)n(n) if 1 € [0. &)

0 if n € [, 00), 0 it 1 € [&p, 00)

and state the following elementary lemma for future reference.
Lemma 3.5. If f > 0 and o« > 0, then the functions hy and h, are bounded.

Proof. In order to prove that 4; is bounded it suffices to show that it is continuous at
&o. This is immediate because from the equation it follows that for # € (0, ;) one has

_mf" ()
Bn

To see that f7/(f™)" is bounded we proceed as follows, first we observe that

o fP(E) = ((f")"(©) + B (OO

< () < 0. (3.9)

And hence
1P (Y + B P_( e BLE )P
(f'")"(f)‘< (" YE)T” )‘ (S ey ) -

From this and the fact that ((f™)"(&))' =7 is bounded we conclude that it is enough
to prove that

J(€)¢
((fm"Enhe

is bounded near the point &, where the function f vanishes. In fact, by (3.9) we have,

0s SO UMW @
T MY me NS (E)
1

B

= M EN T S ()
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Hence
LGP
e S B

Let f be the solution of (3.8) with

™y @Er-vr<c o

1
OC_m—|—1—2q
and
__m—q
ﬁ*m+1—2q'

Since we have 2g <m+ 1, o and f§ are positive.
In this case it is easy to see, by rescaling, that it is possible to choose U such that
— (/™Y (0) = f4(0). Then the function

o(s,t) =1 f (tiﬂ)

satisfies v, = (v)s; and —(v™);(0,¢) = v7(0,¢) in [0,00) X [0, 0).

Let us consider the following change of variables in a neighborhood of 0Q.
Let ¥ be a point in 0Q2. We denote by 7(x) the inner unit normal to 0Q at the
point x. Since 0Q is smooth it is well known that there exists 6 > 0 such that the
mapping ¢ :0Q x [0,6] — RY given by ¢(&,s) = + si(X) defines new coordinates
(%,5) in a neighborhood ¥ of 4Q in Q.

A straightforward computation shows that, in these coordinates, 4 applied to a func-
tion g(x,s) = g(s), which is independent of the variable X, evaluated at a point (x,s)
is given by

N—1

g H;(x) dg
Ag(x,s) = —2(x 7§J77' 3.10
g(x,s) asz (X,S) pr (1 _ Hj(f)s) as (X’S)’ ( )
where H;(x) for i=1,...,N, denotes the principal curvatures of 0€ at x.

We proceed now to do the rescaling. Let ¢ be such that 0 < & < 1 and pick ¢ such
that 0 < ¢ <min{p — 1,(m — 1)/2}. Choose Ty such that & e~ D/2((1 — &) T,)? < 6.
For points in ¥ x [0, Ty] of coordinates (¥,s,7) such that 0 < s < e~ D2((1 —&f)t)P
define

_ s X
U, (X,s,t) =ev (m,(l - 8‘)t>

and extend u, as zero to the whole of Q x [0, Ty].
We will say that a function u is a strict subsolution of (1.1) if u is continuous
in Q x [0, 7] and satisfies

u, < A(u)" 'u) — Au/’"'u in Q@ x10,T[
in the weak sense and

O(|u|"w)

- < |ulf"'u on 0Q x 10, TI.
on
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Proposition 3.2. There exists & such that for any ¢, 0 <& < &, the function u, is a
strict subsolution of (1.1) in Q x [0, Ty].

Proof. As 0 <& <1 and ¢ < (m+ 1)/2 one has

6
i TR0, < ul(F0.0) (3.11)
and hence the boundary condition is satisfied.
We set
S
é =

em=D2((1 — )P’
A straightforward computation shows that if (x,s,¢) is such that 0 < ¢ < 7 and 0 < s
< & D2((1 — ¢9)1)?, then

(u,)(x,s,t) — Au} (X, s, 1) + Aub(X,s,1)
o 81+C((1 o Sc)l‘)lil(fm)//(f) 1 — 8((m71)/2)70((1 o SC)t)p

N—1
H(x) 1 .p—1—c c oL— 0
< YT e O A 0 )
Now since, by Lemma 3.5, the functions 4; and h, are bounded, (f™)"(¢) > 0 for
£ €10,&], and we have that p — 1 —¢ >0 and pa—a+ 1 = 0, we obtain that if ¢
is small enough then

