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Abstract
In this article we study the following quasi-linear parabolic problem:
u — Au A |uP7ulVul? = [u] " u|Vul?  in Q x 10,77,
u(x,t)=0 on 0Q x 10,TJ,
u(x,0) =uo(x) in Q,

where Q is a bounded open set of RY and 7 > 0. We prove that if ,f>1, 0< p <gq,
1 <g<2,and o+ p < f +q, then there exists a generalized solution for all uy € L'(Q).
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Given T > 0, consider the following quasi-linear parabolic problem:
uy — A+ [uP72u|Vul? = [u*72u|Vul?  in Or == Q x 10, T,
u(x,t)=0 on Sy :=0Q x 10,7, (1)
u(x,0) =up(x) in Q,

where Q is a bounded open set in RY, whose boundary is denoted by 02, 1 < ¢ <2,
0< p<gandapf>1 (We denote |Vul'=1.)
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For the concrete case p=0 and =1, and for positive initial data, problem (1) was
introduced by Chipot and Weissler in [8] in order to investigate the effect of a damping
term on existence or nonexistence of classical solutions. Several authors have studied
the existence of nonglobal positive classical solutions, giving conditions for blow-up
under certain assumptions on ¢, g, N and Q; see [4] and the references there in. Global
existence for nonnegative initial data has been proved in the case ¢ +1 > o > 2 (see
[9,16]). On the other hand, it is observed in [19] that problem (1), with ¢ =2 and
p=0, does not admit global classical solution in the case « > 2, f > 1 and 42 < a.

For positive initial data and p = 0, the degenerate case (the term Au is replaced
by Au™ in problem (1)) has been studied in [4], where the existence of global weak
solutions for nonnegative initial data in L”*!'(Q) is proved under the following as-
sumptions: Q a smooth bounded domain, m = 1, (f+¢q —1)/g > m/2, 1 <q <2 and
2 <a < f+q. We remark that the methods used in our paper are different of that of
[4] which does not work in the limit case ¢ = 2; moreover, we obtain an existence
result for, not necessarily positive, initial data in L'(Q).

We point out that in [4,18] a model in population dynamics is described by this
type of equations.

Problem (1), with p =0 and ¢ = 2, has been dealt with in [2] to obtain existence
for L'-initial data. We point out that the technique we use here is different from that
employed in [2], which, moreover, does not work when ¢ < 2.

Related problems are also studied in [1] in the degenerate case with measure initial
data. In contrast with the above references, in [1] it is considered an equation with
right-hand side depending on the gradient.

The aim of this paper is to prove the existence of a generalized solution of problem
(1) for initial data uy€ L'(€2) under the following hypotheses on the parameters: o,
f>1,0<p<gq, 1<qg<2,and a+ p < ff + ¢. The existence result lies on a sta-
bility theorem with respect to the initial datum (Theorem 3.1). We point out that the
techniques employed in this paper also work for more general evolution problems, as,
for example, those involving a general Lions type operator of linear growth (see [12])
instead of the Laplacian.

This article is organized as follows. In Section 2, we define the concept of generalized
solution and we prove that these solutions are solutions in the sense of distributions.
Section 3 is devoted to prove the existence of generalized solutions of problem (1)
for initial datum o € L'(2) by proving our stability result. Finally, in the appendix we
give an example which shows that the hypothesis « + p < 4+ ¢ in our stability result
cannot be avoided.

2. Generalized solutions

In this section we define and analyze our concept of solution of problem (1). This
kind of solutions was introduced in [5] for stationary problems, and in [3,15] for
evolution ones, as entropy solutions.

We use the following notation, for each k& > 0, we denote T;(r) = (r Ak)V (k)
and J; the primitive of 7} such that J;(0) = 0.
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Definition 2.1. Let 1y € L'(Q). By a generalized solution of problem (1) in Qr we
mean a function u € C([0, T]; L'(Q)), such that Ty(u) € L*(0, T; Hi(Q)) for all k > 0,
ulu|*=2|Vu|? € LN(Qr), ulu|f~2|Vul? € L'(Qr) and

_ t _ _ t p—2 _
/Q Juu(t) — (1)) + /0 /Q Vu- Vi — ¢) + /O /Q P2l Vult T — )

t t
— [mw—sred+ [ vt o)+ [ s~ go)
0 0/@ Q
for all k > 0, all € [0, 7] and all test function ¢ € L*(0, T; Hy(2))NL>(Qr) such that
its derivative in time in the sense of distributions, ¢,, belongs to L*(0,T; H~'(Q)) +
LY(Or).

Remark 2.1. (1) If ¢ belongs to L*(0,T;H}(2)) N L>=(Qr) and its distributional
derivative in time is such that ¢, € L>(0,T; H~'(Q)) + L'(Qr), it is well known that
¢ € C([0,T]; L*(Q)). As a consequence, the functions ¢(0) and ¢(¢) in the above
definition have sense.

(2) Since Ty(u) € L*(0,T; Hi(2)) and ¢ € L*(0,T; H} (2))NL>(Qr), it follows that
Ti(u — §) € L*(0,T; Hy(2)) N L>(Qr) (see [5]).

(3) It follows from V7T;(u — ¢) =0 when |u — ¢| > k, that VT (u — ¢) =0 when
lu| > M =k + ||¢||loo. Thus, Vu-VTi(u— ¢)=VTyu-VTi(u—¢)eL(Qr) and the
second term is well defined.

(4) Since ¢, € L*(0,T; H~'(Q))+L'(Qr), we have ¢, = B; + f, where f; € L*(0, T;
H~1(2)) and B, € L'(Qr). We use the notation

| =00 = [T 1B + /Q T o

in the above definition.
(5) Taking ¢ =0 and k£ =1 in the generalized formulation, it yields

/ IVTi(u))* < / || Ty () || V] P + / Ji(up) < 0.
Or Or Q
Moreover, we also have

/ V- Tl < / P T w)]| Vil < o
Or or

Hence, these estimates imply er [Vul? < oo and so u e LU0, T; W, (Q)).

(6) Actually, the condition u|u|’~2|Vu|? € L'(Qr) in the above definition is redun-
dant. Indeed, on the one hand, if ¢ < 2,

2 _
R B e P ML R
<k} {lul <k} tl <k
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and if ¢ =2,
/ | Vul < / K= Vult < + oo
{lu| <k} {lu| <k}

On the other hand, taking ¢=0 and =T in the generalized formulation and disregarding
nonnegative terms, it yields

/ P |Vult < / " | Vul? + / ol < + oo,
{lu| >k} Or Q

Thus, |ulf~!|Vu|? € L'(Q).

