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Individual virions typically fail to infect cells. Such decoupling

between virions and infectious units is most evident in

multicomponent and other segmented viruses, but is also

frequent in non-segmented viruses. Despite being a well-

known observation, the causes and implications of low single-

virion infectivity often remain unclear. In principle, this can

originate from intrinsic genetic and/or structural virion defects,

but also from host infection barriers that limit early viral

proliferation. Hence, viruses may have evolved strategies to

increase the per-virion likelihood of establishing successful

infections. This can be achieved by adopting spread modes

that elevate the multiplicity of infection at the cellular level,

including direct cell-to-cell viral transfer, encapsulation of

multiple virions in microvesicles or other intercellular vehicles,

virion aggregation, and virion binding to microbiota. In turn,

increasing the multiplicity of infection could favor the evolution

of defective viruses, hence modifying the fitness value of these

spread modes.
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One is not enough: poor infectivity of
individual virions
The virion or viral particle has been traditionally viewed as

the minimal viral infectious unit. However, typically the

majority of virions are non-infectious. Viral titers obtained

by standard methods such as the plaque assay or the median

infectious dose can be tens or even hundreds of times lower

than the actual number of viral particles in a given suspen-

sion. This deviation can be measured using the particle to

plaque forming unit (PFU) ratio [1]. High particle-to-PFU

ratios are often attributed to lack of some genetic material

inside the virion, structural defects in the capsid and/or

envelope, or lethal mutations.
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Segmented viruses are particularly prone to non-infec-

tiousness. In principle, one may expect genome packag-

ing processes to ensure the incorporation of all segments

in each virion. Tight control of segment encapsidation has

been indeed reported in some viruses such as bacterio-

phage w6 [2], yet other viruses surprisingly appear to

package segments quasi-randomly. For instance, in Rift

Valley fever virus, FISH analysis of virions and infected

cells revealed that up to 90% of viral particles lack at least

one of the three segments, despite each segment being

essential [3]. Another example of such apparent lack of

regulation is provided by birnaviruses [4]. This issue is

aggravated in multipartite viruses, because each segment

is packaged in a different particle and, presumably, a high

multiplicity of infection (MOI) is necessary for produc-

tive infection [5,6].

In recent years, the causes of influenza virus high particle-

to-PFU ratios have been investigated in some detail. For

instance, single-cell analysis and stochastic modelling

suggested that up to 90% of cells infected by a single

viral particle produce little or no progeny [7��]. Similarly,

it was found that approximately 90% of the particles fail to

express at least one segment [8�]. These appear to differ

from classical defective interfering particles (DIPs) [9] in

that they initiate cellular infection but fail to complete it,

and have been termed semi-infectious particles (SIPs)

[10]. Influenza virus infectivity increases strongly when

the MOI is high enough to ensure coinfection of cells with

multiple SIPs. However, surprisingly, the presence of

SIPs does not seem to require a high MOI. This suggests

that SIPs frequently appear de novo, or that they propagate

across cells in association with other particles. The rele-

vance of DIPs and/or SIPs is supported by in vivo work

showing that influenza virus particles that lack segments

can undergo multiple infection cycles in the upper respi-

ratory tract of guinea pigs [11]. Sequencing of nasopha-

ryngeal specimens from infected humans indicated fre-

quent DIP production and suggested that DIPs can

undergo inter-host transmission [12].

Per-virion cell invasion efficiencies have also been sug-

gested to be unexpectedly low in non-segmented viruses,

such as tomato mosaic virus (ToMV) undergoing cell-to-

cell spread through plasmodesmata. ToMV was labeled

with sequence tags or fluorescent markers to quantify the

population bottleneck experienced during transfer

between cells [13�]. Whereas plasmodesmata should

allow for the passage of hundreds or thousands of viral

genomes, the authors suggested that the vast majority of

these genomes fail to give progeny, and that each cellular

infection is effectively initiated by only 2–7 viral
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genomes, on average. This sieving is a poorly understood

phenomenon and could obey to lack of infectivity, but

also to competition or even to altruistic interactions

among viral genomes at the intracellular level [14�].
Another study with vaccinia virus used microfluidics to

place a specific number of viral particles in individual cells

[15��]. Most cells receiving a single particle were unin-

fected, whereas infection probability increased dispropor-

tionately (logistically) with the number of particles placed

per cell, suggesting a cooperative initiation of the infec-

tion cycle.