(U, )i(X,5,0) — AW (X, 5,t) + AuP(x,s,t) < 0 (3.12)

if0<t<Tyand 0 < s < e D2((1 — &)t)P. Finally, that u, is a subsolution, in
the weak sense in the whole of Q x [0, Tp), follows from the fact that u, is continuous
in Q x [0,7y) and, since (/") (&) =0, one has V) =0 on the free boundary as it
can be checked by a direct computation. [

We are now in position to give the proof of nonuniqueness in the case 2g < m +
1. Pick a sequence, v,, n = 0,1,2,..., of positive classical solutions of (1.1) with
compatible initial data such that 0 < v,(x,0) < v;(x,0) if n > j and v,(x,0) — 0 as
n — oco. By a comparison argument, taking 7, smaller if necessary, we obtain that for
a fixed small enough & one has

ul.<l)n<1)j<1]0

in Qx[0,Ty) if n> .

We define now u(x, t)=lim v,(x,¢) as n — co. By the monotone convergence theorem
we obtain that u is weak solution. Clearly u, < u and hence u is nontrivial and becomes
positive for # > 0. Hence u(t — t;) is another nontrivial solution. This proves part (a)
of Theorem 2.2.

Respect to the case (b) of Theorem 2.2, the same supersolutions that can be found
in [6] provides us with the uniqueness of the zero solution that are constructed as limit
of solutions of nondegenerate problems. [
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Remark 3.1. In contrast with the case of null initial datum, we observe that the same
arguments used in the proof of the uniqueness of weak solutions in the case g = m
work if we consider two weak solutions u, # with the same initial datum, such that
u, = ¢ >0 on 02 x[0,1]. Hence, in this case we have uniqueness of weak solutions
as long as they are strictly positive over the boundary. For instance, this holds for
t €[0,t] if we take a continuous initial datum uy > ¢ > 0 on the boundary of 2, as
a consequence of the continuity of the solutions in on given in [7].

4. Blow-up results
In this section, we prove the finite time blow-up results in Theorems 2.3 and 2.4.

Lemma 4.1. Let p <m <gq, then there exist solutions of (1.1) with finite time
blow up.

Proof. The idea of the proof is to find a subsolution u with finite time blow up and
to use a comparison argument.

Let ¢o(s) = (m)l/@_"” a solution of the equation ¢’ = ¢! and u(x,t) =
@(a(x) + b(r)), where a(x)=¢ > x; for all x=(x1,...,xy) € RY, &> 0, and b(t) =

ot, & > 0, for all ¢ € [0,00[. We choose C=(g—m)esup,cq va:l x; + &0, with 0 > 0.
Then u(x,t) is well defined for all x € Q if ¢ € [0,e0/((¢ — m)o)[. Moreover, since

u™ ., ,0a da
o " P T oy
for ¢ small enough we get that
ag—nm <u? indQ x]0,00].
On the other hand, since
u,=¢'t'
and
Au™ =m(m — 1)¢" (¢ )’|Val* +mg" ' ¢"|Val* + me" ¢’ Aa
=m(m — 1)N(¢' & ¢" 2 + mNo" ' ¢" e,
the inequality
u, < Adu™ —Au? in Q x ]0,00[
holds if and only if

1
q—1 A
0< @ (qus A qum>.
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Since ¢ is increasing, to prove the above inequality it is enough to see that

1
5 < (a(x))?! (qu52 — iq)(a(x))mp’”)

| (g—1)/(g—m)
= N N
((q —m)e(SUP,cq D iy Xi — Dy Xi) + 80)

N N (2g—p—m)/(g—m)
2 (m—p)/(qg—m)
xe” |mgN — Al (g — m) supgx,-fgx,- +0 €
( xeQ

i=1 i=1

which is satisfied for an adequate election of ¢ and 9.
Finally, taking uy such that
1/(g—m)
1

(g —m)e (SqueQ vazl x; — infyeq vazl xi) + &0

if u is the solution of (1.1) with initial datum ug, since uo(x) > u(0,x), by using a
comparison argument,

uo(x) >

u(x,t) < u(x,t).