Next, we are going to see that generalized solutions satisfy our equation in the
sense of distributions. We will first prove that every generalized solution is a kind of
“weak solution”. (We point out that this is possible since ¢ > 1; in another case this
formulation has no sense, although the generalized formulation still has it. Nevertheless
our methods do not work to obtain existence of solutions when 0 < g < 1.) In order
to see it, we have to regularize our initial datum and apply the time-regularization
procedure introduced in [10] (see also [11] and, for non-zero initial datum, [13] and
[14]): for a fixed vE N and a given function w e L*(0, T; H} (2)), we set

wy(x,t)=v /Ot w(x,s)e" ™) ds (2)
for +€[0,T]. This regularization function has the following properties:
wy € C([0.T]: Hy (Q)),
(wy)r =v(w —w,) in the sense of distributions, 3)
wy —w in L*(0,T; Hy(Q)) as v — oc.
Moreover, |[wylloo < [[W]|oo if w€L*¥(Qr) and, when w € C([0, T]; L' (Q)), wy(.,t) —
w(.,t) in L'(Q) for 0 <t < T.

Proposition 2.1. Let T > 0. If u is a generalized solution of (1) and ¢ € L (0, T; Wol’q/
(2)) N W(0,T;L>(RQ)), then the following equality holds:

. B2 q
/Qu(T)dB(T)—i—/QT Vu V(b—l—/QT |u]” =% u|Vul?$

- / upe+ [ Ul VulP + / Uo(0).
T Or Q

Proof. Fix k > 0 such that k > [[¢|| and let & > k. Consider a sequence (y4)7°; in
9(Q) such that Y — uy in L'(Q).

Now define 1, ;j(u)=(Ti(u))y+e ™" Tu(h). By (3), (1) € L*(0, T; Hy (2))NC([0, TT;
L'(2))NL>*(Qr) and, in a distributional sense, (1, ;(u)),=v(Ty(u)—1ny (1)) € L>(Or).
Thus, if ¢ EL‘/(O, T; Wol’q’(Q)) N W20, T; L>°(RQ)), then 1, ;(u) — ¢ may be taken
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as test function in the generalized formulation of problem (1) which yields

/Q Je(u(T) = ny,j()(T) + ¢(T)) + 0 Vu - VTi(u—1y,(u) + )

[l VT g0 + )
or
- / (g0 Tt — o (1) + ) + / BTt — o (1) + )
Or Or
+ / 2 [Vl P T — () + )

+ /Jk(uo = Tiw(¥) + ¢(0)). (4)
Q
We now analyze the following term:
L s a0+ 9= [T )T 0+

Observe that the functions 7j(u) — n, ;(u) and u — n, ;(u) have the same sign. In-
deed, when |u| < & both functions coincide and when |u| > A, taking into account that
1y, j(u)| < h, we have that

sgn(Ty(u) — ny,j(u)) = sgn(u — 1, ;(u)).
On the other hand, since 7} is an increasing function, sgn a =sgn a implies a(7y(a +
b) — Tw(b)) = 0; that is, aTy(a + b) = aTy(b). Hence,

(Tn(u) =y, () T (u — 1y () + ¢)

> / (Ta(u) — 10, () Ti($)
Or

1
= [ @ —ngwe=1 [ oo
so that

0 (n\’,_j(u))tTk(u - nv,j(u) + ¢)

>/Q M )T — /Q Ta()$(0) — /Q R
Thus, (4) becomes
/Q (T — o XT) + $(T)) + / V- VT — () + )

T

+/ ululP 2V ul I Te(u = () + ¢) < — / My, j(W)(T)P(T)
T Q
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+ /Q Ty $(0) + /Q )b+ /Q 9T 0+ )

+ / ulu 2|V ul P T — iy (u) + ) + /Jk(uo - T + ¢0)).  (5)
T Q
In order to take limit as v goes to co we have to study the term

/ Vi VT — o () + ) = /{ V- V(u— o (1) + ).

[u—n,,j(u)+| <k}

which can be split up as

/ Vi VTl — yu) + §) =1 + I+ I,

T

where

I

/ V- V(0 — o)+ BVl =1-
{‘u_ﬂ\'\/(”)‘kd" <k}

I

/ V- NV (Ti(u) = 0y Oy 6] <k}
{Ju—ny ()| <k}
and
L= / Vu - V(u— Ti(u) + )L fju—Tyu)+¢| <k}-
{u—nj(u)+¢| <k}

Since lim,_, o0 1y (1) = Ty(u), it is easy to see that lim, .o [} = 0 =lim,_, [, and

lim,_,o0 I3 = f{\u—Th(u)+¢>|<k} Vu-V(u— Ty(u)+ ¢). So that
lim Vu-VTi(u—n(u)+¢)= Vu-VTi(u— Ty(u)+ ¢).
V—00 QT QT

Thus, by this convergence and Lebesgue’s Theorem, we may take limit in (5) first
when v tends to oo and then when j goes to oo, and it follows that:

/Q J(T) — Ty)XT) + §T) + [ V- VT — Tyw) + ¢)
Or
+ / ulu P2 Vul1 Te(u — Ty(u) + §) < — / T(u)(T)(T)
Or Q
+ /Q Ty(u0)(0) + /Q T+ /Q T Ty £ )

+ / ulu 2V ulP Te(u — Ti(u) + ¢) + / Ji(uo — Th(uo) + ¢(0)). (6)
T Q
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Note that

Vu - VTi(u— Ty(u) + ¢)
Or

:/ Vu-V¢+/ Vu-V(u+¢)
{lul<h}

{h<lu| <k+h+||$lloc }O{|u=Th(u)+¢| <k}

= NVu - VOOrgul<it + Xih<ul <k-+h+]| ¢l y0{ lu=Ti )+ <k})
Or

and the last term in the above inequality converges to |, or Vu - V¢ when h tends to
oo. As a consequence, we obtain from (6) that

/wnmn+/4w0»+ ViV
Q Q
p—2 q
+4ﬂm mewséﬂ@+4¢ﬂw>

+4ﬂM“WWMm+LAWW+LwMW (7)
Taking now into account that
&@M@Lawwnﬁaw@x

we deduce from (7) that

. B—2 q
/g)u(T)d)(T)Jr/QT Vu V¢+/Qru|u| |Vul?p

< /T ug, + /T ulu|* 2| Vu|P ¢ + /Q uoP(0).

Finally, the desired equality follows by considering +¢.

Corollary 2.1. Every generalized solution of (1) in Qr satisfies the equation in the
sense of distributions.

Remark 2.2. The above result implies the following fact for bounded solutions. Since
each bounded generalized solution u satisfies the equation in the sense of distributions,
it follows that u, € L*(0, T; H~'(Q))+L'(Or) and so, by Remark (2.1) (1), we deduce
that u € C([0, T]; L*(Q)).

Generalized solutions and distributional solutions are different in general; nevertheless
they coincide for bounded solutions.
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Proposition 2.2. Let u belong to L*(0,T; H}(Q)) N L>®(Qr) satisfying
JulP=Hul?, Jul*H[Vul? € L'(Or).

Then u is a solution of (1) in the sense of distributions if and only if u is a
generalized solution.

Proof. Having in mind Corollary 2.1, we only have to see that distributional solutions
are generalized solutions.