Spatial clutering and MOIs
A monodisperse viral population (i.e. showing no spatial

structure) will fail to reach sufficiently high MOIs during

the early stages of population growth. This is because

typically only a minuscule fraction of particles present in a

given individual host colonize new hosts [16,17], and

bottlenecks also operate at the intra-host level, as

revealed by sequence analysis of well-studied pathogens

such as HIV-1, influenza A virus, and hepatitis C virus

[18–20]. Importantly, though, high MOIs are reached

much earlier if the population exhibits spatial clustering.

As a result of the diffusion process of free viral particles,

most virus grow in the form of infection foci. Even

stronger clustering can be achieved if the virus uses

cell-to-cell spread, which allows for direct transfer of

multiple viral genomes between cells and has been

described in many viruses including most plant viruses,

HIV-1, human T-cell leukemia virus, measles virus,

vaccinia virus, and herpes virus [21,22�]. However, in

most cases, this spread mode is local, and systemic dis-

semination probably relies on free virions. Therefore, the

high-MOI regime would be interrupted during systemic

dissemination and inter-host transmission, purging out

semi/non-infectious particles. In some cases, though, the

cell-to-cell mode may also operate during systemic dis-

semination, notably in the case of blood-borne viruses

such as HIV-1 [21,23�]. Inter-host transmission in a cell-

associated manner is an understudied process, and may be

more common than often assumed. Again, a well-studied

case is HIV-1, for which the cell-associated route is known

to contribute significantly to inter-host transmission [24].

Despite a likely role of limited diffusion and cell-to-cell

spread in the maintenance of semi/non-infectious parti-

cles, it was inferred in cell cultures and in humanized

mice that cells co-infected with GFP-encoding and

mCherry-encoding HIV-1 had only a 6–14% chance of

transferring both variants by the cell-to-cell route using

virological synapses [25]. Although this was far more

efficient than free virion-dependent coinfection, these

data suggest that cell-to-cell spread may not allow for the

sustained co-transmission of different virus variants

throughout multiple cycles. However, further work is

required in this area.
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Collective infectious units as coinfection
vehicles
If high cellular MOIs help overcome the low infectivity

of individual particles, viruses might benefit from main-

taining relatively high MOIs even in the presence of the

strong population bottlenecks associated with dispersal.

As outlined above, the case of multi-partite viruses is

particularly extreme. Since very high viral population

densities would be required for ensuring that a full set of

independently diffusing segments is delivered to at least

a fraction of cells, there should be mechanisms leading to

the linked spread of segments, at least for viruses with

more than three segments [5,6]. One possible such

mechanism is inter-segment RNA–RNA interactions

[26]. Interestingly, packaging does not appear to be

necessary for systemic dissemination of brome mosaic

virus, since uncoated viral RNAs can move long dis-

tances, probably in the form of ribonucleoprotein com-

plexes involving cellular factors and the viral movement

protein [27]. Systemic dissemination in the form of

ribonucleoproteins has also been shown for potato

mop top virus [28]. In some plant species, not all viral

RNA segments are required for spread at the intra-host

level, and it is therefore likely that the RNA–RNA–

protein interactions mediating physical segment linkage

involve only a subset of segments, mainly those encod-

ing the replication machinery and other essential factors.

However, this leaves unanswered the problem of how

multipartite viruses undergo inter-host transmission, as

this stage necessitates virions and the concurrence of all

segments.

Polyploidy might be yet another strategy for increasing

the chances of successful cellular infection. In segmented

viruses, aneuploidy can be seen as a trivial consequence of

non-selective segment encapsidation. However, and

more interestingly, polyploidy might serve as a strategy

to increase infectivity. This was first studied using infec-

tious bursal disease virus [4]. The size of the icosahedral

capsid of this virus is larger than required for packaging

just one copy of each of the two segments, and can easily

accommodate two copies of each. This might compensate

for non-selective packaging. With room for only two RNA

molecules and random packaging, 50% of the capsids

would miss one of the two essential segments and hence

would not be infectious. In contrast, with room for four

RNA molecules, this chance drops to 12.5%. Similar

findings were later reported in infectious pancreatic

necrosis virus, another birnavirus [29]. Interestingly, poly-

ploidy has also been shown in non-segmented viruses,

where the problem of ensuring a full set of segments

obviously does not exist. This includes filamentous

viruses such as bacteriophage f1 [30] and Ebola virus

[31], in which capsids are capable of accommodating extra

genetic material, but also measles virus [32], which forms

particles containing a flexible helicoidal nucleocapsid

surrounded by an external spherical envelope.
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The notion that viral intra-host spread and inter-host