Now, let xo be such that a(xo) = sup,a(x), at the point we have

1 1/(q—m)
u(xo, 1) = < = ) ,
C — (g —m)(esupycqg » ;g Xi + b(1))
which goes to infinity as ¢ — ¢0/((¢ — m)d). Therefore, u blows up in finite time. [

Remark that the same proof works if p=2g—m and 4 is small enough. Concretely,
we have the following result.

Lemma 4.2. Let ¢ > m, p=2q —m, and A small enough, ). < ly = q/m, then there
exist solutions of (1.1) with finite time blow up.

Now we prove the following result.

Lemma 4.3. Let g >m, p <2q—m and p = m, then there exist solutions of (1.1)
with finite time blow up.

Proof. First we choose p > p such that p = 2¢ — m. By Lemma 4.2 we can
choose /Z small enough such that the solution of (1.1) with p and A blows up in
finite time for every initial data wy large enough. Let w be such a solution, we claim
that given K > 0 there exists M such that w(x,t) > K for every (x,t) € Q x 10, T,,[
provided that wy > M. To see this, fix 7 such that

1 1/(p—1)
- = >K.
<(13— IMT)
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As the subsolutions constructed in the proof of Lemma 4.2 blow up at small times,
we have that, if M is large, the existence time of w,T,,, satisfies 7, < T. Now, let

1 1/(p—1)
o ()
(p— Dt +M'-p

be the solution of

(t)=—-1zP(t),  z(0)=M.

By a comparison argument, we have that

1 1/(p—1)
wix,1) = z(1) = ( — > > K
(p—DAT +M'—5
if M is large enough. This proves the claim.
Now we choose K such that AK?~7 > A, by the claim, we have that w(x,?) verifies

wP < Iw?

and hence it is a subsolution of (1.1) with the original parameters p and A4 that
blows up in finite time 7,,. If we choose uy > wy, by comparison argument, the result
follows. [

Lemma 44. If ¢ < m, p<gq and q > 1, there exist blowing up solutions in finite
time.

Proof. Following the same idea of Lemma 4.1, let u(x,t) = ¢(a(x) + b(t)), where
¢ is the solution of ¢’ = @4~™"! that is, ¢(s) = ((m —q)s + C)/" 9 if m > ¢ and
o(s) = Ce’ if m =gq. In both cases,

lim ¢(s) = +oo. (4.1)

§——+00
We want to show that

Ou = m(p'”*lq)’@ = m(pqa—a <u? on 0Q x]0,00[ (4.2)
on on

and
b < me" ' da + mqe? |\ Val> — 2P ™1 in Q x 10, 00],
for which it is enough to see
b < mp" ' Aa— dpPm T = " Y(mdAa — LpP ™). (4.3)

Let a € C*(Q), a > 0, such that 4a =k > 0, and da/dn < 1/m on 0Q. With this
election of a (4.2) holds. Let, for ) > 0 and 4 > 0,

. 1 (m—q)/(g—1)
0= (i —a=n)
and for 4 < 1/(m — 1),

I
b = =118 o e — 1)
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the solutions in [0, #[ of

b = Apm=Vm=D) if g < m,

b =Ae"" Db if g=m,

respectively. In both cases,

lim b(t) = +o0. (4.4)
—1lo
With these elections of a and b, if we choose 4 and C such that
1
_ \m=1)/(m—q) - ;
A< (m—q) (mk )VC(q_p)/(m_q)) if g<m

and

1
4 <! (mk—chp) if g=m,

(4.3) is satisfied
Taking

m—g \"eD 1/(m—q)
up(x) > <(m -q) (sup a(x) + (A(q—l)t0> >>

> u(x,0) if g <m,

up(x) = eSup a(x)+(1/(m—1))log (1/(A(m—1)t0)) > u(0,x) if g=m,
if u is the smooth solution of (1.1) with initial datum u,, by a comparison argument,
u(x,t) = u(x,1).

Consequently, by (4.1) and (4.4), u blows up in finite time. [
The same proof works if p=¢ and 4 small enough. We have the following result.

Lemma 4.5. Let g < m, p=gq, g > 1 and A small enough, . < Ay with Ly depending
on Q, then there exist solutions of (1.1) with finite time blow up.

