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REGULARITY FOR ENTROPY SOLUTIONS OF
PARABOLIC p-LAPLACIAN TYPE EQUATIONS

S. Segura de León and J. Toledo

Abstract

In this note we give some summability results for entropy solu-
tions of the nonlinear parabolic equation ut − div ap(x,∇u) = f
in ]0, T [×Ω with initial datum in L1(Ω) and assuming Dirichlet’s
boundary condition, where ap(., .) is a Carathéodory function sat-
isfying the classical Leray-Lions hypotheses, f ∈ L1(]0, T [×Ω) and
Ω is a domain in RN . We find spaces of type Lr(0, T ;Mq(Ω)) con-
taining the entropy solution and its gradient. We also include some
summability results when f = 0 and the p-Laplacian equation is
considered.

1. Introduction

Let Ω be a domain in R
N (bounded or not) and let 1 < p < N . Let

ap : Ω × R
N → R

N be a Carathéodory function satisfying the classical
Leray-Lions conditions in such a way that div ap(x,∇u(x)) defines an
operator from W 1,p

0 (Ω) onto W−1,p′
(Ω) (see [10]). The model example

of such function is ap(x, ξ) = |ξ|p−2ξ which determines the p-Laplacian
operator ∆pu = div(|∇u|p−2∇u).
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We are interested in the regularity of entropy solutions (see Defini-
tion 2.4 below) of the following parabolic problem:

(P)




ut − div ap(x,∇u) = f, in QT :=]0, T [×Ω,
u = 0, on ST :=]0, T [×∂Ω,
u(0) = u0, in Ω;

where u0 ∈ L1(Ω) and f ∈ L1(QT ).

A distributional solution of this problem was found in [9]. The notion
of entropy solution of (P) is used in [1] and [11] to obtain uniqueness.
(An equivalent concept, in terms of renormalized solution, can be found
in [7], [13], [14] and [16].) We remark that in [1] it is only considered the
case f = 0, although the proof of the general case can be easily obtained
following the same steps and taking into account the arguments of [6,
Chapter 4]. On the other hand, the hypotheses in [11] are p > 2 − 1

N+1

and Ω bounded. In both articles some summability results on the entropy
solution u and its gradient are given; more precisely, u ∈ M (N+1)p−N

N (QT )
and |∇u| ∈ Mp− N

N+1 (QT ) (see [1]), and |∇u| ∈ ∩q<p− N
N+1

Lq(QT ) (see
[11] or [9]). These summability results are obtained jointly for time and
space variables; thus, as a consequence of these papers, it is not possible
to get optimal regularity when both variables are separately considered.

The purpose of this note is to give a precise summability result of
the entropy solution and its gradient with respect to space and time.
This was studied in [8] for weak solutions of (P) in the framework of
Lebesgue and Sobolev spaces when p ≥ 2, u0 = 0 and Ω is bounded.
The main result of [8] states that there exists a weak solution u of (P)
such that u ∈ Lr(0, T ;W 1,q

0 (Ω)) for p/2 ≤ q < N(p − 1)/(N − 1) and
1 ≤ r < q((N + 1)p − 2N)/((N + 1)q − N), and for 1 ≤ q < p/2 and
r = p.

Some remarks on their assumptions are as follows. Firstly, it is possi-
ble to get a similar result if 2 − 1/(N + 1) < p < 2, as it is observed in
[8, Remark 1.7]. Moreover, analogous results also hold for other initial
data u0 �= 0, as it is pointed out in [12]. Nevertheless, their hypothesis
of Ω bounded cannot be removed if their arguments are to be followed,
in fact it is needed from the very begining when they obtain the a pri-
ori estimates in [8, Lemma 2.2]. We want to show in this paper what
the situation looks like in the framework of Marcinkiewicz spaces (see
Definition 2.1 below) since we think they should be more suitable for
L1-data (see [3] for the elliptic case). We obtain an improvement of the
results of [8] since our arguments work for small p > 1 and unbounded
domains.
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Theorem 1. Let Ω be a bounded domain and let u be the entropy
solution of problem (P).

(1) If 2N
N+1 < p < N , then

u ∈ Lr(0, T ;Mq(Ω)) for 1 < q <
N(p− 1)
N − p

and r <
(N + 1)p− 2N

N

q

q − 1
,

|∇u| ∈ Lr(0, T ;Mq(Ω)) for
p

2
< q <

N(p− 1)
N − 1

and r < q
(N + 1)p− 2N
(N + 1)q −N

,

for q =
p

2
and r < p, and

for q <
p

2
and r = p.

(2) If 1 < p ≤ 2N
N+1 , then

|∇u| ∈ Lp(0, T ;Mq(Ω)) for q <
p

2
.

Remark 1.1. When Ω is bounded, one can replace Mq(Ω) by Lq(Ω)
due to the relations between Marcinkiewicz and Lq spaces in bounded
domains, and to the fact that q satisfies strict inequalities.