transmission rely on independently diffusing virions

has been further challenged by the discovery of structures

that mediate the collective transfer of groups of virions to

the same target cells and, thus, increase the MOI at the

cellular level [33,34]. Virion aggregation was reported

long ago in electronic microscopy studies using a variety

of viruses including tobacco mosaic virus, poxviruses,

influenza virus, rhabdoviruses, and poliovirus, but was

often interpreted as a laboratory artifact [33]. Recently, it

has been shown that virion aggregates can be infectious,

mediate the co-delivery of multiple viral genome copies

to the same cell, and allow for functional interactions

between different genetic variants in vesicular stomatitis

virus [35�] and poliovirus [36]. Other studies have

detected aggregates, yet have not investigated their role

in infection. For instance, examination of Junin virus by

fluorescence-assisted flow virometry revealed three types

of particles with different size: small (60 nm) and large

(150 nm) individual particles, and aggregates. Large par-

ticles were more infectious than small particles because

they were more likely to contain two essential compo-

nents (the surface protein G and RNA), yet the infectivity

of aggregates is unclear [37].

Lipid microvesicles constitute another instance of collec-

tive infectious units. In addition to releasing free virions

by lysis, cells infected with enteroviruses such as poliovi-

rus, coxsackie virus and rhinovirus secrete autophago-

some-like vesicles of 200–400 nm containing multiple

viral particles [38�]. These vesicles, released before lysis,

are internalized by recipient cells and are highly infec-

tious. However, the actual number of genomes delivered

by these vesicles to host cells, as well as the fraction of

these genomes that effectively initiate infection, remain

unclear. Whether vesicles are important for inter-host

transmission is another open question. Expanding the

role of lipid vesicles in viral spread, it has been found that

the large DNA marseilleviruses can enter their amoebal

hosts by two alternative routes: endocytosis of free virions

and phagocytosis of multi-virion vesicles [39].

Collective modes of viral spread can take additional

forms. A well-known case is that of baculoviruses, which

undergo inter-host transmission inside polyhedrin crystals

that wrap up tens of virions (occlusion bodies). These

crystals are dissolved under alkaline pH in the insect mid

gut following their ingestion and release occlusion-

derived viruses. In turn, in so-called multiple baculo-

viruses, occlusion-derived viruses are made of small

groups of a few virions that share an external envelope,

but the significance of this additional level of aggregation

remains unclear [40].

Finally, it has been recently shown that enteroviruses

bind bacterial cells of the gut microbiota, which leads to

clustering of viral particles in space and hence constitutes
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yet another way of co-delivering multiple particles to the

same target cells [41�]. In the future, similar processes

might be unveiled in other medically relevant fecal-orally

transmitted viruses, such as noroviruses and rotaviruses.

Pros and cons of collective spread
The selective pressures (if any) that have promoted high-

MOI spread modes remain largely unexplored. Two

types of benefit can be envisaged: ‘safety in numbers’

(or ‘mass effect’), whereby the probability of successful

infection increases in cells receiving multiple genome

copies even if these are identical, and ‘heterotypic coop-

eration’ whereby the advantage of collective infection

resides precisely in bringing together different genetic

variants (for instance, by genetic complementation). Most

of the above discussion revolves around the more popular

view that heterotypic cooperation is responsible for

increasing per-virion infectivity at high MOIs. However,

the mass effect seems also plausible and should probably

be considered as the null hypothesis because it relies only

on quantity, whereas heterotypic cooperation relies on

both quantity and quality. One possible explanation for

this mass effect could be that innate immunity is over-

whelmed in cells receiving multiple particles. Another

possible scenario is that, during the very early stages of

infection, such as translation or transcription of the first

incoming molecules, viruses are subject to stochastic

failures due to lack of some required components, dilu-

tion, and/or degradation. The risks of such stochastic loss

would be diminished by initiating infection with multiple

copies of each element.

