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The purpose of this work is to estimate at sub-pixel scale the percentage of burnt

land using the Advanced Very High Resolution Radiometer (AVHRR) through a

simple approach. This methodology is based on multi-temporal spectral mixture

analysis (MSMA), which uses a normalized difference vegetation index (NDVI)

and a land-surface temperature (LST) image as input bands. The area of study

is located in the Alcalaten region in Castellon (Spain), a typical semi-arid

Mediterranean region. The results have shown an extension of approximately

55 km2 affected by fire, which is only 5% lower than the statistic reports provided

by the Environmental Ministry of Spain. Finally, we include a map of the area

showing the percentage of estimated burnt area per pixel and its associated

uncertainties. The map was validated through supervised classification of an

Airborne Hyperspectral Sensor (AHS) image taken on 27 September 2007.

Results have a high accuracy, with a mean error of 6.5%.

1. Introduction

After a fire occurs, an estimation of the burnt area must be carried out as soon as
possible in order to quantify the damage and to establish the economic losses. This

kind of information is relevant for insurance companies and governments, who must

cover expenses to compensate people for their losses and to start reforestation.

The aim of this study is to show and evaluate a simple methodology based on

spectral mixture analysis (SMA) using low-spatial-resolution sensors such as the

Advanced Very High Resolution Radiometer (AVHRR) of the National Oceanic

and Atmospheric Administration. These images were used to estimate and map the

sub-pixel burnt area a short time after the event. AVHRR images have been widely
used in mapping burnt areas on a global and regional scale (Pozo et al. 1997, Barbosa

et al. 1998, 1999, Sousa et al. 2003, Quintano et al. 2006, Chuvieco et al. 2008), and

these were easily available immediately after the fire.

The methodology presented here made used of the normalized difference vegeta-

tion index (NDVI) in order to obtain pure pixels (endmembers) to be used in a multi-

temporal spectral mixture analysis (MSMA) model (Song 2005). For the mixture

analysis itself, we used the NDVI image and thermal infrared data, which was

included by means of a land-surface temperature (LST) image obtained with the
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application of an LST algorithm (Gillespie 1992, Sobrino and Raissouni 2000). LST

has rarely been used to estimate burnt-area extension, although we think that includ-

ing it in the SMA may increase the accuracy of the estimation and complement

information of bands 1 and 2, which are summarized in the NDVI parameter.

NDVI and LST have been shown to present a linear correlation (Nemani et al.

1993, Hope et al. 2005, Yue et al. 2007) and to be related to surface moisture status

(Sandholt et al. 2002). Therefore, their use in a linear spectral model seems adequate

for estimation of burnt area.

In AVHRR imagery, the scale of spatial variation in land cover is generally finer

than the ground-resolution element associated with the pixel, which means that most

AVHRR pixel values represent a sample of a mixture of different land-cover classes.

This is specifically the case for semi-arid regions where the distribution of soil and

vegetation is highly variable. There are several techniques for classifying sub-pixel
variation in land cover, such as artificial neural networks (ANNs) (Carpenter et al.

1999), supervised classifications or spectral mixture modelling (Gillespie 1992,

Elmore et al. 2000, Theresia et al. 2003). Atkinson et al. (1997) evaluated three

different techniques in terms of the amount of information extracted, the accuracy

of that information and the ease of implementation: fuzzy c-means classifiers, ANNs

and SMA. They concluded that the ANN technique was superior to the other two in

terms of the information provided and its accuracy. However, in terms of implemen-

tation, the fuzzy c-means classification and the mixture analysis were easier to apply
because they do not require so much training data and previous knowledge of the

area. If an accurate method for selecting pure endmember spectra was developed, the

accuracy of the SMA would increase and that would make the technique a simpler

and less time-consuming way of sub-pixel classification. Here, we have selected the

endmembers using both visual and semi-automated approaches in order to define

more suitable representations of the study area.