Theorem 2. Let Ω be an unbounded domain and let u be the entropy
solution of problem (P).

(1) If 2N
N+1 < p < N , then

u ∈ Lr(0, T ;Mq(Ω)) for 1 < q <
N(p− 1)
N − p

and r <
(N + 1)p− 2N

N

q

q − 1
,

|∇u| ∈ Lr(0, T ;Mq(Ω)) for
p

2
< q <

N(p− 1)
N − 1

and r < q
(N + 1)p− 2N
(N + 1)q −N

.
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(2) If 1 < p < 2N
N+1 , then

u ∈ Lr(0, T ;Mq(Ω)) for
N(p− 1)
N − p

< q < 1

and r <
(N + 1)p− 2N

N

q

q − 1
,

|∇u| ∈ Lr(0, T ;Mq(Ω)) for
N(p− 1)
N − 1

< q <
p

2

and r < q
(N + 1)p− 2N
(N + 1)q −N

.

Remark 1.2. For p = 2, the bound on r is exactly the same one that
can be computed for the fundamental solution of the Heat equation.

We improve these regularity results when f = 0 and the p-Laplacian
operator is considered.

Theorem 3. Let Ω be a bounded or unbounded domain, 1 < p < N
and let u be the entropy solution of problem (P) with the p-Laplacian
operator and f = 0, then

u ∈ Lr(0, T ;M
N(p−1)

N−p (Ω)) for r < p− 1.

|∇u| ∈ Lr(0, T ;M
N(p−1)

N−1 (Ω)) for r < p− 1.

|∇u| ∈ Lr(0, T ;M p
2 (Ω)) for r < p.

This paper is divided into five sections. The next one is on prelimi-
naries: we include the definitions of Marcinkiewicz spaces and entropy
solutions of problem (P) and the first estimates on the solution and its
derivative. Section 3 is devoted to prove Theorem 1 (Theorems 3.1 and
3.2), while in section 4 we prove Theorem 2 (Theorems 4.1 and 4.2). Fi-
nally, in section 5, we prove Theorem 3, and we also give other regularity
results when f = 0 and the initial datum u0 lies in Ms(Ω) ∩ L1(Ω) or
Ls(Ω) ∩ L1(Ω), 1 < s < 2.
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2. Preliminaries

Throughout this note the Lebesgue measure on Ω will be denoted by
µ

N
.

Definition 2.1. For 0 < q < ∞, the set of all measurable functions u :
Ω → R such that the functional [u]q := supk>0 kµN

{|u| > k}1/q is finite
is called a Marcinkiewicz space and is denoted by Mq(Ω).

It is straightforward that, for bounded Ω, we have Mq(Ω) ⊂ Mr(Ω)
for r < q. The connection between Marcinkiewicz and Lebesgue spaces
is easy: Lq(Ω) ⊂ Mq(Ω) ⊂ Lr

loc(Ω) for r < q (see, for instance, [17]); let
us point out that Marcinkiewicz spaces are also known as weak-Lebesgue
spaces.

When q > 1, the Marcinkiewicz space Mq(Ω) is a Banach space with
the norm defined by ‖u‖q = supt>0 t

1−q
q

∫ t

0
u∗(τ) dτ , where u∗(τ) =

inf
{
k > 0 : µ

N
{|u| > k} ≤ τ

}
defines the non-increasing rearrange-

ment of u (see, for instance, [17, Definition 1.8.6]). As a consequence of
this definition one has that

∫
K
|u| ≤ µ

N
{K}

q−1
q ‖u‖q for any K ⊂ Ω with

finite measure. Note that, endowed with this norm, if u, v ∈ Mq(Ω),
then

∫ t

0
u∗(τ) dτ ≤

∫ t

0
v∗(τ) dτ for all t > 0 implies ‖u‖q ≤ ‖v‖q; that is,

Mq(Ω) is a normal space in the sense of [5, Definition 2.8].

Definition 2.2. If r, q ∈]0,+∞[, we will say that a measurable func-
tion u :]0, T [×Ω → R belongs to Lr(0, T ;Mq(Ω)) if

∫ T

0
[u(t)]rq dt is finite.

The following result is well known; a proof may be seen, for instance,
in [2, Lemma 1.3].

Lemma 2.3. Let I ⊂ R be an interval and denote by Λ the set of
all measurable functions λ : [0, T ] → I. Let f : [0, T ] × I →]0,+∞[
be a function such that for each λ ∈ Λ the function t → f(t, λ(t)) is
measurable. Then

∫ T

0

(
supk∈I f(t, k)

)
dt = supλ∈Λ

∫ T

0
f(t, λ(t)) dt.