We begin by observing that if u is a distributional solution of (1) then, by Re-
mark 2.2, u; € L*(0, T; H~'(Q))+L'(Qr) and u € C([0, T]; L*(Q)). Next fix ¢ € L*(0, T;
H(2))NL>°(Qr) such that ¢, € L2(0,T; H~'(2))+ L'(Qr), and consider a sequence
(qon) ©, in 2(Qr) such that ¢, — u— ¢ in L*(0,T; H}(Q)) and a.e.

Now, let S:R — R be a bounded C°°-function satisfying S(0) =0, 0 <8’ <1
S’(s) =0 for all s big enough, S(—s) = —S8(s) for all s€R, and S”(s) <0 for all
s = 0. Taking S(¢,) as test function in the distributional formulation and passing to
the limit when n goes to infinity, it yields

/Ot (S(u— ¢),us) + /Ot/Q V- VS(u— )+ /Ot/Q“|ﬁ_2u|Vu|"S(u—¢)
:/Ot/Q ||~ 2u|Vu|PS(u — ¢)

for all £ €[0,T1].
From here, denoting by Js(s) = fos S(r)dr, we get

/Q Js(u(t) — ¢(1)) + /O t /Q Vi VS(u— $)+ /0 /Q P2l (u — )

/ S= 1)+ | / =2Vl 7S — )

+ /Q J5(u(0) — $(0))

for all 1[0, T].

Finally, approximating the truncature 7} by an increasing sequence of functions
(8w, as in [5, Lemma 3.2] and letting m tend to infinity, we obtain that u satisfies
the generalized formulation.

3. Existence of generalized solutions

In this section we prove a stability result from which the existence of generalized
solutions follows.
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Theorem 3.1. Assume that u, is a bounded generalized solution of
()i — Aty 4 1ty 1 |P 72| V| = |t |* 21, |Vui|? in Or,
u, =0 on Sy, (®)
U, (x,0) = ugy(x) in Q,

where a,f > 1,1 <¢<2,0< p<gq, p+o<q+p, and uy, € L>(Q) for all n€ N.
1If

Uon — Ug in Ll(‘Q): (9)

then there exists a subsequence (still denoted by u,) and a function u:Qr — R
satisfying

up — u in L90, T; Wy (Q)), (10)
Ti(un) — Ti(u) in LX0,T; HY(Q)) for all k >0, (11)
P V| — [l [Vul?in LY(Or), (12)
"~ [Vt |” — [u* N [Vul? i LY(Qr), (13)
u, —u in C([0,T];L1(Q)). (14)

Moreover, this function u is a generalized solution of problem (1).

Proof. In this proof C will denote a positive constant that only depends on Q, 7T, a
bound of ||uop,||; and on the parameters o, 5, p and g. The value of C may vary from
line to line.

The following equality will be used several times in what follows:

/ Je(un(t)) + / VT + / P21y T (1) Vit
Q [ (o)

= [ a2t Tt | V] ” + / Ji(on). (15)
o Q

To obtain (15) it is enough to fix 1 €[0,7] and take ¢ = 0 as test function in the
generalized formulation of (8). Moreover, dividing by &, dropping a nonnegative term
and letting k — 07, it follows that

/ a0 + / il [V < / el [V + / . (16)
Q o O Q

3.1. A priori estimates

We will prove that

/ \un|“71|Vu,,\p < C for all neN. (17)

T
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Assume first that (o — 1)g > (f — 1) p. Applying Young’s inequality it follows that

/ V)7 < 2 / a1 [T
T q Or
+‘I;P/ | 4—BPY 4=~ (18)
T

Taking t =T in (16), the above inequality implies

/ |un|ﬁ_1|Vun|q</ |un|(aq—lfp)/(q—p)—1+ L/|u0n|. (19)
. or q9—P Jo

Taking into account (9) and applying Poincaré’s inequality we get

-1 4
/ |un|ﬁ—1+q < C/ |V(\u,,|(ﬁ_”/‘1u,,)|q =C (ﬁ + 1) / |un|ﬁ_1|Vun|q
T Or 9q Or

<C (/ |un|(0¢q*ﬂp)/(q*p)*1 + 1> ) (20)
T

Since p+a<qg+f and p <q imply (ag — fp)/(q — p) < q + p, it follows from
(20) that

/ lu,|P~177 < for all neN, (21)
r
and so

/ |u, |24~ PP a=P =1 < C for all ne N. (22)
Going back to (19), we deduce that
/ |un|P~1 [ Vu,|? < € for all neN. (23)

T

Now, (18), (22) and (23) imply that (17) holds when (o« — 1)g > (f — 1) p.
The case (x — 1)g =(f — 1)p is proved in a similar way. Consider finally the case
(¢ —1)g < (B —1)p. Then we deduce from (15), with t =T and k = 1, that

/ VT + / [V} + / P [Vt
Or {lua| <1}NQr {lua| > 13007

:/ |VT1(”n)|2+ / |un|ﬁ_2unTl(un)|vun|q

< / =220, T4 1) | Vit + / ]
Or Q

:/ |un|“\Vun|p—|—/ |un|a*1|wn|p+/|u0n|. 24)
{lua] <1} NOr {lun] >1}NQ0r Q
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Thus,

/ VT ) + / a1 [Vt 7
T {|“71‘>1}OQT

< [ wnwr+ [ Vil + [
T {lua|>1} NOr e

Since p < 2, using Young’s inequality,

/ \vmun)v?d/ YTy + C
Or 2 Or

and
/ a1 [Vt
{ltn| >1} NOr
<? / it |P=1 [Vt + 9-r
9 J{|u,|>1}NnOr q
X/ (4= B = )1, (25)
{lun| >1} NOr
Consequently,

/ [P~ | V|7 < / 4y (=) (4= )=
{lun| > 1} NOr {|un) >1} NOr

+L/|uon|+c,
q—pP Jo

where the right-hand side in the above inequality is bounded, since (ag — fp)/(q —
p) — 1 < 0. Hence,

/ a1 |V < C,
{‘un‘>1} Nnor

Therefore, the above inequality and (25) imply
/ [V < C. (26)
{lun|>1} NOr
On the other hand, dropping nonnegative terms in inequality (24) we obtain

/\VTl(un>|2< IV Ty (u)|? + C
T Or

and, using Young’s inequality, it follows:
/ IVTi(u,)|? < C.
T

From here and (26), we get that (17) holds in every case. As a consequence, the
right-hand side in equality (16) is bounded, which implies

/ |, [P~ Vu, |9 < C for all neN

T
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and

sup / lu,(1)] < C  for all neN. (27)
tef0.7] Jo

Furthermore, from equality (15) the following estimates also hold:

/ |V Ti(u,)|> < Ck  for all neN (28)

and, for k=1,
/ Tl(u,,)u,,\un|/f_2|Vun|q < C forall neN.

Denoting Gi(r) =r — Ti(r), this last estimate implies
/ VG (u,)|? </ T (it |10, [P 2|V ()| < € for all me N,
Or Or

From this fact and (28) we obtain
/ |[Vu,|? < C  for all neN. (29)
T

Moreover, for g close to 1 a better estimate can be obtained; indeed, from (27) and
(28) we may follow the procedure used in [3] (see also [6]) and deduce that, for
I1<r<(N+2)/(N+1),

/ |Vu,|" < C (30)

for all ne N.