Results were validated by comparing the calculated area with the statistic reports

provided by the Environmental Ministry of Spain (MMA). An image of the percen-
tage of burnt area per pixel is also presented and validated with an Airborne

Hyperspectral Sensor (AHS) image taken a few days after the fire, with greater than

90% accuracy when considering a supervised classification of the AHS as reference

data.

The area of study (see figure 1) is located in L’Alcalaten County in Castellon

(Spain), a semi-arid Mediterranean region, with coordinates 40� 080 N, 0� 100 W in

an approximate central point. This area was covered mainly by shrubs and fruit-tree

fields, with a small part covered by pine and deciduous-tree forests. In the province of
Castellon, in 2007, around 78 km2 were affected by fire (14 km2 of trees, 63.5 km2 of

shrubs and 50 km2 of grassland). Most of the area affected by fire was burnt in only

one event, the fire in L’Alcalaten County, which started on 28 August 2007 and ended

on 31 August 2007. Of all the area that burnt in the Comunidad Valenciana in 2007,

95% of it happened during those 4 days.

2. Data and methodology

2.1 Data

We employed here three AVHRR images that were captured and archived with a

high-resolution picture transmission (HRPT) antenna and reception system, owned

by the Imaging Processing Laboratory of the University of Valencia. One was taken

5316 A.B. Ruescas et al.
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3 days before the fire event (28 August 2007), another one 4 days after the fire

(4 September 2007) and the last one 9 days afterwards, when the fire was officially

declared extinct (9 September 2007). The images were radiometrically corrected and

the applied georeference resulted in a root mean square error less than one pixel.

We use the statistics report created by the Department of Defence Against Forest

Fires of the General Secretary for Biodiversity depending on the Environmental
Ministry of Spain (Area de Defensa contra los Fuegos Forestales de la Dirección

General para la Biodiversidad del Ministerio de Medio Ambiente, MMA 2008).

Statistics were used as validation data for the calculation of the total burnt area.

This Department used the Moderate Resolution Imaging Spectroradiometer

(MODIS) sensor with a spatial resolution of 250 � 250 m for detecting and quantify-

ing areas affected by fire. The Department of Defence Against Forest Fires worked in

collaboration with the European Commission’s Joint Research Centre (Ispra, Italy),

that also processed Satellite Pour l’Observation de la Terre (SPOT5) data for this case
study. Within the classification of vegetation affected by the fire by counties, the

MMA could provide us with an estimation of the area affected per vegetation class in

the study area, which we took into account for validation purposes. Total burnt area

was estimated to be around 57 km2 (Ministerio de Medio Ambiente 2008).

Furthermore, we also used an AHS image to validate the percentage of burnt area

estimated by pixel within the AVHRR scene. The AHS image was taken on 27

September 2007, thanks to the National Institute of Aeronautic Techniques (Instituto

Nacional de Técnica Aeroespacial) airborne facility. The flight was part of the
CarboEurope, FLEX and Sentinel project (CEFLES) funded by the European Space

Agency (ESA). The area imaged by the AHS does not cover the total burnt area, but only

its central location, the zone where the fire began near Useres village (0.17�W and 40.17�

Figure 1. Location of study area within the Iberian Peninsula AVHRR image.
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N). The original spatial resolution of the AHS is 6� 6 m, and its spectral resolution in the

visible covers from 0.45 to 1.002 mm in 20 bands of 0.30 mm spectral resolution.

2.2 Methodology

2.2.1 Total burnt-area extension. The first step for the application of the proposed

method was to define the whole area affected by the fire in the AVHRR scenes, where
we chose the endmembers. In this way, we could avoid taking into account the rest of

the area included in the satellite images. After eliminating pixels contaminated by

clouds using the filters proposed by Saunders and Kriebel (1998), four approaches

were applied to determine that total burnt area. Two of them were simple false-colour

compositions, the most frequently used for burning discrimination: the first was a

visual approach based on a decorrelation stretch technique that uses channels 1

(0.58–0.68 mm), 2 (0.72–1.1 mm) and 4 (10.3–11.3 mm) of the AVHRR assigned to

red, green and blue (RGB) colours, respectively; the second one consisted of a
composition based on the calculated difference of the spectral values of channels

1, 2 and 3 (1.57–16.7 mm) of the images before and after the fire event, assigned again

to RGB. With both methods, we digitized the area manually and the estimation

showed us that nearly 72 km2 was affected by the fire. The third method consisted

of a simple difference between the NDVI images pre- and post-fire, but it was

calculated for two different post-fire images, 4 September and 9 September 2007.