Before introducing the concept of entropy solution, we will define the
following functional spaces (see [3]). Given k > 0, define the truncature
operator by Tk(ζ) = (ζ∧k)∨(−k), whose primitive is Jk(ξ) =

∫ ξ

0
Tk(s) ds.

The space of all measurable functions u : Ω → R such that Tku ∈
W 1,1

loc (Ω) and ∇Tku ∈ Lp(Ω) for all k > 0 is denoted by T 1,p(Ω) while
T 1,p

0 (Ω) denotes the space of all functions u ∈ T 1,p(Ω) such that for every
k > 0 there exists a sequence (φn) in C∞

0 (Ω) satisfying ∇φn → ∇Tku in
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Lp(Ω) and φn → Tku in L1
loc(Ω). If u ∈ T 1,p(Ω), a derivative ∇u can be

defined as the unique measurable function such that ∇Tku = ∇u·χ{|u|<k}
for all k > 0 (see [3, Lemma 2.1]).

Definition 2.4. We will say that a function u ∈ C
(
[0, T ];L1(Ω)

)
is

an entropy solution of (P) if u(t) ∈ T 1,p
0 (Ω) for almost all t, ∇Tk(u) ∈

Lp(QT ) for all k > 0 and

∫ t

0

∫
Ω

ϕ′Tk(u− ϕ) +
∫ t

0

∫
Ω

〈ap(x,∇u),∇Tk(u− ϕ)〉

≤
∫

Ω

Jk

(
u0 − ϕ(0)

)
−

∫
Ω

Jk

(
u(t) − ϕ(t)

)
+

∫ t

0

∫
Ω

fTk(u− ϕ)

for all k > 0, t ∈ [0, T ] and ϕ ∈ L∞(QT ) ∩ Lp
(
0, T ;W 1,p

0 (Ω)
)
∩

W 1,1
(
0, T ;L1(Ω)

)
.

Taking ϕ = 0 in the formulation of entropy solution it follows that

1
k

∫ T

0

∫
Ω

〈ap(x,∇u),∇Tku〉

≤
∫

Ω

Jk(u0)
k

+
∫ T

0

∫
Ω

f
Tku

k
≤

∫
Ω

|u0| +
∫ T

0

∫
Ω

|f |

for all k > 0. Consequently,

(2.1)
∫ T

0

∫
Ω

|∇Tku(t)|p
k

≤ M, ∀ k > 0,

being M =
∫
Ω
|u0| +

∫ T

0

∫
Ω
|f |. (Recall that one of the Leray-Lions as-

sumptions asserts that there exists α > 0 satisfying α|ξ|p ≤ 〈ap(x, ξ), ξ〉;
we consider α = 1 since there is not loss of generality in doing so.)

From now on u will denote the entropy solution of (P).
We will finish this section giving the basic estimates in order to prove

our regularity results. We will use the fact that u ∈ C([0, T ], L1(Ω)) and
the estimate given in (2.1).

Proposition 2.5. For every δ > 0 there is g ∈ L1(0, T ) such that

∫
Ω

|∇Tku(t)|p
k

=
{
kδg(t), if t ∈ [0, T ] and k ≥ 1;
k−δg(t), if t ∈ [0, T ] and k ≤ 1.
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Proof: We just prove the first assertion, the second one can be proved
similarly. Consider a measurable function λ : [0, T ] → [1,+∞[ and the
sets Aj := {t ∈ [0, T ] : 2j ≤ λ(t) < 2j+1}, j ≥ 0, and compute to get the
following inequalities∫ T

0

∫
Ω

|∇Tλ(t)u(t)|p
λ(t)1+δ

≤
∞∑

j=0

∫
Aj

∫
Ω

|∇T2j+1u(t)|p
2j(1+δ)

=
∞∑

j=0

2
2jδ

∫
Aj

∫
Ω

|∇T2j+1u(t)|p
2j+1

≤ 2M
∞∑

j=0

1
2jδ

.

By Lemma 2.3, ∫ T

0

sup
k≥1

∫
Ω

|∇Tku|p
k1+δ

< ∞,

and now Fubini’s theorem allows us to take g(t) ≥ supk≥1

∫
Ω

|∇Tku(t)|p
k1+δ .

Observe that there is no loss of generality in taking g(t) ≥ M
N−p

N as
we will do in our following estimates.