Going back again to (8), we get that the sequence ((u,),)72, is bounded in the spaces
LI(0, T; W=L49(Q))+L"(Qr) and L(0, T; W17 (Q)+LY(Qr) for 1 <r < (N+2)/(N+
1). Using this fact, (29) and (30), we obtain from [17, Corrollary 4] that (u,);°, is
relatively compact in LI(Qr).

Summing up, there exists a function u € L(0, T Wol’q(Q)) and a subsequence, still
denoted by (u,);2,, such that

up —u  weakly in L9(0,T; W, (Q))
and
u, —u in LYQr) and a.e. in Qr. 31)
Moreover, by (28), we may assume that
Ti(u,) — Ti(u) weakly in L*(0,T; H) (Q)).
Finally, assuming (« — 1)¢ > (ff — 1) p, we also deduce that
|un|(aq—/ip)/(q—p)—1 N |u|(uq—ﬁp)/(q—p)—l in LI(QT)~ (32)

Indeed, because of (31), we just have to show that the sequence (|u,|(*—FPV/a=pP=T)>,
is equi-integrable, but it is straightforward taking (21) and Holder’s inequality into
account.
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3.2. Convergence of truncations in L*(0,T;H}(2))

Our aim is to prove that (11) holds; that is,
VTi(uy) — VTi(u) in L*(Qr) for all ke N. (33)
From here, applying a diagonal procedure, we deduce that
Vu, — Vu ae. in QOr. (34)

To prove (33), we have to regularize the initial datum u, and to use the time-
regularization function given in (2). Let ¥y € () be such that

Y —uy in L'(Q)
and let

M) = (Te(™))y + " T,
which has the following properties (see (3)):

1y (™)) = v(Te(u™) — ny(u™)),

0y ()(0) = Tr(y"),

|y ()| < &,

nyu™) — Te(u™) in L*(0,T; Hy(Q)) as v — oc.
By denoting w(n,v,j,h) any quantity such that

lim lim lim lim w(n,v,j,h) =0,

h—00 j— 00 V—00 1— 00

all we have to prove is that

/ ‘V(Tk(un) - n\'j(u))|2 < (,l)(l’l, V,j,l’l),

T

where / is a parameter we will consider later. The proof of this fact will be split up
into several stages. We begin by showing that

Claim 1.

/ ‘V(T/»(”:) - ’7&{/’(”+))+|2 < w(n,v,j,h)

Proof. Consider

Wy = Doty — Ty ) + (Ti(un) — 1y (™)) ™)
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with 4 > k, and observe that u,w, > 0. Using Remark 2.2 we can multiply problem
(8) by w, and integrate to obtain

T
/<wn,(un),>+/ Vun~an+/ e P [t ]
0 T Or

- / [P . (35)
T
Let us prove that
T
/ s ()Y + [ Vg - Vg < o, v, ). (36)
0 Or

We have to consider three cases; assume first (¢« — 1)g > (f — 1)p. Then using
Young’s inequality in the right-hand side of (35) we obtain

T

/ o ) + [ Ty T, + / P [Vt

0 Or Or

<? / | P V1| | + L2 iy | 9= BPY =)= |y |
q Jor q Or

and consequently, there exists a constant C > 0 such that

T
/0 (Wn,(un)z> + Yu, - Vw, < C/ |un|(aq—ﬁp)/(q—p)—1|wn‘.

Or r

Having in mind (32), the properties of #,;(u") and Lebesgue’s Theorem, it is easy to
see that

lim lim lim |, |9 PP =PI~y | =,
h— 00 V—00 n— 00 or

thus, (36) is proved in this case. The case (« — 1)g = (f — 1)p is similar. Consider
next (« — 1)g < (f — 1)p, then

el Sl = [
Or {lun| <1} NOr

+ [Vt |
{‘W‘Zl}nQT

The first integral can be manipulated as follows:

/ |”n|a_l|v”n|p‘wn| </ [V P W
{lunl <1} NOr {lua| <1} NOr

p/2 (2—p)/2
<</ |VT1(u,,)|2) (/ |wn|2/(”>) :
Or Or
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With respect to the second integral, we use Young’s inequality to get

/ il Vit
{‘“ul?l} NOr

<? / et | P [V 11| | + 9-p
q J{|u,|=1}nOr q

y / 1y (4B a= )1 [y
{‘“Hl 21} NOr

<2 / il 1Vl + 2 [ .
q Jor q

On account of (35), we have

/OT (Was (i )r) + /T Vit - Vw,

p/2 (2—p)/2 g—p
<( [ wnwr) ([ mper) e L
T T q Or

< o(n,v, h).

Therefore, (36) is proved.

In order to analyze the left-hand side terms in (36), we will follow the procedure
introduced in [14, Theorem 3.1, Step 3], which is included here for the sake of com-
pleteness.

Let us begin with the term fOT {(Wn, (u);) in (36). Note that w, = w,y(,, >0} and, if
u, = 0, then

Wy = Tk — 1)) — Tyg(u) — Ty

and so

T
/ (s 21 )e)
0
T

T
:A <Th+k(un - "\fj(”+))+s(un)t> - /0 <Th7k(”j1r - Tk(”;))’ (un)t>' (37)

On the one hand,

T
A <Th+k(un - 7717(“+))+,(Mn )t>

= [ 1 @) Thya(etn — (™))" + / i ((n — 1y (u™))(T))
Or Q

- /Q TnoCton — Tl
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v [ () = DTt = )"
T
+ / Tner((un — 1y (™)) (T)) — / ek ((uon — Ti(" ) ™)
Q Q

> w(n) + /Q Tner (it — 1)) (T)) — /Q Tnes(Cton — T,

having in mind |, ()| < k and (Tu(u™) — 0y ) This(u — my(ut))* = 0,

In order to estimate the last term in (37), we have to approximate the functions
u,. We begin by splitting up (u,); = Pin + B2, where By, €L*(0,T;H~'(Q)) and
Ban € L'(Or). Applying [7, Lemma 2.2] to each u, — ug, and then adding u, to the
obtained sequence, we may consider a sequence (z,,)°%; in L*([0,T]; Hl(Q)) such
that z,,(0) = ug,, and z,; — u, in L*(0,T; H}(L2)) when ¢ tends to infinity. Moreover,
(Zna)t ELz(QT) and 1ima~>oo(zna)t = (un)t in LZ(Oa T’H_I(Q)) + L](QT)

T
/O (Thai} — TeCui})). ()

= lim Th—k(era - Tk(zlja))(zntr)t

g— 00 QT

= lim Th—i(Gr (24, )G (205 )i
Or

ag— 00

lim [ Jx(Guz(T)) — / Jrr(G(z-(0))
Q Q

g— 00

[ 5sGtu (@ = [ oGt
Q Q
Therefore, (37) becomes

T
/ (s (1)) > () + / it — oy ™)) (TY)
0 Q
[ sl = TN~ [ e Gataf ()
Q Q

+ [ s Gutai ),
Q
As |n,j(u™)| < k it follows that
Int (= ()Y (T)) = Tpic (T = k)Y iy ry 50 = 0,