The total area, again digitizing manually, gave us around 66 km2 of burnt area

estimated with both dates. The fourth and last approach was implemented automa-
tically in Interactive Data Language (IDL), and can be summarized in figure 2 (step 1:

determination of the total burnt area). To that end, the NDVI difference between

post- and pre-fire images (�NDVI) was calculated to identify a first estimate of the

burnt area, being the area for which �NDVI was lower than the average of the

�NDVI image. This operation was iterated by calculating a new NDVI difference

between post- and pre-fire images from which the burnt area has been excluded. This

procedure aimed at selecting as burnt pixel the ones for which the NDVI value had

decreased between the two acquisitions, through considering eventual changes in
observation conditions, mainly due to sun–target–sensor geometry and atmospheric

contamination. Three iterations were needed to reach stability of the burnt-area

extension. The reason for this iterative process is that the NDVI difference between

pre- and post-fire conditions (excluding the burnt area) depends on the extension of

the burnt area, and therefore has to be estimated iteratively until the extent of the

burnt area remains unchanged. The date of the post-fire image was chosen to be 9

September 2007. A surrounding unburnt area was also identified by subtracting the

burnt area from a dilatation of the burnt area. Later on we compensated differences in
acquisition conditions, which consisted of the addition of a constant for each channel

of the pre-fire image. This constant was calculated as the average of the difference

between the values of the corresponding channels in the post- and pre-fire images over

the surrounding unburnt area. This could be considered as a local correction of the

differences in image acquisition between the two considered dates. The total area

affected by the fire with this fourth automatic method was 77.44 km2, including

surrounding areas. Figure 3 shows the area estimated for each method. We decided

not to draw the digitized vector of the burnt area in order to make visible the implicit
subjectivity in the digitizing process from a qualitative assessment.

5318 A.B. Ruescas et al.
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Figure 2. Methodology chart. Step 1: total burnt-area extension first estimation, step 2: pre-
and post-fire image observation conditions matching for endmember selection and
step 3: sub-pixel burnt percentage estimation.
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These four results cover a larger extent of area affected by the fire than the reference

span calculated by the MMA of around 57 km2, but they were a necessary approx-

imation in order to develop the SMA method with the total assurance of including all

the area that could have been affected by the fire, but at the same time avoiding the

area that has definitely not been affected. We then used the pixels of this limited area

to select endmembers.

2.2.2 Endmember selection. There are different procedures for choosing endmem-

bers, the simplest technique being to locate pure endmembers using appropriate

ancillary information such as ground data. For low-resolution imagery, some other

methods for selecting endmembers are: using reflectance images (Atkinson et al.

1997), calculating principal components (Cross et al. 1991), applying geometric-

optical modelling (Asner et al. 1997) or using regression techniques (Holben and

Shimabukuro 1993).
We extracted endmembers spectral signatures from the satellite data, called the

image endmembers, using the NDVI calculated from the reflectance images. The

NDVI has shown a high sensitivity to the presence of vegetation, and it has been

Figure 3. Burnt-area estimation with four methods (pre-fire image: 28 August 2007; post-fire
image: 9 September 2007): (a) RGB-123 on (b) decorrelation stretch RGB-124, (c) NDVI
differences and (d) automatic detection (40� 080 N, 0� 100 W central pixel).
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frequently used within SMA (Kerdiles and Grondona 1995, Defries et al. 2000).