Proposition 2.6. Let δ ∈]0, p−1[. Then there exists a constant C > 0
such that for almost all t ∈ [0, T ],

sup
k≥1

kµ
N
{|u(t)| > k}

N−p
N(p−1−δ) ≤ (Cg(t))

1
p−1−δ(1)

sup
k≤1

kµ
N
{|u(t)| > k}

N−p
N(p−1+δ) ≤ (Cg(t))

1
p−1+δ .(2)

Proof: Proposition 2.5 and Sobolev’s inequality imply two facts: on
the one hand, for all k ≥ 1 and almost all t,

µ
N
{|u(t)| ≥ k} ≤

∫
Ω

|Tku(t)|p∗

kp∗

≤ C

kp∗

(∫
Ω

|∇Tku(t)|p
) N

N−p

≤ C
g(t)

N
N−p

kN(p−1−δ)/(N−p)
,

and, on the other hand, for all k ≤ 1 and almost all t,

µ
N
{|u(t)| ≥ k} ≤

∫
Ω

|Tku(t)|p∗

kp∗

≤ C

kp∗

(∫
Ω

|∇Tku(t)|p
) N

N−p

≤ C
g(t)

N
N−p

kN(p−1+δ)/(N−p)
,

from where the result follows.
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Proposition 2.7. Let δ ∈]0, p−1[. Then there exists a constant C > 0
such that for almost all t ∈ [0, T ],

sup
h≥g(t)1/pM−1/p

hµ
N
{|∇u(t)| > h}

2+δ
p ≤ (Cg(t))

1
p .(1)

sup
h≥g(t)−1/(N−p)

hµ
N
{|∇u(t)| > h}

N−1−δ
N(p−1−δ) ≤ (Cg(t))

1
p−1−δ .(2)

sup
h≤g(t)1/pM−1/p

hµ
N
{|∇u(t)| > h}

2−δ
p ≤ (Cg(t))

1
p .(3)

sup
h≤g(t)−1/(N−p)

hµ
N
{|∇u(t)| > h}

N−1+δ
N(p−1+δ) ≤ (Cg(t))

1
p−1+δ .(4)

Proof: A similar argument to the one in [3, Lemma 4.2] can be applied.
We just prove (1) and (2), since the other assertions can be proved in an
analogous manner.

Before showing (1), let us point out that the operator associated with
the elliptic term −div ap(x,∇u) + the Dirichlet boundary condition, is
accretive in L1(Ω) (see [3, Theorem 7.1] or [1]); thus, ‖u(t)‖1 ≤ ‖u0‖1 +
‖f‖1 for all t ∈ [0, T ] and so

(2.2) µ
N
{|u(t)| ≥ k} ≤ 1

k

∫
Ω

|u(t)| ≤ 1
k

(∫
Ω

|u0| +
∫ T

0

∫
Ω

|f |
)

=
M

k
.

This fact and Proposition 2.5 imply the following inequalities.

µ
N
{|∇u(t)|>h} ≤ µ

N
{|∇u(t) −∇Tku(t)| > h/2}+µ

N
{|∇Tku(t)| > h/2}

≤ µ
N
{|u(t)| ≥ k}+2p

∫
Ω

|∇Tku(t)|p
hp

≤ M

k
+2p k

1+δg(t)
hp

.

By taking k =
(

hpM
g(t)

)1/(2+δ)

≥ 1, we get

µ
N
{|∇u(t)| > h} ≤ (Ch−pg(t))1/(2+δ),

and (1) follows.
To show (2), apply Proposition 2.6 (1) to obtain kp−1−δµ

N
{|u(t)| ≥

k}N−p
N ≤ Cg(t) for all k ≥ 1. Then, using Proposition 2.5,

µ
N
{|∇u(t)| > h} ≤ µ

N
{|u(t)| ≥ k} + 2p

∫
Ω

|∇Tku(t)|p
hp

≤ C
g(t)

N
N−p

kN(p−1−δ)/(N−p)
+ C

k1+δg(t)
hp

.

Taking k = g(t)1/(N−1−δ)h(N−p)/(N−1−δ) ≥ 1, (2) is obtained.
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3. Case Ω bounded

Theorem 3.1. If 2N
N+1 < p < N , then

u ∈ Lr(0, T ;Mq(Ω)) for 1 < q <
N(p− 1)
N − p

and r <
(N + 1)p− 2N

N

q

q − 1
.

Proof: Let 2N
N+1 < p < N and q be as above and take δ > 0 such

that p > N(2+δ)
N+1 and 1 < q < N(p−1−δ)

N−p . It will be enough to show that

u ∈ Lr
(
0, T ;Mq(Ω)

)
for r = p(N+1)−N(2+δ)

N
q

q−1 .
First observe that the above inequalities imply that r > p−1−δ; thus,

for k ≥ 1, we obtain that

krµ
N
{|u(t)| ≥ k}r/q

=
(
kp−1−δµ

N
{|u(t)| ≥ k}N−p

N

)
·
(
kr−p+1+δµ

N
{|u(t)| ≥ k}r−p+1+δ

)
.

