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1. Optimal matching problems

We want to transport two commodities (modeled by two
measures that encode the spacial distribution of each com-
modity) to a given location,

the target set,

where they will match, minimizing the total transport cost,
given in terms of the Euclidean distance.
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In mathematical terms.

We fix two non-negative compactly supported functions
fi1, fo € L™, with supports X, Xo, respectively, satisfying

My —/lel /X2f2>0

We also consider a compact set [' (the target set).

We take a large bounded smooth domain (). We assume
XN Xy =0,
(XjUXo)NT =0,
(X1UX)UT CcC Q.



Given a measure € M (X) (say X = Qor X = Q x Q) and
H : X — Y measurable, we define

H#u(E) = p(H '(E)) for Borelian sets E C Y.

The Wasserstein distance

for p,v € MT(Q), n(Q) = v(Q),

Win)i= ot o yldey)
v € MT(Q x Q) JaxQ

oY = [
Wy#’)/ = U

gives the optimal cost of transporting u to v.



Kantorovich Theorem

W1(M07M1)=SUP{/QU05(M0—M1) 1 U€K1},

where

Ki={u: Q=R : |ulzx)—uly)| <|z—y|l Va,ye L}

A maximizer is called a Kantorovich potential.



The optimal matching problem consist in solving

min {/ \x—yldw(x,yH/ I:v—y!dv2<x7y)}-
(2% ) (%)

(1,72) € MT(Q x Q)
To#7Yi = Ji
Ty#Y1 = TyF#72

supp(my#y;) C T
(1.1)

. Y1 7Ty?'%éfyl = 7Ty?’%éfh o
- —

®
fi I Ty f2

If (v1,79) is a minimizer of (1.1), we shall call an
optimal matching measure to:

p = TyFY1 = TyF#Y2.



Consider
M(T, My) = {p € M™(Q) : supp(p) C T, u(Q) = My}

the set of all possible matching measures, then

mm{ [ vy + [ x—y\dmx,y)}
Q%0 Ox )

= inf Wi(f1, 1) + Wi(fo, 1)t = Wiy ¢ .
MEM(F,MO){ 1(f1, 1) + W2 M)} 1.5,



Using the weakly lower semi-continuity of
v = W <:u7 v )

one proves that there exist an optimal matching measure.



Using the weakly lower semi-continuity of
v— W (,LL, v >

one proves that there exist an optimal matching measure.

Uniqueness of matching measures is not true in general.



Using the weakly lower semi-continuity of
v— W (N? 4 )

one proves that there exist an optimal matching measure.

Uniqueness of matching measures is not true in general.

There exist optimal matching measures supported on the
boundary of the target set.



Evans and Gangbo approach

For uy = f+£Y and py = £V, fi, f— € L}(Q) smooth,
Evans and Gangbo find a Kantorovich potential as a limit,
as p — +oo, of solutions to a p—Laplace equation with
Dirichlet boundary conditions in a large ball,

~Apup = f+ — f— in B(0,R),
up =0 on 0B(0, R)



They prove:
up converge uniformly to v* € K as p — +00;
u* is a Kantorovich potential;

and there exists 0 < a € L™()) (the transport density) such
that

fi— f-=—div(aVu*) in D'(Q).
Furthermore |Vu*| =1 a.e. in the set {a > 0}.



We give a p-Laplacian approach (following E-G) of the
OMP.

We get a matching measure
(that also encodes the location for the matching) and
a pair of Kantorovich potentials

by

taking limit as p — oo in a variational p—Laplacian type
system, which is nontrivially coupled.



For p > N consider the variational problem

min /\va /]Vw[p /Uf1+/wf2
(v,w) € WIP(Q) x WP(Q

v+w>01nF

(1.2)



Theorem 1.1 (MRT).

1. There exists a minimizer (v, w)) of (1.2).

2. There exists a positive Radon measure ©;, of mass M,
supported on {z € I' : vy(z) + wp(x) = 0}, such that

—div (\va(x)\p_lv%(x)) =hy,— f1 In,
\va(a:)|p_1va(x) .n =0 on o).

and
[ _div (\pr(:lz)\p_1pr(x)) =hy— fo In €,

\ ]pr(a:ﬂp_lep(az) .n =10 on 0f),

where 7 is the exterior normal vector on 0f).