Remark 4.1. Since the blowing up solutions are strictly positive at the boundary in all
the above blow-up results, by uniqueness (see Remark 3.1), we have that every weak
solution blows up in finite time.

Remark 4.2. In the critical case 1 <m = p =g, if Q= B(0,R) the same arguments
used in Lemma 4.4 work if we choose a(r) = r?/(2mR) if . < N/R or if we choose
a(x) = (1/(mN'?)) Zf\/:l x; if A < 1. This proves that there exist blowing up solutions
if 1 < max{N/R, 1}.
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5. Global weak solutions

In this Section, we prove the global existence results in Theorems 2.3 and 2.4.
In proving the existence of global weak solutions we find a priori estimates for
smooth solutions of problem (P,) and proceed as in Section 3.

Lemma 5.1. Let ¢ > m and p > 2q — m, then there exists ng € N such that for all
n = ny, the solution u, of (P,) is globally bounded uniformly on n.

Proof. We look for supersolutions in the form

u(x, 1) = p(a(x) + b(1)),
where ¢(s) = (1/(C — (g — m)s))/¢=™ is solution of ¢’ = =", Let a € C*(Q),
such that 0 < a < 4, da/on = 1/m on 0Q, |Va| < 1/m in Q and |Va| is bounded
independently of § by a constant M. Such a function a(x) can be constructed as follows,
take an extension of

a(x) = g(dist(x, 0Q)),

g being an smooth decreasing function such that g > 0,g(0)=0, g(s0)=0, ¢’'(0)=1/m
with ¢”’ bounded independently of ¢ (see [16]). We choose, b=0, and C =25(q — m)
in order to have ¢ well defined.

Now, since

1 1/(g—m) 1 1/(g—m)
s Sulxt) < | —— s
(2(q—m)5) ((q—m)5>

there exist ns such that for all n > ng
1
- < ulx,t) < n
n

Let us see that @ is a supersolution of (P,):

Obviously,
ar :mqom_l(p’@ :m(pqa—a =>u? on 0Q x ]0,00[.
an on on

On the other hand,
b = me" ' Aa + mgo?~'|Val|? — JpPatm=!
= P Yt~ P Aa + mqp* = P~"|Val* — 1) in Q x 10, 00],
holds if
m(C — (q — m)a(x))(p—q)/(q—'n)M + %(C —(q— m)a(x))(p—2q+m)/(q—m) —21<0,
which follows taking é small enough. Consequently,
i, = Au™ —Ju? in Q x ]0,00[.

Moreover, for 6 small,

1 1/(g—m)
up < luollo < (C) < u(x,t).
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Then, by a comparison argument,

1/(g—m)
un(x,t) < H(x,t) < ((qm)5> in Q x [0,00[

Taking now u = —u,
1

1/(g—m)
(qn/l)é) in Q x [O, OO[

un(x,1) = u(x,t) = — (
and the proof concludes. [J
The same proof gives the following result:

Lemma 5.2. Let g > m and p=2q —m, with A large, . > Lo =q/m, then there exists
ng € N such that for all n = ng, the solution u, of (Py,) is globally bounded uniformly
in n.

Now we prove the following lemma.

Lemma 5.3. Let g < m and p > q, then there exists ny € N such that for all n = ny,
the solution u, of (P,) is globally bounded uniformly on n.

Proof. Following the same idea as before, let u(x,t) = @(a(x) + b(t)), where ¢ is the
solution of ¢’ = @¢~"*!, that is, ¢(s)=((m —q)s+ C)"/"~9 if m > g, and ¢(s) = Ce*
if m=gq. We take b=0 and a € C*(Q) such that ¢ > 0, and da/0n = 1/m on 0Q.