On the one hand, applying Proposition 2.6, kp−1−δµ
N
{|u(t)| ≥ k}N−p

N ≤
Cg(t) and on the other hand, by (2.2), kµ

N
{|u(t)| ≥ k} ≤ M , so that

sup
k≥1

krµ
N
{|u(t)| ≥ k}r/q ≤ CMr−p+1+δg(t),

g being an integrable function.
Since we also have, for 0 < k ≤ 1, that krµ

N
{|u(t)| ≥ k}r/q ≤

µ
N
{Ω}r/q; the function defined by [u(t)]rq is integrable and consequently

u ∈ Lr(0, T ;Mq(Ω)).

Theorem 3.2.

(1) If 2N
N+1 < p < N , then

|∇u| ∈ Lr(0, T ;Mq(Ω)) for
p

2
< q <

N(p− 1)
N − 1

and r < q
(N + 1)p− 2N
(N + 1)q −N

,

for q =
p

2
and r < p, and

for q <
p

2
and r = p.

(2) If 1 < p ≤ 2N
N+1 , then

|∇u| ∈ Lp(0, T ;Mq(Ω)) for q <
p

2
.
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Proof: Let 2N
N+1 < p < N and p

2 < q < N(p−1)
N−1 , and fix δ > 0 such that

p
2+δ < q < N(p−1−δ)

N−1−δ . We are going to show that |∇u| ∈ Lr
(
0, T ;Mq(Ω)

)
for r = q (N+1)p−N(2+δ)

(N+1)q−N , then the first part of (1) will be proved.

Since p
2+δ < q < N(p−1−δ)

N−1−δ , let α ∈]0, 1[ such that 1
q = α(N−1−δ)

N(p−1−δ) +
(1−α)(2+δ)

p . By Proposition 2.7, for each h≥(M−1g(t))1/p≥g(t)−1/(N−p),

we obtain that

hµ
N
{|∇u(t)| > h}1/q

=
(
hαµ

N
{|∇u(t)| > h}

α(N−1−δ)
N(p−1−δ)

)
·
(
h1−αµ

N
{|∇u(t)| > h}

(1−α)(2+δ)
p

)

≤ (Cg(t))
α

p−1−δ + 1−α
p .

Since r satisfies 1
r = α

p−1−δ + (1−α)
p , it follows that

sup
h≥M−1/pg(t)1/p

hµ
N
{|∇u(t)| > h}1/q ≤ (Cg(t))

1
r .

Hence, suph≥M−1/pg(t)1/p hµN
{|∇u(t)| > k}1/q defines a function in

Lr(0, T ).
On the other hand,

sup
0<h≤M−1/pg(t)1/p

hµ
N
{|∇u(t)| > h}1/q ≤ (M−1g(t))

1
pµ

N
{Ω}1/q,

and thus it defines a function in Lp(0, T ). It follows from 2N
N+1 < p and

p/2 < q that (N + 1)q − N > 0, so that r < p. Therefore,
[
|∇u(t)|

]
q

defines a function in Lr(0, T ) and consequently |∇u| ∈ Lr
(
0, T ;Mq(Ω)

)
.

Next, let 1 < p < N and 0 < q < p
2 . Fix δ > 0 such that 0 < q < p

2+δ .
We are going to see that

|∇u| ∈ Lp
(
0, T ;M

p
2+δ (Ω)

)
;

this will prove the second part of (1), and (2).
By Proposition 2.7 (1),

sup
h≥g(t)1/pM−1/p

hµ
N
{|∇u(t)| > h}

2+δ
p ≤ (Cg(t))

1
p

and obviously

sup
0<h≤g(t)1/pM−1/p

hµ
N
{|∇u(t)| > h}

2+δ
p ≤ (M−1g(t))

1
pµ

N
{Ω}

2+δ
p .
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Thus, suph>0 hµN
{|∇u(t)| > k}

2+δ
p defines a function in Lp(0, T ) and

|∇u| ∈ Lp
(
0, T ;M

p
2+δ (Ω)

)
.

Finally, the case q = p
2 , r < p, follows directly from embedding results

in Marcinkiewicz spaces.

4. Case Ω unbounded

Theorem 4.1. If p �= 2N
N+1 , then u ∈ Lr(0, T ;Mq(Ω)) for q strictly

between 1 and N(p−1)
N−p , and r < (N+1)p−2N

N
q

q−1 .

Proof: Assume first that 2N
N+1 < p < N ; let 1 < q < N(p−1)

N−p and

fix δ > 0 such that 1 < q < N(p−1−δ)
N−p . We are going to prove that

u ∈ Lr
(
0, T ;Mq(Ω)

)
for r = N(p−1−δ)−(N−p)

N
q

q−1 . Let α± ∈]0, 1[ such

that 1
q = α± + (1−α±)(N−p)

N(p−1±δ) . By Proposition 2.6 and (2.2), we obtain
that

sup
k≥1

kµ
N
{|u(t)| > k}1/q ≤ Mα−(Cg(t))

1−α−
p−1−δ ,

sup
k≤1

kµ
N
{|u(t)| > k}1/q ≤ Mα+(Cg(t))

1−α+
p−1+δ ,

and thus supk>0 kµN
{|u(t)| > k}1/q defines a function that belongs to

Lr(0, T ), with r the minimun of N(p−1−δ)
(1−α−)(N−p) and N(p−1+δ)

(1−α+)(N−p) , that is,

r =
N(p− 1 − δ) − (N − p)

N

q

q − 1
.