SO

T
) = 000~ [ st = 100+ [ st b
0 Q

{uon =k}
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Taking limits as n goes to infinity, it follows that

T
| et = 000~ [ st - )
0 Q

+ / Jp—i(ug — k).
{ug =k}

Taking now limits as v and j tend to infinity,

T
/ (s () = () — / n((uo — To(u )7 + / it
0 Q {up =k}

=0l [ st = 6 =l £))
{ug =k}
Since
2k o < / (ni(tto — k) — Jyx((t0 — k)" ),
{uo=h} {uo =k}
it yields
T
/ (Wi (i )e) = 2, v, ).
0
Then, by (36) and the above inequality,
/ Vu, - Vw, < o(n,v,j,h).
T

Now, since Vw, =0 when u, > h+ 4k and w, = W)y, >0}, it follows that

Vu, - Vw, :/ YV Thiae () ) - Vw,
Or Or

- / VT ) - V(T ) — )y

T

+ [ V) Vi,
{un =k}
where

/ V() - Vw,
{un =k}

/{un =k} O {uy—Ty(un) =y (ut) <k}

> - / VTheac i) - Vi (u*)
{Mn 2/(} ﬂ{Mn—Th(uu)_’7\1/'(”+)<k}

> / IV T [ Vi1 )|
{u, >k

1191

k)

(38)

(39)

Y Tiar(uay ) - NV uy — Tp(un) + b — ("))
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o [ VTV
{ua =k
- / VT X VT ) — Vi)
{uy =k}

> / IV T e[V T ()| / IV sV T =V )
{un =k Or
with

lim IV T ()| VTi(ut)| =0

n—o00 {un >k}

and

lim lim IV Thear () VT(u™) — Vi (u™)| =0,

V—00 n— 00 QT

so that (38) and (39) imply

/ VTGt ) - V(TiG) — myt ) < o(nv.j.h).

T

On the other hand, it is easy to see that

lim lim / Vi (u) - V(Ti(uy) ) — ™))t =0,
Or

V—00 n— 00

Therefore,

/ V(Te()) = ™) P < o(n, v, jih)

T

and Claim 1 is proved.
Claim 2.

/ ‘VTk(un_)|217\’](u+) < U)(n, V,j,h).

Proof. We multiply problem (8) by
0n = Tio(—u, + Ti(uy ) — Ty Ynyj(u™))

with & > k, integrate and work as in the above claim to deduce that
T
| 0w+ [ Vu Vo, <o, (40)
0 T

Let us next study the term fOT (6, (t);). From the above claim, we know
there exists a sequence (z,,)°°; in L*([0,T]; HJ(R2)), with (z,,), € L*(Qr), such that
Zno’(o) = ugy, liMs_oozpe = U, in Lz(oy TaH()l(‘Q)) and hma—»oo(zna)t = (un)t in
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L*(0,T; H~'(Q)) + L'(Or). Now, denote
9}10‘ = Tkz(—Z,; + Th(zr;r) - Tk(zr;f)r]\’j(qu))’
which belongs to L?(0, T; Hi(2)) N L>°(Qr). Then we have

T
/ <01’l7 (un)t> = lim / (Zntr)tonzr = lim (Anzr + Bna)a (41)
0 00— Or 0— 00

where Ape = f{_h<zm<0}(zn0)tena and B, = f{z,,,,<—h} (Zna)tena-
On the one hand, note that

Ape = 0 (_Th(zz;))t Tk(_Th(Z;;;))”vj(Lﬁ)

:/Q (Jk(_Th(Z,;T)))t’?vj(”+):_/ Je(=Ti(z2,0)) (113 (1))

Or

+/Jk(—Th(Z,;(T)))my(qu)(T)— / Je(=Tiug, VTV
Q Q

> / TG ) - /Q (=Tt DT,

consequently,

lim 4,, > —/ Je(=Tp(u ™)y (™)) — /QJk(—Th(uJ))Tk(W) + o(n).

a— 00
T

Since

/ T =Ty )y = v / T Ty ) (™)) <O,

T Or
it follows that
lim A,e >~ [ ST D) + o) (42)
o— 0

On the other hand,
B = [ ez, Ty — T, )
{zpo <—h}
= 0 (—Gn(2p )i Ti2(—Gi(2,5) — ki (u™))
T

= [ Je=Gatarn ()~ kXD [ (=G, — KT )
Q Q

Tk /Q (WD T (—~Gazm) — k(™)
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> /JkZ(—kmj(f)(T)) - /JkZ(—Gh(M(;,) —kTe(Y))
Q Q

O DTGt )

Next, we analyze the last term in the above expression. Observe first that it can be
split up as

k / (WD T (— Gz — k(™)) = B, — B2,
Or
with

B, =kv | Te(u)Ta(=Gi(z,y) — kipyj(u™))
Or
and

By =k [ YT~ Gatzgy) by ().
T
Thus, taking limits, it yields
lim lim B! = kv/ T (u ) T2 (= Gp(u™) — knpyj(u™))

n—o0 6—00 r

SEN / Te(u ()
or
and

n—0o00 0—00

lim lim Bﬁa = kv/ n‘,j(bﬁ)Tkz(—Gh(u_) — knvj(u+))
Or
< kv / g (0 )T (kg (™)
Or

— v [ty
T
Hence, we obtain,

lim * lim k/Q (1)) T2 (= Gi(2,6) — (™))

n—0o0 6—00

k2
> 8 [ wm) =g =5 [ P
T Or
Consequently,

lim B, > /Q Jie (—kny(u™)(T)) — /QJ/(Z(—Gh(uo_)—ka(W))

g—00
K2 K2

T [ e pa+ 5 [ n oo (43)
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Having in mind (42) and (43), it follows from (41) that
T
| ) = o~ [ a1 1)
0 Q

+ / T~k XTY) — / Je(—Gy(uy ) — KT (0;1)
Q Q

2

k k?
-5 [+ 5 [ oy

Taking now v — oo and then j — oo, we deduce that

T
/ (O (n)) > (mv, ) + / Ji(—KTo( (7))
0 Q
2
- [ oGt ~ ki - 5 [ )y
Q Q

k? 5
Q
Letting % go to infinity, we have that

T
A <6m(un)t> = (U(Vl, V,j,h)
-I-/Qsz(—ka(Lﬁ(T)))—/Qsz(—ka(ug))

K2 + ) K +42 :
~5 [ TP+ 5 | T = o,
Q Q

since Ji2(—kT(u™(T))) = (k*/2)T(ut (T))* and Ji2(—kT(ug)) = (k*/2)Ti(ug )*.
Hence, from (40), we conclude that

Vu, - V0, < wn,v,j,h). (44)
Or

We next turn to study this term. It is straightforward that

Vu, - V0, = / |Vt |2, (u™)
Or {—k<u,<0} '

+/ “nVun'Vﬂ»v/(W)*k/ Vit V(™)
J{—k<u,<0} . {—h<u,<—k} .