Linear mixing predominates the non-linear interaction for NDVI values in mixed

pixels. Appropriate endmembers must define a coherent set of spectra representative

of physical components of the surface (Coppin et al. 2004). This is the most critical

stage of the SMA method because the AVHRR has a spatial resolution of 1.1 � 1.1
km, and the endmembers should represent a unique type of cover. We decided to start

selecting only two endmembers, one representative of pure burnt area (100% burnt)

and the other one representative of unaffected vegetation inside the burnt area. Due to

the fact that there is no unique and infallible method for discriminating pure pixels, we

tried different methods for endmember selection. The 100% burnt pixel was fixed and

always the same for all tested methods, and its location was known and verified by

fieldwork. The vegetation endmember varied within each of the four following

models. First, we considered only one pixel of vegetation representative of the
whole area affected by the fire. This single pixel was always taken from the pre-fire

image and corresponds to a low NDVI value in the post-fire image, in order to be

completely sure that it had been affected by the fire. We tested different values of

NDVI (see table 1), the maximum NDVI in the first test, the minimum NDVI in the

second test and the mean NDVI for a third test, averaging minimum and maximum

values. The fourth test consisted of selecting the NDVI value of each pixel from the

pre-fire image as the vegetation endmember; to be precise, we did not consider a single

NDVI value for the whole burnt area, but a different value for every pixel inside the
burnt area. The atmospheric and illumination changes between pre-fire and post-fire

images were accounted for by adding the averaged NDVI difference (AVGDIF)

around the burnt area before and after fire (NDVI þ AVGDIF in table 1). In other

words, this last method was implemented considering each pixel as an independent

endmember that could be used along with the burnt endmember as inputs in the

spectral unmixing calculation. This method was designed in order to avoid the

attribution of artificially high NDVI values for pre-fire vegetation when the corre-

sponding pixel may not have shown such a high vegetation density. Therefore, the
pre-fire NDVI value was adjusted to post-fire observation conditions by matching the

pre- and post-fire NDVI averages in the area surrounding the fire scar (see figure 2,

step 2). Then, for each pixel, the adjusted pre-fire NDVI value was considered as the

unburnt endmember, considered as a local and reliable pre-fire condition. This fourth

test was chosen as the most accurate because, when calculating again the total burnt

area extracted using those four models for selecting endmembers, the values of total

burnt area were close to the number given by the MMA (�54 km2). The area was

Table 1. Results of the MSMA models.

Date
Vegetation endmember

(NDVI component) Area (km2)

9 September 2007 maximum NDVI 57
9 September 2007 mean NDVI 34
9 September 2007 minimum NDVI 23
9 September 2007 NDVI þ AVGDIF 53
4 September 2007 maximum NDVI 42
4 September 2007 mean NDVI 39
4 September 2007 minimum NDVI 20
4 September 2007 NDVI þ AVGDIF 55

Mapping burnt percentage using AVHRR data 5321
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calculated automatically using IDL procedure script. Results are shown in table 1

using two different post-fire images, as explained above. The fourth of the tested

methods (NDVIþAVGDIF) provides the estimation closest to the official burnt area

with a good agreement for both post-fire dates.

2.2.3 Sub-pixel burnt percentage using SMA. In this paper, we use a variation of the

SMA technique, which assumes that pixel values are linear combinations of reflectance

from a limited set of constituent’s elements or endmembers. The essential assumptions

for SMA are that a landscape is composed of a limited number of fundamental

components, that the spectral signature for each component is spatially constant and

that the remotely sensed signal of a pixel is linearly related to fractions of the end-
member used. In SMA, the spectral properties of a pixel are modelled as a linear

combination of endmember spectra weighted by the percent ground coverage of each

endmember. The SMA applied here uses images from different dates, and therefore it

should be considered an MSMA. Good results have been obtained in studies related to

land-cover change detection with this technique (Roberts et al. 1998). We applied an

MSMA model using the endmembers explained in section 2.2.2. and, as input bands,

the NDVI and the LST values extracted from the spectral images.