The higher infectivity of collective infectious units is

supported by some empirical evidence. For instance, in

infectious bursal disease virus, it was found that polyploid

capsids are more infectious than haploid capsids [4],

which could arguably be explained in terms of comple-

mentation. In enteroviruses, it has been found that cells

inoculated with virion-containing vesicles produce more

progeny than those inoculated with free virions in the

short term [38�]. However, whether this was due to a mass

effect, heterotypic cooperation, or other processes (such

as different entry cellular entry route, for instance)

remains unknown. Other experiments support the het-

erotypic cooperation hypothesis. For instance, it was

found that coencapsidation of measles virus genomes

allowed complementation of deleterious mutations, and

even favored the emergence of new phenotypes such as

extended cell tropism [42]. Baculovirus occlusion bodies

contain genetically heterogeneous genomes, which have

been suggested to act cooperatively [43,44]. However, in

most cases how heterotypic cooperation occurs remains

poorly understood mechanistically. Several possibilities

exist, though. As shown for coxsackievirus [45], some

beneficial mutations cannot be combined in the same

genome because they exhibit strongly negative epistasis,

but this antagonism may disappear if mutations are
Current Opinion in Virology 2018, 33:1–6
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Figure 1

Stochastic
loss

Quiescence
Innate immunity

Infection
barriers

Safety in
numbers

Incorrect protein
folding/processing

Transcription and/or
translation noise

Structural
defects Heteroytpic

cooperation

Cell-to-cell spread
Polyploidy

Spread in vesicles
Occlucion bodies

Aggregation
Binding to microbiota

High MOI strategies:

Spread of social
cheaters

Deleterious
mutationsMutation

Segmentation
Recombination

Low particle:PFU
ratio

Current Opinion in Virology

Summary of possible cause–effect relationships between poor virion infectivity and viral spread modes that elevate the MOI. See text for details.
present in different genomes. Cooperation might also

involve division of labor. In influenza A virus, it was

found that the hemagglutinin variant of one strain pro-

vided efficient attachment to host cells, whereas the

neuraminidase variant from another strain provided effi-

cient release of virions from cells. Sharing of viral proteins

in cells infected by both strains led to faster viral spread

than in singly infected cells [46].

Collective spread also entails costs, because pooling

multiple virions (or genomes in the case of polyploids)

in the same structure reduces dispersal. K virions encap-

sulated in a single unit will reach one cell at best,

whereas free virions could reach up to K cells. Hence,

for collective infectious units to be selectively advanta-

geous, they should increase progeny production on a per-

particle basis. This means that, on average, K free virions

should produce less progeny than a collective unit made

of K virions. However, whether this condition is fulfilled

remains unassessed. An additional possible downside of

collective spread is that genetically heterogeneous

groups could lead to the evolution of social cheaters,

that is, variants that benefit from others without recipro-

cating. Indeed, semi/non-infectious particles might not

necessarily be the causal factor promoting the evolution

of mechanisms for increasing MOIs locally but, instead,

many of these particles could be cheaters thriving as a

result of such mechanisms. For instance, baculovirus

populations typically contain multiple genetic variants,

including defective genomes with large deletions

[44,47,48], and whether these are cooperative variants

or social cheaters is unclear. A fitness cost has been

demonstrated for factors involved in host-to-host trans-

mission, such as per oral infection factors [43]. This

suggests that mutants defective for these genes are

selectively advantageous at the intra-host level, yet have

to use functional viruses for transmission, fitting the

definition of social cheaters.
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Conclusions
The concepts discussed are schematically outlined in

Figure 1. High particle:PFU ratios are often viewed as the

result of an intrinsically poor infectivity with a structural or

genetic origin. However, infectivity is not absolute because

it depends at least on two extrinsic factors: the host and the

presence of other viruses. First, it is well known that a given

viral stock can show widely different specific infectivity

values, depending on the host cells assayed. Second, defects

in one virion can be compensated by other virions entering

the same cell. Yet, the per-particle chance of successful

infection may increase in groups even if these contain

identical virions. Whether collective infection increases viral

fitness by promoting heterotypic cooperation, mass effects,

or other processes remains an open question. In either case,

these interactions depend on a high cellular MOI. This can

be achieved simply via spatial clustering of free virions or by

adopting a spread mode in which virions do not diffuse

independently. It is also well known that high MOIs relax

competition and promote the maintenance of low-fitness

variants, or even DIPs, reducing average viral fitness. There-

fore, there might be mechanisms preventing access of such

non-cooperative variants to collective infectious units.

These mechanisms are currently unknown, and could vary

depending on how viral particles cluster. For instance, if

grouping occurs before cell exit, such as in vesicles, coopera-

tor assortment might be achieved by compartmentalization

of viruses within discrete viral factories.
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