- / Vu, - VT(—u, +h—kn(uh)). (45)
{u, <—h}
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Observing that the first term in the right-hand side is equal to |, o IV Ty )0 (u™),
to prove our claim all we have to see is that the other terms in (45) tend to 0.

First we analyze the second and the third term. Since Tj(u,)” — Tx(u)~ weakly in
L*(0,T; Hi(2)), we have that

/ ¥y V) = [ TG VTG V)
{—k<u, <0} r
tends, as n and v go to oo, to er Ti(u VT (u™) - VT (u) = 0. Similarly,
-/ Vi, Vi) = [ (VTG) = VI ) - Vi)
{—h<u,<—k} Or
tends to fQT(VTh(u_) —VTi(u™)) - VT (ut) = 0. Consequently,

/ uy Vi, - V(™) — k/ Vu, - Vi (™) = w(n,v).  (46)
{—k<u, <0} {—h<u,<—k}

Next, in order to analyze the last term in (45), we use the following notation; we
set M = k% + h,

Ef ={-M+kn,ju") <u, < —h}N{u=0}
and

E; ={-M +kny;(u") <u, < —h} N {u<0}.
Then

/ Vu, - VT (—u, +h—kn(u"))
{u, <—h}

_ / Vi, (=Vu, — kY, u*))
{—k2—hthn(ut)<u, <—h}

< —k Vu, - Vn(uh)
{—k2—hon, (ut) <u, < —h} !

— b [ V) @)~k [ VTw) T, @)
T Or

Since yg+(x,1) — 0 a.e. and T (u,)~ — Ty (u)~ weakly in L2(0,T; H}(RQ)), it follows
that

n—oo

lim 1Er VT ()™ - Vi (ut) =0.
Or
With respect to the last term in (47), we apply Cauchy—Schwarz’s inequality to get

/Q Y V)™ - V()

12 12
<( [ o #) ([ mmer)
Or E,

n
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which is equal to (n,v) just noting the integrals | or |V Ty (u,)~|? are bounded by a
constant only depending on M and

lim lim \Vn‘,j(u+)|2 = / |VTi(u™)> =0.
Vooon—oo Jp - {—M-+hkn(ut)y<u<—h}
Going back to (47), it yields
/ Vu, - VTi(—u, +h—kp(uh)) < on,v).
{u, <—h}
From that last inequality, taking into account (45) and (46), we obtain
/ Vi, - V0, = / IV T Cuyy ) Pj(u™) + o(n, v).
T T
Therefore, Claim 2 follows from (44).

Claim 3.

; IV(Ti(u)) — my (™) ~]F < oo(n, v, j ).

Proof. Let ¢: R — R be an increasing C' function such that ¢(0)=0, ¢(—s)=—(s)
for all s, and Q'(s) < q)’(r) if 0 <s <r. Consider the following functions: ®(s) =
Jo @(x7)dt and S(s) = § [;(k — )" dr, that is,

s if =0,
§2
_ = if —k<s<0,
S(s) = s+2k i k<s<0
k .
—E lfSS—k.

Observe that we may multiply problem (8) by the function
& = (@((S(un) = My (u™))™ = @(S(up)™))S" (utn)

and integrate to get

T
/ <éns(un)t> + vun : vén + |un|ﬁ_2un|vun|qén
0 Or Or

:/ |un|a_2un|vun‘pén~
T
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Performing obvious manipulations, from the above equality and the following
computations:

/ Vu, - vén

:/ Vi - V(S (n) — 1y (u™))” @' ((S(un) — 0y () 7)S (un)

T

— Vu, - VS(un)_fp (S(un)_)Sl(un)
Or

+ /Q IV PC@((S () — 1)) ) — @(S () ))S" (1)
_ / Tty - ety — oy (1))~ ' (S(ttn) — 14w )) IS (1)
{0<“r1 <’lv1‘(”+)}
+ / Vit - Vi ()0 (Stn) — 1y ™)) 7)S ()
{—k<u,<0}

+/ Vi, V(S () )@ (S () )= @' (S(un)—110j(u ™))™ ))S ()
{—k<u,<0}

1

tr / Vit P(@((S () — 1 (u™))7™) = o(S(ua) 7)),
{—k<u, <0}

we deduce that

0 V(T ) = @)’ () = miy(™))7)

=—/ V (up =112 ()N (=1 ("))~ X @' (1t =™ ))7)
{0<u, <npyi(ut)}

+ / V)P ()
{un <0}
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+ 0 V(") - V(Ti(uy ) = 1)) 0"y — 1y (@™))7)

=h+Lh+L+1Li+1s+1+ 1, (43)

where

T
Il :/ <én>(”n)t>a
0
[2 :/ un|un|ﬂ_2‘vun|qéna

13 - _/ un|un|a_2|vun‘péns

Or
Iy = Vu, - v"l‘{i(qu)(Pl((S(”n) - ’7\{/’(”+))7)S/(un)>
{—k<u, <0}
Is = e Vi, - VS ) (@' (S(un)™) = @' ((S(un) — myj(u™)) ™))" (un),
Is = % VP (@((S(un) — 0y (u™)) ™) = o(S(un) ™)),
{—k<u,<0}

I =/ Vi) - V(TiCuy ) = 1))~ 0" (. — 1y (™))"
Or
We are going to study each of these terms. Firstly, observe that, as the function ¢
is Lipschitz-continuous on [ — £, 0],

|@((S(tn) = 1y (" ))7) = @(S(un) ) < Mipyj(u®) in {—k <u, <O} (49)
Let us begin with the first term,

T T
I = / (& () = / (O((S(tn) — Moy ) ™) — 9(S(utn) ™). (SCun)))
0 0
- / O(S(un(T)) — 1y (" )(T)) / B(S(uon) — Ti(W'))
Q Q
+ / (1 )@ (SC1tn) — (™)) — / B(S(u(T)))
Or Q

+ [ @t
Q
Since @ is increasing and n,;(u") > 0, we get

D(S(un(T)) — myj (™ NT)) — (S (un(T))) <0

and consequently

T
/0 (& ) < /Q B(S(uy)) — /Q B(S(u0) — Te(l")

+/Q (1 (")) p((S(u) = (™)) 7) + co(n). (50)
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On the other hand,
Jim / (S(uo)) — / B(S(uo) — T())
IR JQ Q

- /Q (B(S(0)) — B(S(uo) — Te(u)))
- /{ | (9LS0) — #(S(w0) ~ Ty ))

+ / (D(S(u0)) — B(S(u0) — Ty(uig ))) = 0.
{up <0}
Finally, since S(u) < n,;(u™) implies T(u™) < n,;(u'), we get
/Q (S — ™))™

=V 0 (Ti(u™) = (™)) p((S(u) — 1y (™)) ™) < 0.