In the case 1 < p < 2N
N+1 , consider δ > 0 small enough such that

N(p−1+δ)
N−p <q<1. Reasoning similarly one shows that u∈Lr

(
0, T ;Mq(Ω)

)
for r = N(p−1+δ)−(N−p)

N
q

q−1 .

Theorem 4.2. If p �= 2N
N+1 , then |∇u| ∈ Lr(0, T ;Mq(Ω)) for q

strictly between p
2 and N(p−1)

N−1 , and r < q (N+1)p−2N
(N+1)q−N .
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Proof: Let us show it for 1 < p < 2N
N+1 . The other case follows in the

same way. Let N(p−1)
N−1 < q < p

2 and fix δ > 0 such that N(p−1+δ)
N−1+δ <

q < p
2+δ . We are going to prove that |∇u| ∈ Lr

(
0, T ;Mq(Ω)

)
for r =

qN(2−δ)−p(N+1)
N−q(N+1) . Since N(p−1+δ)

N−1+δ < q < p
2+δ < p

2−δ , let α ∈]0, 1[ such

that 1
q = α(N−1+δ)

N(p−1+δ) + (1−α)(2−δ)
p . By (3) and (4) in Proposition 2.7, we

obtain that

sup
0<h≤g(t)−1/(N−p)

hµ
N
{|∇u(t)| > k}1/q ≤ (Cg(t))

α
p−1+δ + 1−α

p ,

and thus suph≤g(t)−1/(N−p) hµN
{|∇u(t)| > k}1/q defines a function

in Lr1(0, T ), with r1 = qN(2−δ)−p(N+1)
N−q(N+1) (i.e., the number that sat-

isfies 1
r1

= α
p−1+δ + (1−α)

p ). Analogously, the function defined by
supg(t)−1/(N−p)≤h≤(M−1g(t))1/p hµN

{|∇u(t)| > k}1/q belongs to Lr2(0, T ),

where r2 = q
N(1+δ)(2−δ)−p

(
N(1−δ)+(1+δ)

)
N(1+δ)−q

(
N(1−δ)+(1+δ)

) , and the function defined by

suph≥(M−1g(t))1/p hµN
{|∇u(t)| > k}1/q belongs to Lr3(0, T ), where r3 =

qN(2+δ)−p(N+1)
N−q(N+1) . Therefore, the function defined by

[
|∇u(t)|

]
q

belongs

to Lr(0, T ), where r = min{r1, r2, r3} = qN(2−δ)−p(N+1)
N−q(N+1) .

5. Other estimates

To finish this note we show what happens when we take into account
another estimate instead of that of Proposition 2.5.

5.1. p-Laplacian evolution equations.
For p-Laplacian evolution equations and f = 0, the results of [1] and

[4] imply that, for any 0 < α < 1,

(5.1)
∫ T

0

sup
k>0

(∫
Ω

|∇Tku(t)|p
k

)α

< ∞.

Indeed, let k > 0; by [1], if u0 ∈ D(A), then the entropy solution belongs
to W 1,1(0, T ;L1(Ω)) and, for almost all t,

1
k

∫
Ω

〈ap(x,∇u(t)),∇Tku(t)〉 ≤ −
∫

Ω

u′(t)
Tku(t)
k

.
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Then
∫
Ω

|∇Tku(t)|p
k ≤

∫
Ω
|u′(t)|. Since, when p-Laplacian is considered,

‖u′(t)‖1 ≤ ‖u0‖1
t (see [4]), it yields

∫
Ω

|∇Tku(t)|p
k ≤ ‖u0‖1

t . Now it follows
from D(A) = L1(Ω) and the continuous dependence on the data that
the inequality

∫
Ω

|∇Tku(t)|p
k ≤ ‖u0‖1

t holds a.e. for every u0 ∈ L1(Ω) and
every k > 0. Therefore, (5.1) holds.

Taking this estimate and following the steps given in this paper, one
will obtain, besides Theorem 1 and 2, the following improvement.

For any 1 < p < N ,

u ∈ Lr(0, T ;M
N(p−1)

N−p (Ω)) for r < p− 1.

|∇u| ∈ Lr(0, T ;M
N(p−1)

N−1 (Ω)) for r < p− 1.

|∇u| ∈ Lr(0, T ;M p
2 (Ω)) for r < p.