The applied LST algorithm uses channels 4 and 5 of the AVHRR, the calculated
mean effective emissivity (e), the emissivity difference (�e) and the water vapour

content (g cm-2) (Sobrino and Raissouni 2000). The algorithm has the general form

LST ¼ T11 þ 1:40ðT11 � T12Þ þ 0:32ðT11 � T12Þ2 þ 0:83þ ð57þ 5WÞð1� eÞ
þ ð161þ 30WÞ�e; (1)

where T11 and T12 are the at-sensor brightness temperatures (in K) for the two thermal

infrared AVHRR channels 4 and 5, e is the mean emissivity, e¼ 0.5 (eiþ ej), �e is the
emissivity difference, �e¼ (ei – ej) and W is the atmospheric water vapour content (in

g cm-2). The emissivities for each thermal band of the AVHRR (ei and ej) depend on

NDVI thresholds and vary with the study area, so they must be calculated using the

NDVI information extracted from the image (for more details, see Sobrino and

Raissouni (2000)).

We have applied this new methodology considering the initial day of fire and two

different final dates, as shown in table 1, in order to test the variability of the results

depending on how many days had passed after the fire event. We decided to proceed
with two analyses with different end dates to carry out a comparison of the results

depending on different atmospheric conditions. In step 3 of figure 2, the flow chart

shows the approach followed to obtain the percentage burnt image using the spectral

unmixing technique. The unmixing analysis was carried out by inversion of the matrix

through singular value decomposition. This inversion was made by setting a burnt

pixel percentage of 100% for burnt endmembers and 0% for unburnt endmembers. No

image error was obtained. Obviously, fractions of burnt area were set between 0% and

100%, with the fractions of burnt and unburnt areas summing to 100% for each pixel.
The whole methodology was implemented using the IDL.

3. Results

A total burnt area of 55 km2 was estimated on 4 September 2007 and 53 km2 on 9

September 2007, which agree with the results provided by the MMA of 57 km2,

4.7 km2 of trees and 53 km2 non-trees (MMA 2008). We finally chose the last day

5322 A.B. Ruescas et al.
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(9 September 2007) as the end date to create and validate the sub-pixel percentage map

because it was the official date of the fire extinction from which official statistics were

extracted.

A map of the percentage of burnt area per pixel was estimated by the MSMA and it

is shown in figure 4. As can be seen in the legend, the percentage of burnt area varies

from pixels of areas almost completely burnt (93%) to others less affected by the fire

(15%). The mean value for the total area is 66% burnt. The pixels with more vegetation
undamaged are located in the margin areas. There is a highly damaged region on the

left of the map, which coincides with the steepest mountainous area and corresponds

to pixel 2 in the evaluation process with the AHS explained in the next section.

4. The evaluation process

Due to the limited area covered by the AHS, we selected four zones of 1.1 � 1.1 km
using coordinates corners from the AVHRR image to simulate four pixels in the AHS

image (see figure 5).

These four pixels represent around 7% of the total burnt area. Congalton and

Green (1999) estimate a sample of at least 1% of the area to do a proper accuracy

assessment. The difference in the spatial resolution of both sensors must be pointed

out, as only one AVHRR pixel corresponds to 183� 183 pixels in the AHS image, and

the pixels were delineated using the coordinates corners of the AVHRR pixels. We

classified the area inside the AHS pixels using a maximum likelihood classification
approach. The training fields of each class of interest were selected within each pixel

specifically, using visual interpretation of several band-composition images and

visiting the field to check its suitable location. The land-cover classes varied within

each pixel depending on the land cover found in it: healthy vegetation (VEG),

shadowed vegetation (VEGS), burnt area (BUR), burnt area in shadow (BUS), partly

burnt vegetation (VEB), burnt area with small vegetation patches (BUV) and rocks

and bare soil (ROC). See figure 6 for pixel classifications.

Figure 4. Percentage of burnt area; coordinates of central point 40� 080 N, 0� 100 W.
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Those classifications were considered as a reference, and we used them to quantify

percentages of use per class, and compared them with the corresponding AVHRR

pixel. Table 2 shows percentage covered by each class in the four pixels. Pixel 2 (top

left) seems to be more affected by fire with a maximum span of burnt area of 99.8%,

though part of this percentage corresponds to burnt area with some vegetation
patches (37.7%).