Hence, we deduce
I < on,v,j). (51)

Let us turn to analyze /, and /3:

L= / |”n|ﬂ72”n|vun‘q(/)((un - "Ivj(”Jr))i)
{0 <y g’l\'j(”Jr )}
+/ P21 | V11| (@((S () — 1y (™)) ™) = (S (i)™ ))S" (1)
{—k<u,<0}

< , |\ T ()P Y T, @t — 113y (u™)) 7).

From here, using Young’s inequality if g < 2,
L < C/ VTP oy — 1)) ™) + @(n,v)
Or

=C , IV (T, ) — 0y )P @ — my (@ ))7)

+ C/ Vi ®) - V(T ) =m0 )y — 10y (u™)) ™)

+C [ VTe(uy) - Vi) e(un — (™)) 7) + ox(n,v)
Or

=C 0 IV(Te(uy) = NP @tn — 1 ™)7) + o, v). (52)
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Respect to I,

;= _/ |Un|‘172un|vun|p(/3((un - n"./'(qu))i)
{0<uy <ipy(ut)}

—/ [t |* 2 | Vtt [P (@ (S (tt) = 1y (™)) ™) = (S ()™ ))S (un),
{—k<u,<0}
and then, using (49), Young and Hoélder’s inequalities:

< | TPV Tu) o — my () ™)
or

+M | T IV Ty )Py
Or

p/2
<C | VTP o((un — nyu™ )7 )+ M ( IVTk(un_)|2>

Or

2-p)/2
X (/ (ITk(un_)“_]mj(f))z/(z_")) + w(n,v)
Or

= C/ IV Tk ()P o((un — ()7 + o(m, ).
Or
Thus, proceeding as in the above term,

I <C ) IV (T(uy) = NP @tn — 1 (u™))7) + 0, v). (53)

The term I, verifies

lim lim Iy =~ [ VTi(u")  VIi(u")e'((S(u) — Tr(u"))7)S'(u)=0.  (54)

V—00 1— 00 or
With respect to the following term, since

@'(S(un)™) < @' ((SCun) — 1))

on the set {—k < u, <0}, we have
Is 2/ IV P[0 (S(un) ™) = @' ((S(un) — 0y (u™)) IS (un)* < 0. (55)
{—k<u,<0}

We now analyze /. Having in mind (49) and Claim 2,

=1 / IV (St — 1)) — 9(S(un) )
k J{—k<u,<0}
<M 9Pt < o(nv. ). (56)

k- Jo,
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Finally, it is straightforward that

fim fim 1= [ VTt V) - ) 9@ = )

=0. (57)

Therefore, going back to (48), estimates (51), (52), (53), (54), (55), (56) and (57)
imply

0 V(T ) = @)L @y — () ™) = Cop(uy = myy(u™))7)]

< o(n,v, j, h).
Choosing ¢(s) = s’ with 1 large such that ¢'(s) — Co(s) > 1, it follows that

) V(T ) = Vi ()™ |> < (v, j,h)

and so Claim 3 is proved.
Now, it follows from Claims 1 and 3 that

) IV(Tie(u)) — (™) < (v, j,h),

consequently, since 1,;(u") — Tp(u") in L*(0,T; Hj(2)), we obtain
lim V(') = VTiu®) in LX(Or). (58)

The corresponding result for the negative part of truncations may be obtained by
similar arguments, or by using the fact that —u, is a solution of

v, — Av+ o[o[f=2|Vo|? = [o]* 20| Vo|?  in O,
v=0 on Sz,

v(x,0) = —up,(x) in Q
and so we deduce
Jim VTi(—u)" =VTi(—u)*  in LX(Qr),
that is,
lim VTi(u, ) =VTi™) in L(Qr). (59)

Therefore, from (58) and (59), we conclude that (33) holds true.
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3.3. Convergence of gradient terms in L'(QOr)

Our aim in this step is to show (12) and (13); as a consequence, we also prove
(10).

We begin with the proof of (12); since almost everywhere convergence is guaranteed
by (31) and (34), by Vitali’s convergence theorem, we only need to show that the
sequence (|u,|P~1|Vu,|9)2°, is equi-integrable. This fact is a consequence of

lim |un|P~!|Vu,|? =0 uniformly on n € N. (60)
h=o0 J{lu| =300y

To see (60), we multiply problem (8) by Tj(u, — Ty(u,)) to obtain

/ Jeun(TY| — ) + / Vit
{lun(T)| =h}N2 {(h<uy| <k+h}NO7

+ |u,,|ﬁ*2u,,Tk(u,, - Th(un))|vun‘q
Or

< | a2 Tt — T )| Vita]? + / Jilltton] — ).
{luon] =} N

Disregarding nonnegative terms, dividing by £ and letting £ go to 0, it yields

J L R i 2
{\u,,\?h}ﬂQr {l“n‘>h}mQT
+/ (|u0n| — h)
{|uon| =H}INQ

<\/ ‘un|171|vun|p+/ |u0n‘-
{lua| Z1}NO7 {|uon| =H}NQ

Applying Young’s inequality we get

/ [t [P Va7 < / |u,, | 24— P (a=P)=1
{‘M:1‘>h}mQT {l“n‘>h}mQT

{|uon| =h}NQ

When (o — 1)g > (f — 1)p, (60) holds from (9) and (32). In the other cases, (x —
g < (f—1)p, (60) follows in a straightforward way.

Now we are ready to see that the sequence (|u,|f~'|Vu,|7)>°, is equi-integrable.
Indeed, if E is a measurable subset of Qr, then

Ll v = [ S [V
E EN{|u,| <k} EN{|un| =k}

<kﬁ_l/\VTk(un)|q+/ P~ [Vt 1. 61)
E {lun| =k}NOr
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Let ¢ > 0. By (60), we may choose £ > 0 such that

/ a1 Va7 < £
{Jm| =k}n0r 2

for all neN. Fixed £ > 0, as a consequence of (33), we have that the sequence
(|VTxu,|?)22, is equi-integrable. So we may find 6 > 0 such that |E| < ¢ implies

€
/E‘VTk(”n)rj < 25T

for all ne N. Hence, it follows from (61) that |E| <& implies [, [u,|/~"|Vu,|? <&
for all ne N.
In order to see (13), we apply Young’s inequality to obtain

"~ |Vt P < [V T3 ()| + % | 4PNy

+§ P~ [Vt

From here, distinguishing the cases (¢ —1)g > (f—1)p and (x—1)g < (f—1)p, and
using (31), (32), (33), (34) and (12), (13) follows.
Finally, we prove (10) by showing that

|Vu,| — |Vu| in LY(Qr).