Let us point out that, in particular, one has u ∈ Lr(0, T ;M
N(p−1)

N−p (Ω))
and |∇u| ∈ Lr(0, T ;M

N(p−1)
N−1 (Ω)) for any r < p−1, so that this argument

gives us the same type of regularity obtained in [3] for the stationary
problem associated to (P).

5.2. More regular initial data.
We point out that the summability on the solution and its derivative

improves when L1-data are replaced by more regular ones (see [12] and
[15] where data u0 ∈ Ls(Ω), with 1 < s < 2, are considered). Following
the arguments of the above sections, we will show what is the precise
summability assuming that f = 0 and the initial datum u0 belongs either
to a Lebesgue space or to a Marcinkiewicz one. Finally, we discuss an
example which proves that these estimates are sharp.

Whether u0 lives in Ls(Ω) or in Ms(Ω), our computations imply
‖u(t)‖ ≤ ‖u0‖ for all t > 0. This fact holds true as a consequence
of being these spaces normal and the operator associated to the elliptic
term: −div ap(x,∇u) + Dirichlet boundary condition, completely accre-
tive (see [5] for the definition and [3, Theorem 7.1]). In order to use the
arguments of the above sections, we need another fact which is stated in
the following result.

Lemma 5.1. Let u be the entropy solution of (P) and let 1 < s < 2.

(1) If u0 ∈ Ls(Ω) ∩ L1(Ω), then∫ T

0

sup
k>0

(∫
Ω

|∇Tku(t)|p
k2−s

)
< +∞.
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(2) If u0 ∈ Ms(Ω) ∩ L1(Ω), then for every δ > 0 there is g ∈ L1(0, T )
such that

∫
Ω

|∇Tku(t)|p
k2−s

=
{
kδg(t), if t ∈ [0, T ] and k ≥ 1;
k−δg(t), if t ∈ [0, T ] and k ≤ 1.

Proof: (1) As in the proof of Proposition 2.5, we only consider k ≥ 1,
the other case is similar.

To begin with the proof, take a measurable function λ : [0, T ] →
[1,+∞[ and the sets Aj := {t ∈ [0, T ] : 2j ≤ λ(t) < 2j+1}, j ≥ 0, and
denote

I =
∫ T

0

∫
{λ(t)/2<|u(t)|<λ(t)}

|∇u(t)|p
λ(t)2−s

.

Then

I =
∞∑

j=0

∫
Aj

∫
{λ(t)/2<|u(t)|<λ(t)}

|∇u(t)|p
λ(t)2−s

≤
∞∑

j=0

1
2j(2−s)

∫
{2j−1<|u|<2j+1}

|∇u|p

and, since

∫
{2j−1<|u|<2j−1+3·2j−1}

|∇u|p
3 · 2j−1

≤
∫
{|u0|>2j−1}

|u0|

for all j ≥ 0 (see [15, Theorem 2.2], it follows that there exists C1 > 0
such that

I ≤ C1

∞∑
j=0

2(j−2)(s−1)

∫
{|u0|>2j−1}

|u0|

= C1

∞∑
j=0

2(j−2)(s−1)
∞∑

n=j

∫
{2n−1<|u0|≤2n}

|u0|.
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Now, Fubini’s Theorem implies

I ≤ C1

∞∑
n=0

n∑
j=0

2(j−2)(s−1)

∫
{2n−1<|u0|≤2n}

|u0|

and estimating the geometrical series, we get C2 > 0 such that

I ≤ C2

∞∑
n=0

2(n−1)(s−1)

∫
{2n−1<|u0|≤2n}

|u0|

≤ C2

∞∑
n=0

∫
{2n−1<|u0|≤2n}

|u0|s < +∞.

One deduces from Lemma 2.3 that

∫ T

0

sup
k≥1

(∫
{k/2<|u(t)|<k}

|∇u(t)|p
k2−s

)
< +∞.

Hence,

∫ T

0

sup
k≥1

(∫
Ω

|Tk∇u(t)|p
k2−s

)

=
∫ T

0

sup
k≥1


 ∞∑

j=0

1
2j(2−s)

∫
{k/2j+1<|u(t)|<k/2j}

|∇u(t)|p
(k/2j)2−s




≤
∞∑

j=0

1
2j(2−s)

[∫ T

0

sup
k≥1

( ∫
{k/2<|u(t)|<k}

|∇u(t)|p
k2−s

)]

and, since
∑∞

j=0
1

2j(2−s) converges, it yields

∫ T

0

sup
k≥1

(∫
Ω

|Tk∇u(t)|p
k2−s

)
< +∞.

The proof of (2) is analogous.

Using the arguments of the above sections, from Lemma 5.1 the fol-
lowing results yield.
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Theorem 5.2. Let u be the entropy solution of (P) and let 1 < s < 2.