The pixel with the most totally burnt area is 1, with 48.2% of its area completely

burnt. Nearly 20% of this pixel could preserve part of its original vegetation, most of it

within the southern part of the image and near the border of the area affected by fire

(see figure 6 bottom left). Pixels 3 and 4 (figure 6, top right and bottom right,

respectively) have a larger area of unaffected vegetation (25% and 26%, respectively),

but they also have a large burnt area, and some other land covers, such as rock and

Figure 5. AHS image of the burnt area, RGB composition (bands 5–13–18). Burnt area is
coloured in brown, and white squares mark selected pixels.

Table 2. Percentage area covered by land classes per pixel.

Classes Pixel 1 (%) Pixel 2 (%) Pixel 3 (%) Pixel 4 (%)

Vegetation (VEG) 18.97 0.19 25.11 26.10
Shadowed vegetation (VEGS) 4.12 – – –
Burnt (BUR) 48.19 30.28 36.41 41.64
Shadowed burnt (BUS) 11.24 10.45 18.27 11.80
Mixed vegetation burnt (VEB) – 12.76 – 14.02
Burnt with vegetation patches (BUV) – 37.70 4.63 –
Rocks and bare soils (ROC) 17.3 8.62 15.58 6.43

Total burnt (excluding VEG and VEGS) 76.73 99.81 74.90 73.90
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bare soil (16% in pixel 3 and 7% in pixel 4). If we calculate a mean value (not shown in

table 2), more than 50% of the total area covered by the four pixels has burnt

completely, plus 30% more, included as burnt area, is composed of patches of burnt

and unburnt zones with a significant part of bare soil where it is more difficult to

determine the severity of the fire. We decided to reclassify rocks and bare soil as burnt

in the pixel classifications because they negatively affect the NDVI and they also
turned darker after the fire. Therefore, they are included as burnt area in the AVHRR

data as well.

A minimum error related with different scales and georeferencing issues has also

been calculated. Location of one of the classified pixels (pixel 3) was moved half an

AVHRR pixel in each direction (500 m) and was again classified in each new position

to achieve percentages of burnt and vegetation areas (see figure 7). Pixel 3 was chosen

because it covers a more heterogeneous area and also because moving the pixel in four

directions could be problematic if using any of the other 3 pixels due to the extent of
the AHS image (see figure 5). The average of the burnt area for the 4 pixels is 76%, and

24% is assigned to vegetation (see table 3 for details).

If we compare these results with percentages of pixel 3 where burnt area is near 75%

of the terrain, we can conclude that, even when there must be some minimum error

Figure 6. Classifications of AHS pixels: healthy vegetation (VEG), shadowed vegetation
(VEGS), burnt area (BUR), burnt area in shadow (BUS), partly burnt vegetation (VEB),
burnt area with small vegetation patches (BUV) and rocks and bare soil (ROC).
Identification of pixels is as follows: (a) pixel 2, (b) pixel 3, (c) pixel 1 and (d) pixel 4.
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related to the different spatial resolutions, results remain coherent. The comparison

between the map obtained from the AVHRR and ground-truth percentages from the

AHS is shown in table 4. The results show an average error of 6.5%, with a maximum

deviation of 17% and a minimum of 1%. The results confirm that the AVHRR

confidently approximates sub-pixel burnt area in spite of its low spatial resolution.

Table 3. Percentage area covered by land classes in test pixel 3.

Classes Pixel 3 TR(%) Pixel 3 BR (%) Pixel 3 BL(%) Pixel 3 TL(%) Mean (%)

Vegetation 15 23 34 25 24
Burnt 85 77 66 75 76

TR: top right, BR: bottom right, LB: bottom left, TL: top left.

Table 4. Results of the AHS classification versus the AVHRR classification of burnt areas.