To do that we only need to apply Vitali’s Theorem again. The pointwise convergence
follows from (34), while the equi-integrability is a consequence of (11), (12) and the
following inequality:

/ V|t = / VT ()l + / Yty — Ty
E E E
q/2
< [E|e-0" ( / |vrl(un>2> + [l 9
E E

3.4. Convergence in C([0,T];L1(Q))

In this step we prove (14). To do this fix 1 €[0,7], and m,n € N. Take u,, as test
function in the generalized formulation of (8) corresponding to u,, and u, in that of
u,; adding up both identities we deduce that

/ Ji(un(t) — un(2)) + / V(uy — tty) - VIi(uy — tty,)
Q O
+/ (|un|ﬁ_2un|vun‘q - ‘um|ﬁ_2um|vum|q)Tk(un — Up)
O
— [l 20 V017 i 2t V10 )it = 1)
O

+/Jk(u0n — Uom)-
Q
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From here, disregarding the nonnegative second term, we obtain that

/ T (0) = un() <k | NtalP 100 Vttn]? — [ttt V]
Q Or

+k Hu,,|°‘_2u,1|Vu,,\P — \um|“_2um|Vum\P|
Or

+k/ |u0n - u0m|'
Q

Next, dividing this inequality by & and letting £ go to 0 we have

/\un(t)—um(f)l </ et P =201 | V1| — 1|2 | V11|
Q Or

+ / 2200 [t — [ttt [Vt
or

+/ ‘MOn_uOm|-
Q

sup /|un(t)—um(t)| </ Hun|ﬁ72un|Vun\q—\um|ﬁ72um|Vum|q|
(0,71 Jo Or

Hence,

+/ HZ""|‘z_2“n‘vunlp - |um|“_2“m|v“m|p|
Or

+/ |u0n - uOm‘-
Q

Thus, it follows from (9), (12) and (13), that (u,);°, is a Cauchy sequence in
C([0,T];L"(2)) and consequently (14) holds.

3.5. u is a generalized solution

To finish the proof, we consider ¢ € L*(0, T; H}(2))NL>(Qr) such that ¢, € L*(0, T;
H=1(Q)) + L'(Qr). Taking ¢ as test function in the approximating problem (8) and
letting n go to oo, having in mind (11), (12), (13) and (14), we deduce the generalized
formulation of problem (1) and so the proof of Theorem 3.1 is concluded.

Theorem 3.2. Assume that o, >1,1<q <2, p+a<qg+p, 0< p<gq. Then, for
every uy € L'(Q), there exists a generalized solution of problem (1).

Proof. We will prove this result using the previous theorem. To this end, take an
approximating sequence u, € L°() which converges to u in L'(£) and consider the
corresponding problems with these initial data. Next, we will apply [19] to solve these
approximating problems; so that, we need supersolutions and subsolutions of them.
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Since Q is bounded, we have R > 0 such that |x;] <R — 1 for all x€ Q. Thus,
fixed n €N, there is K > 0 such that the function defined by u*(x) = K(x; +R) is a
supersolution of our approximating problem; indeed,

(u*)t — Au* + |u*‘ﬁ—2u*|vu*|q o |u*|x—2u*|vu*|p
= KPP+ RYK Py + RYT2 = (e + R 20 in Q.
W)x,t)=K>0 onS,

u (x,0) = K = ||upn|loc  in Q

for K big enough. Likewise, the function defined by u,(x)=—K(x;+R) is a subsolution.
Hence, as a consequence of [7], we get a bounded distributional solution u, of each
approximating problem such that u, € L*(0, T; H}(2)) N L>=(Qr), and |u,|F~1|Vu,|?
and |u,|*~'|Vu,|? belong to L'(Qr), and so, by Proposition 2.2, they are generalized
solutions. Now, by Theorem 3.1, we obtain a generalized solution of our problem.

Remark 3.1. Observe that assumptions o, § > 1 in the above theorem are only needed
for changing sign initial data, for positive initial data the result obtained is true for
o f = 1.
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Appendix A

In the case p=0, a+ p > f+gq, it is known that solutions of problem (1), for initial
data uy € L*°(R2), may blow up in finite time. Nevertheless, in the case p > 0 a solution
of problem (1) for initial datum uy € L>°(Q) is a global solution since u*(x,#)=||uo||o
is a supersolution and u,(x,7) = —||uo||oo is a subsolution of our problem (see [7]).

In this appendix, we will show that our condition « + p < § + ¢ is not arbitrary.
In fact, we are going to construct an example in one dimension, for the parameters
p=qg=1and o > f§ > 2, where our stability result does not work. So, in this case,
we are not able to deduce an existence result.

Let us consider the following problem:

u — e + |u)P2uluy] = [u*ulu,| in 71— 1,1[ x 0, T,
u(e,)=0 on {—1,1} x 10, 7] (A1)
u(xao):‘x‘*"/_l il’l]—l,l[,



F. Andreu et al. | Nonlinear Analysis 56 (2004) 1175—1209 1207

where 0 <y < 1. We are going to see that, if o > f§ > 2, for a suitable y, then there
exists a sequence of approximate solutions for which our stability result does not apply.
Let

L(u) =ty — e+ 1 usg| = 0 |
and let
u(x,t) = e h(|x|)

where k > 1, 6 > 0 and
2V y+2 . _1p
T2y YIS o <x <k
h(x)= 2 2

x7—1 if k7 <x <.

We remark that (|x|) belongs to C! in [ —1,1].
Let us see that choosing é > max{%,ﬁ — 1+ 1} and k large enough,

L(u) <0 pointwise in ]0, 1[ x [0, T].
On the one hand, in ]0,4~'7] x [0, T,
L(u) < — ke h(x) + e K1y 0+ 1 =K Bph=1 () 0+2lyx < 0.

Indeed, —%k‘se_kd’h(x) + e K1k <0 if §>2/y and k is big enough, and
L0 h(x) + e KPR (x)ypk DX < 0 if 6 > f— 1+ 1/y and k is large enough.
On the other hand, in [k, 1[ x [0, T],

L(w) < — ke h(x) + e F PR (=T <0

if 0 > f—1+1/y and k is large enough. Finally, by a symmetric argument, we conclude
that u is a nonnegative subsolution of problem:

w — e + |u)P2uluy] = [u*ulu,|,  in]—1,1[ x 10,7,

u(x,t)=0, on {—1,1} x 10,77,

u(x,0) =h(lx[), in]-—11[
A supersolution of this problem is the constant function ||A(|x])||. Then, by Boccardo
et al. [7] and Proposition 2.2, a bounded generalized solution v of the above problem
exists, with u < v < ||A(]x])]] co-

Since h(|x|) — |x|~7—1 in L' as k — oo, if Theorem 3.1 holds for these parameters,
it would exist a solution w of (A.1) such that

T ol Tl
/ / "o — / / w* w,| as k — oo. (A2)
0 J-1 0 J-1
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Now, it follows from 0 < u < v that

[ o=t [ st [ [ -
== / v(0) > | / w(0)= / (e (o))

1T e 1 (y+2 t T
=— P0)y=—|—Fk—1) k(1 — “).
s et = (45 (1)

So that, if we may take 0 < o, then the last term in the above inequality goes to
infinity as £ goes to infinity, which contradicts (A.2).
Hence, to get the contradiction we need to find § > 0 such that

2 1
max{,ﬁ—l—l—}<5<o¢ (A.3)
Y bs
for some 0 <y < 1. Since « > f§ > 2, there exists 0 < y < 1 such that
2 1
max{,ﬁ—l+} <o
Y Y

and consequently there is 6 > 0 satisfying (A.3).
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