(1) If u0 ∈ Ls(Ω) ∩ L1(Ω), then u ∈ Lr(0, T ;Mq(Ω)), where r ≤
q (N+s)p−2N

N(q−s) and s < q ≤ N(p+s−2)
N−p , and |∇u| ∈ Lr(0, T ;Mq(Ω)), where

r ≤ q (N+s)p−2N
(N+s)q−sN and q lies between N(p+s−2)

N+s−2 and sp
2 .

(2) If u0 ∈ Ms(Ω) ∩ L1(Ω), then u ∈ Lr(0, T ;Mq(Ω)), where r <

q (N+s)p−2N
N(q−s) and s < q < N(p+s−2)

N−p , and |∇u| ∈ Lr(0, T ;Mq(Ω)), for q

strictly between N(p+s−2)
N+s−2 and sp

2 , and r < q (N+s)p−2N
(N+s)q−sN .

To finish this paper, we prove that the above estimates are sharp
in the framework of Marcinkiewicz spaces. We will show that, in the
case p = 2 and u0 ∈ Ms(Ω) ∩ L1(Ω), we have u ∈ Lr(0, T ;Mq(Ω)),
with r < q 2s

N(q−s) and s < q < Ns
N−p , but u /∈ Lr(0, T ;Mq(Ω)), with

r = q 2s
N(q−s) and s < q < Ns

N−p .

Example 5.3. Let us consider Ω = R
N and the problem of finding

u ∈ C
(
[0, T ], L1(Ω)

)
such that{
ut − ∆u = 0, in ]0, T [×R

N ;
u(0, .) = u0, in R

N ;

where u0(x) = 1
|x|αχB(0,1)(x), with N/2 < α < N . Denoting s = N/α,

it is straighforward that 1 < s < 2 and u0 ∈ Ms(RN ) ∩ L1(RN ), but
u0 /∈ Ls(RN ). We know that the solution of this linear problem is given
by

u(t, x) =
1

(4πt)N/2

∫
RN

e
−|x−y|2

4t u0(y) dy.

Changing variables: x = ηtt/2 and y = ξtt/2, we obtain∫ T

0

[u(t)]rq dt

=
∫ T

0

sup
k>0

krµ{x ∈ R
N : |u(t, x)| > k}r/q dt

=
∫ T

0

sup
k>0

kr

(∫
RN

χ{
1/(4π)N/2

∫
RN

e
−|x−y|2

4t u0(y) dy>ktN/2
}(x) dx

)r/q

dt

=
∫ T

0

t
Nr
2q sup

k>0
kr

(∫
RN

χ{
1/(4π)N/2

∫
RN

e
−|η−ξ|2

4 u0(ξt1/2) dξ>k
}(η) dη

)r/q

dt

=
∫ T

0

t
Nr
2q sup

k>0
krµ


η∈R

N :
1

(4π)N/2

∫
B(0,t−1/2)

e
−|η−ξ|2

4

|ξ|α dξ>ktα/2




r/q

dt.
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By denoting now h = kt1/2 and g(t, η) = 1
(4π)N/2

∫
B(0,t−1/2)

e
−|η−ξ|2

4

|ξ|α dξ,
we get

∫ T

0

[u(t)]rq dt =
∫ T

0

t
r
2 (N

q −α) sup
h>0

hrµ{η ∈ R
N : g(t, η) > h}r/q dt.

Define

g1(η) =
1

(4π)N/2

∫
B(0,T−1/2)

e
−|η−ξ|2

4

|ξ|α dξ,

g2(η) =
1

(4π)N/2

∫
RN

e
−|η−ξ|2

4

|ξ|α dξ

and ci = suph>0 h
rµ{η ∈ R

N : gi(η) > h}r/q, i = 1, 2 (observe that both
constants are finite). Since g1(η) ≤ g(t, η) ≤ g2(η) for all t ∈ [0, T ], it
follows that

c2

∫ T

0

t
r
2 (N

q −α) dt ≤
∫ T

0

[u(t)]rq dt ≤ c1

∫ T

0

t
r
2 (N

q −α) dt.

Thus, if r < q 2s
N(q−s) , then r

2

(
N
q − α

)
> −1 and so

∫ T

0
[u(t)]rq dt <

+∞; however, if r = q 2s
N(q−s) , then r

2

(
N
q − α

)
= −1 and consequently∫ T

0
[u(t)]rq dt = +∞. Therefore, in the first case, the solution u belongs

to Lr(0, T ;Mq(RN )), but it is not so in the second one.

References

1. F. Andreu, J. M. Mazón, S. Segura de León and J. Toledo,
Existence and uniqueness for a degenerate parabolic equation with
L1 data, Trans. Amer. Math. Soc. 351 (1999), 285–306.

2. J. Appell and P. P. Zabrejko, “Nonlinear Superposition Oper-
ators,” Cambridge Univ. Press, Cambridge, 1990.

3. Ph. Bénilan, L. Boccardo, Th. Gallouët, R. Gariepy,
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