Pixel 1(%) Pixel 2(%) Pixel 3(%) Pixel 4(%) Mean (%)

AVHRR 78 93 92 89 88
AHS 77 100 75 74 81.50

Error difference 1 -7 17 15 6.50

739000
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Figure 7. Validation of estimated percentage of pixel 3 by moving its location 500 m in each
direction (half of an AVHRR pixel).
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5. Discussion

SMA techniques can be successful if appropriate endmember selection is made.

Selection of endmembers starts by identifying the number of them to be used in the

SMA and their corresponding spectral signatures. Sometimes, the use of only two

endmembers can underestimate the model (Theresia et al. 2003). In some references

that use Landsat Thematic Mapper (TM) / Enhanced Thematic Mapper Plus

(ETMþ), three or more endmembers were selected to represent the whole variability

of the scene (Ridd 1995, Radeloff et al. 1999, Small 2001). In the present work, we

carried out different tests using two endmembers selected from an NDVI image, and
we compared the results with a procedure that used all pixels in the NDVI image as

endmembers in an iterative process. There is clear evidence that the use of a larger

number of endmembers increases the accuracy of the results.

The SMA approach used here works similarly to that developed by Roberts et al.

(1998), where they developed a multiple endmember spectral mixture analysis

(MESMA) to map sub-pixel proportion. The main variation in our method is that

we did not use the spectral signatures to proceed with the unmixing analysis, but two

products that were derived from the spectral data, the NDVI and the LST. This
introduces a considerable modification of the unmixing produced because the linear-

ity of the method is lost when using these two different parameters. However, NDVI

and LST have been shown to present a linear correlation depending on land-cover

characteristics (Nemani et al. 1993, Hope et al. 2005, Yue et al. 2007) and to be related

to surface-moisture status (Sandholt et al. 2002), which makes them appropriate

parameters in an unmixing analysis of this type. Moreover, Julien and Sobrino

(2009) showed that a linear relation between NDVI and LST could be evidenced for

most biomes, since the presence of vegetation (estimated through the NDVI para-
meter) tends to decrease surrounding temperatures, air temperature as well as LST,

through the mechanism of evapotranspiration (Lambin and Ehrlich 1996). Therefore,

a decrease in NDVI values after the fire can be related to an increase in the LST values

and vice versa. However, the use of both parameters is not redundant, due to the low

values of NDVI for sparsely vegetated areas such as the study area.

Use of the AVHRR is due to opportunity and easy access, both requirements that

are fundamental in a rapid response to hazardous events. One possible extension of

the work on this feature could be testing our approach on other types of multi-spectral
data with a higher resolution, such as the MODIS or even Landsat ETMþ.

6. Conclusion

AVHRR images are commonly used for a great variety of environmental studies,

including fire detection. However, the low spatial resolution of the sensor can limit the

accuracy of some measurements, and in these cases, it is necessary to have ancillary

data to help with the interpretation of the parameters of interest. We have presented

here a new method that uses the MSMA technique with NDVI and LST as input data
in the unmixing procedure. We have applied it to a particular fire case in a small area

in the province of Castellon called L’Alcalaten. The results of total-area estimation

using this methodology showed an average result of 54 � 1 burnt km2 using the two

end dates, corroborating the official estimations of the MMA (57 km2). The percentile

map of the area burnt per pixel agreed with the ground-truth data, obtained by means

of applying a supervised classification procedure of an AHS image, with a mean error

of less than 7%. The results obtained are encouraging, and they show good agreement
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between both maps. Our conclusion is that the MSMA technique applied to the

AVHRR data can be used with confidence to give approximate results of sub-pixel

burnt area prior to the use of finer spatial-resolution sensors by using a relatively

simple method of SMA. Considering the fact that the AVHRR is a sensor used for a

broad community of remote-sensing researchers and its images can be relatively easy
to acquire and process, our simple method can contribute to the study of fire events

with high accuracy in conjunction with ancillary high-spatial- and high-spectral-

resolution data.
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