Then,
ou 0 0
o :mq)m_l(p’—a :m(pq—a =>u? on 0Q x ]0,00[.
an an an

On the other hand, since the inequalities

1 2
mAa(x) + mq ((m—q)a(x)—|—C) |Va(x)|

—M(m — q@)a(x) + C)YP=D"=D < 0 if m>gq

and

mAa(x) 4+ mq|Va(x)[* — A(Ce™)P~41 <0 ifm=gq
are satisfied for C large enough, we have that

ur = Au™ —Ju? in Q x 10, o00[.
Moreover, for C large, we have that

uy < |luoll,, < CYU™™ < ai(x,t) if m>gq
and

ug < |lugll, < C < ulx,r) if m=gq
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By a comparison argument, we get
1/(m—q)
up(x,t) < u(x,t) < ((m — g)supa(x) + C) in Q@ x [0,00[, if m>gq
xXEQ
and
supa(x) . .
up(x,t) < u(x,t) < Ceve® in Q x [0,00[, if m=gq. 0

Lemma 54. Let p <q < 1, then there exists ng € N such that for all n = ny, the
solution u, of (P,) is bounded in Q x [0, T], uniformly in n, for any T > 0. Moreover,
if the initial datum,ug, is large then u, goes to infinity as t increases.

Proof. First we deal with ¢ <1. Let u(x,t) = ¢(a(x) + b(¢)), where ¢(s) =
((m — q)s)"=9 is solution of ¢’ = ¢!, Let a € C*(Q), such that @ > 0, and
Oa/on = 1/m on 0. We take

(m—q)/(1—q)
1 —
b(t) = (A qt+B)
m

solution of &' = Ap"—D/(m=a)  Then,
ou" mot 00 ,0a
an

=mp?— =u? on0Qx]0,TI.
an an

On the other hand, since the inequality

(m—1)/(m—q) 2
A= <(m —q) (1 + a%x))) (mAa + mq| V| >

(m — q)B(m—q)/(l —q)

in Q x ]0,00[ is satisfied, given B, for A large enough, for such an election we have
that

u, = Au™ —Ju? in Q x ]0,00[.
Moreover, for B large,
uy < luoll o < ((m — @B~V <3, 1),
and, by a comparison argument, we obtain
up(x,t) < u(x,t)
g m—g)/(1—g)\ \ /"D .
< ((m—q) (:gga—i— (AnHIT—i—B) >) in Q x[0,T].

To deal with the case ¢ =1 we only have to follow the same steps as before, but
in this case we choose b(¢) = Be!.

This ends the proof of the first part of the lemma. To see that the solutions go
to infinity as ¢ increases we construct a subsolution which is not globally bounded
in time. As before, we begin by ¢ < 1. We choose u(x,?) = ¢(a(x) + b(t)), where
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@(s) = ((m — q)s)"/"=9) is solution of ¢’ = @?~"*'. Now we choose a € C*(Q) such
that @ > 0, da=k > 0 and da/on < 1/m on 0Q. We take

(m—q)/(1—q)
1 —
b(t) = (A qt—i—B)
m

solution of b’ = Ap\"—1/(m=4) Then,

ou 0 0
57 :m(p’”*lq)’a—Z :m(pq£ <u? ondQx1]0,TI.

On the other hand, the inequality

(1)) 1 (g=p)/(m—q)
— m—L)/\im—q _
A< (m=q) mk — 4 ((m - q)B(m—q>/(1—q>)

in 2 x]0,o00[ is satisfied for positive small 4 if B is large enough. For such an election
we have that

U, < Au" —Ju? in Q x 10,00[.

Moreover, for uy large, up > u,, using a comparison argument, we obtain
un(x, 1) = u(x, ).
The case g=1 follows as before by choosing b(#)=Be? with an appropriate election
of 4 and B. [

The same proof gives the following result.

Lemma 5.5. Let p=g < 1, then there exists ng € N such that for all n = ny, the
solution u, of (P,) is bounded in Q x [0, T], uniformly in n, for any T > 0. Moreover,
if A is small and uq is large we obtain an unbounded solution and if A is large we
get globally bounded solutions.

Finally, working as in the proof of Lemma 5.3 we get.

Lemma 5.6. If 1 <g=p < m, and A is large, /. = 1o(Q), there exists ng € N such
that for all n = ng, the solution u, of (P,) is globally bounded uniformly in n.

Remark 5.1. In the critical case 1 <m = p =g, if Q@ = B(0,R) the same arguments
used in Lemma 5.3 work if we choose a(r) = r?/(2mR) if . > N/R + 1. This proves
that there exist global solutions if A > N/R + 1.
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