Theorem 1.2 (MRT). There exists a subsequence p; — +o0:

1. lim;_yo0 vp, = Voo and lim;_,oo wy. = wee uniformly, where
(Voo, Wao ) 18 @ solution of the variational problem

- /Uf1 /wf2 KWf1 fa

Vou(z)|, |[Vw(z \<1ae
v+w>0in T

Observe:

— [ vfi— | wfh=— [ vdma#ty — | wraH#y
Johi= fwtam= frnctn = |
/ / z)dy1(z,y) / / z)dyo(z, y)



Theorem 1.2 (MRT). For a subsequence p; — +o0,

1. lim;_yo0 vp, = Voo and lim;_,oo wy. = wee uniformly, where
(Voo, Wao ) 18 @ solution of the variational problem

W?V%?Eo /Uf1 /wf2 KWf1 fa

Vou(z)|, |[Vw(z \<1ae
U+w>01nF

Observe:

— [ vfi— | wfh=— [ vdma#ty — | wraH#y
Johi= fwtam= frnctn = |
/ / z)dy1(z,y) / / z)dyo(z, y)

g//(( — v(z))dy(z, y) // z))dya(z, y)

/ |z — yldy(z,y) + / z — yldya(z, y)



I’ _ I’
2. KWf1,f2 - Wflan '



I’ _ I’
2. KWf17f2 - Wf17f2 '

3. lim;_ o hy, = p weakly™ as measures, with p a positive
Radon measure of mass M, supported on

{x €T : voo(x) + Weolx) = 0}



I’ _ I’
2. KWflan - Wfbe '

3. lim;_ o hy, = p weakly™ as measures, with p a positive
Radon measure of mass M, supported on

{x €T : voo(x) + Weolx) = 0}

4. p is an optimal matching measure for the matching
problem.

5. We also have:

Voo is a Kantorovich potential for the transport of f; to p
and

Weo is @ Kantorovich potential for the transport of fy to p;



2. Optimal matching with constrains

Consider a more realistic case:
there are some constraints on the amount of material we

can transport to points in the target.

This amount is represented with a nonnegative Radon
measure O in () (with support I).

The restriction says:

for any set F C (), the amount of material matched there

does not exceeds / do,
E

We need the condition / do > M.
9






Our aim now is to study

| e
ue/\/}?é,Mo) {W1(f1yu) + Wl(f%ﬂ)} = Ws ¢,

where
M(O, Mp) = {p € MT(Q) : u(Q) = My, pu <O}

is now the set of all possible optimal matching measures.
() will be a large convex domain.



Theorem 2.1 (MRT).

wo . = / / —/ + d@}
fh= o, max { vfi— | wh— | (v+w)

Vel(a), [Vul(a) <1ae
(2.3)

We can obtain a pair of maximizers by taking limits as p
goes to +oo of a pair of minimizers (v, wy) of

1 1
min —/ \Vv\pr—/ \Vw|p+/vf1+/wf2+/(v+w)d@,
v,we WH(Q) P JO P JQ () () ()
(2.4)

and, also, a matching measure.



Theorem 2.2 (MRT).
Let (vp, wy) be minimizer functions of (2.4).

Set V) i= |[Vup|P >V, and W, := |[Vuwp|P >V,
Then:

1. The distributions V], Wg in RY given by
Vs o) :Z/QVp-VsH/wa Ve € DRY),
Wy, ) :=/QWp-Vso+/szso Vo € D(RY).

are equal and are positive Radon measures supported on
{vp +wp <0} NT.



Formally:

[ _div (\wp(x)v@—lwp@)) =VI—

—div (\pr(x)\p_1pr(x)) =V — fo.

\

Vg is a positive Radon measure supported on



2. There exist Radon measures V, Win () and pin I', and a
sequence p;, — +o0o, such that

(Vp;» Wp,) — (Voo, Weo) uniformly in €2,
Vp, =V weakly* in the sense of measures in (),

Wy, — W weakly* in the sense of measures in ¢,

ng. — p weakly* in the sense of measures in I,
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3. (v, Woo) is a solution of (2.3) and p is an optimal match-
ing measure.



2. There exist Radon measures V, Win () and pin I', and a
sequence p;, — +o0o, such that

(Vp;» Wp,) — (Voo, Weo) uniformly in €2,
Vp, =V weakly* in the sense of measures in (),
Wy, — W weakly* in the sense of measures in ¢,

ng. — p weakly* in the sense of measures in I,

3. (v, Woo) is a solution of (2.3) and p is an optimal match-
ing measure.
Moreover,

0 < p<OLAvs + woe < 0},

and

/Q(voo + Weo)  dp = /(voo + Weo)~ dO.

2



From the above result we can infer that
—dIV(V) — P — fl .

—dIV(W) — P — f2 )

and

/VvoodV+/VwoodW
€2 €2

:—/nglvm—/ngme+A(wm+Um)dp-



Theorem 2.3 (INT).

W = min o {0](@) + @)@ },
L2 Oy, By € My(Q)N
v e M;(Q)
-V - &;=0-v-—f

Let us call this minimizing problem as

minimal matching flow problem (MMF).



Theorem 2.4 (INT).

Let (®1, 9, v) be an optimal solution for (MMF).
If » < O then © — v is an optimal matching measure and
¢, is an optimal flow for transporting f; onto p, i =1, 2.

Then, the connection between both approaches lies in the
condition v < © for an optimal solution (&, 9, ) of (MMF).
Unfortunately, this does not hold in general.

S O 1% e f2



However, consider the assumption

S(f1, f2) Nsupp(©) = 0,
where S(f1, fo) == {|z,y| : v € supp(f1), y € supp(f2)} .

Theorem 2.5 (INT).

Let f1, fo,© be such that (H) holds.

Let (&1, P9, v) be an optimal solution for (MMF).

Then © — v > 0 and it is an optimal matching measure.



However, consider the assumption

S(f1, f2) Nsupp(©) = 0, (H)
where S(f1, f2) == {[z,y| : © € supp(f1), y € supp(/f2)}.

Theorem 2.5 (INT).

Let f1, fo,© be such that (H) holds.

Let (&1, P9, v) be an optimal solution for (MMF).

Then © — v > 0 and it is an optimal matching measure.

Theorem 2.6 (INT).
Let f{, f>,© be such that (H) holds, and © € L .
Then there exists a unique optimal matching measure:

OL [u; + ug < 0],

for any maximizer (ui,us) of the dual problem



To solve numerically the above problem:

For any u = (uj,us) € V = CHQ) x C1(Q), set

F(u) = /uldfl + /qufQ — /(U1 —|—Ug)d@
Au) := (Vuy, Vug, uy + u9),

and, for any (p,q,s) € Z .= C(Q)N x C(Q)N x C(Q), set

0 if [p(z) <1,|g(z)] <1,s(x) <0 Vre
G(p.q.5) = [p( >!._ q()) (z)
+00 otherwise.

Fenchel-Rockafellar:

inf F(u)+ G(Au) = sup (—F (—A*0) —G"(0)). (2.5)
ueV =



Consider a regular triangulation 7; of .

For an integer k£ > 1, consider P, the set of polynomials of
degree less or equal than k.

Take E;, ¢ H'(Q), the space of continuous functions on Q
and belonging to P, on each triangle of 7;,.

Denote by Y; the space of vectorial functions such that
their restrictions belong to (P,_)"¥ on each triangle of 7;,.

Set Vh = Eh X Eh and Zh = Yh X Yh X Eh'



Let f1 4, fo.n, On € Ep, be such that
f1a€2) = fo pn(Q) <Op(Q),

fip = fi. weakly* in M;(©),

fop = fo, weakly* in My(Q).

Q) — O weakly* in M;(Q).



For any (uy,u9) € V3, set
Ah(Ul,UQ) — (Vul, Vuo, ui + ’LLQ) - Zh,

Fplut, ug) = (uy, f1p) + (u2, fop) — (u1 + ug, Op),

and for any (p,q,s) € Zy,

0 if |p(z)| <1, lg(z)| <1, s(x) <0 a.e. z € (),
Gr(p.q.5) = bl )!. q(z)] (@)
+o0o  otherwise.



Theorem 2.7 (INT). Let (uy p,ugp) € Vj, be an optimal solu-
tion to the finite-dimensional approximation problem

inf  Fplug, ug) + Gp(Aplur, ug)). (2.6)
(u1,u2)€V,

such that /Ul,h = /UZ,h,

(2 €2
and let (®; , Py 5, ,) be an optimal dual solution to (2.6).

Then, up to a subsequence,

(u1 p,ugp) converges uniformly to (uj,u;) an optimal solu-
tion of the dual maximization problem,

and (P 5, P9 p, v) converges weakly* to (¢, P9, v) an optimal
solution of (MMF).

We solve the finite-dimensional problem (2.6) by using the
ALG2 method.



IsoValue

© g 00 O 1 (O OLOLOSH SF S O AIQY
O <TOMOAINNT™O <O MooA - OO~ INMMOLO—INM
O <tOM~AO~LD <TOMNSNA © ONOOOOMUOO—MNOO0T+—<FTOD
O <OO~NO—D SRONN > = OO < 0) Al — O DWW O
O <TOM~AO—L) <OMONNA [3) OO~ MMNT—ONOO
Co=BE0n-nbR-nbRoM  § —AAN OB OBBOENN
OO—r—v >

[_{0]
mo
mo
mo
mo
mo0
m0
m0
m0
m0
mo
mo
mo
mo
m0




J1= 4X[(2-0.1)2+(y—09)2<0.01)> 2 = X[(w—0.7)2+(y—0.3)2<0.01]"
O = 4X[(2—0.2)%4(y—0.2)2<0.04] T 4X[(2—0.6)2+(y—0.6)2<0.0064]

IsoValue

m0.327778
m0.45

6111

Vec Value

m0.0827727
m0.103466
m0.124159
m0.144852
m0.165545
m0.186238
m0.206932
m0.227625
m0.248318
m0.269011
m0.289704
m0.310397
m0.331091
m0.351784
W0.372477
m0.39317
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