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Dedicada a Zoila -

“Mama vieja, yo le canto desde aquí, esta zamba que una vez le prometí.”

Lito Bayardo





Abstract / Resumen

Abstract - Over the last decade, multi-scale computer models of the heart have helped
understanding the complex electrical interactions of its components, as well as electrical
disorders and pathologies at cell, tissue and organ scales. The usability of those models de-
pends mostly on their capacity to accurately represent heart anatomy, microstructure and
function. However, integrating such a variety of biological data for a given patient is often
not possible mainly due to technical limitations, e.g. acquisition of microscopic structural
information. This is the case of the cardiac conduction system (CCS), a heterogeneous
network of cells responsible for the fast and coordinated distribution of the electrical im-
pulses that triggers the contraction of the heart. The CCS cannot be observed in in-vivo
images because the size of its structures is in the order of cellular resolution. The CCS
is mandatory in several cardiac modeling applications since it is known to be involved
in arrhythmia initiation and maintenance, and plays a key role in other diseases such as
left bundle block or bundle branch re-entry VT and fascicular (PK-related) VT and their
associated therapies. Existing models developed for simulation of cardiac electrophysiol-
ogy tend to neglect the CCS or simply emulate its function using non-physiological and
simplified approaches.

The aim of this thesis is twofold: firstly, to show the importance of explicitly modeling
the CCS structure and function for an accurate description of the electrical activation of
the ventricles under normal and pathological conditions, and secondly, to present a novel
technique to build automatically the structure of a CCS that meets physiological obser-
vations. Pursuing that goal has required an additional multidisciplinary effort to define a
full pipeline to build computational models for cardiac electrophysiology simulation, and
imaging techniques to acquire and analyze data of the CCS at macroscopic and micro-
scopic scales.



viii Abstract / Resumen

Resumen - Durante la última década, los modelos computacionales multi-escala del
corazón han ayudado a mejorar la compresión tanto de las complejas interacciones eléc-
tricas de sus componentes, como de los trastornos y patologías eléctricas a escala celular,
de tejido y órgano. La usabilidad de estos modelos depende principalmente de su ca-
pacidad para representar con precisión la anatomía del corazón, su microestructura y su
función. Sin embargo, la integración de tal amplia variedad de datos biológicos de un
paciente dado a menudo no es posible debido principalmente a limitaciones técnicas, por
ejemplo, adquisición de información estructural a nivel microscópico. Este es el caso del
sistema de conducción cardiaco (CCS), una red heterogénea de células responsables de la
distribución rápida y coordinada de los impulsos eléctricos que desencadena la contrac-
ción del corazón. El CCS no puede ser observado in vivo mediante técnicas de imagen
clínica porque el tamaño de sus estructuras está en el orden de la resolución celular. Sin
embargo, es imprescindible incluirlo en los modelos del corazón, ya que se sabe que está
involucrado en la iniciación y mantenimiento de arritmias, y juega un papel importante
en otras enfermedades como el bloqueo de rama izquierda o de reentradas rama-rama que
desencadenan taquicardia ventricular (VT). Los modelos existentes desarrollados para la
simulación de la electrofisiología cardiaca tienden a omitir el CCS o simplemente emulan
su función utilizando enfoques no fisiológicos y simplificados.

El objetivo de esta tesis es doble: en primer lugar, mostrar la importancia de mode-
lar explícitamente la estructura y función del CCS para obtener una descripción precisa
de la activación eléctrica de los ventrículos en condiciones normales y patológicas, y en
segundo lugar, presentar una nueva técnica para construir automáticamente la estructura
de un CCS que cumpla con las observaciones fisiológicas. La persecución de este obje-
tivo ha requerido un esfuerzo multidisciplinar adicional, consistente en definir un flujo de
trabajo para la construcción de modelos computacionales para la simulación de la elec-
trofisiología cardiaca, además de las técnicas de imagen necesarias para adquirir y analizar
datos del CCS a escalas macroscópica y microscópica.
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1

Introduction

1.1 The cardiac conduction system
The fast electrical cardiac conduction system (CCS) of the heart orchestrates and triggers
the excitation-contraction function of the heart ventricles. The electrical impulse origi-
nates in the sino-atrial node (SAN), the natural pacemaker, located in the right atrium
of the heart. From the SAN it advances to the atrio-ventricular node (AVN), which elec-
trically delays the impulse and connects atrial and ventricular chambers. The electrical
impulse travels through the His Bundle (HB), which is a collection of heart muscle cells
specialized for electrical conduction that transmits the impulses from the AVN to the fas-
cicular branches. The fascicular branches then lead to the Purkinje (PK) system that in-
nervates the ventricles, causing the cardiac muscle of the ventricles to contract at a paced
interval. The bulk myocardium is electrically activated at Purkinje-myocardial junctions
(PMJ), which are scattered over the endocardial surface. Figure 1.1 shows a simplified
representation of the electrical conduction system of the heart.

1.1.1 Pathologies

The distal areas of the CCS, and specifically the PK system, are key to guarantee a physio-
logical sequence of activation and contraction of the heart. There are numerous cardiovas-
cular pathologies that are directly related to malfunctioning of the CCS such as arrhyth-
mias, fibrillation, or tachycardia. One critical case is left bundle branch block (LBBB),
a cardiovascular conduction anomaly that can be directly detected from electrograms
(ECG). In this condition, the activation of the LV is delayed, which makes the LV contract
after the RV, decreasing the heart performance. Other important negative effects of abnor-
mal activation of the CCS are the generation of electrical macro- or micro-reentries. This
type of reentry is due to a unidirectional block in the CCS and can give rise to ventric-
ular tachycardia. Another source of problems might originate from the PK system itself,
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Figure 1.1: A graphical representation of the electrical conduction system of the heart
showing the Sinoatrial node, Atrioventricular node, His Bundle, Purkinje fibres, and Bach-
mann’s bundle. Image adapted from Wikipedia1 .

which can produce sub-endocardial focal activity i.e. early after-depolarizations (EADs)
and delayed after-depolarizations (DADs), or micro-reentry under certain conditions. Al-
though the role of the CCS in the normal electrical sequence of activation is well known,
its functioning in abnormal conditions, or its interaction with electrical disorders that have
their origin in other pathologies, such as infarctions, is not well understood yet. So as to
better comprehend the underlying systems that prompt certain sorts of arrhythmia, it is
critical to look for new tools that permit considering in detail the electrical coupling of
the CCS and the myocardium under normal and pathological conditions in a simple way.

1.1.2 Modeling

Computational tools and integrative multi-scale computational models of the heart have
the potential to improve understanding, diagnosis, treatment planning and plan interven-
tions for cardio vascular disease. Biophysical models of cardiac electrophysiology are
available at different scales [109, 110] and are able to reproduce the electrical activation
of the heart. The opportunity of multi-scale modelling spanning multiple anatomical lev-
els (sub-cellular level up to whole heart) is to provide a consistent, biophysically-based
framework for the integration of the huge amount of fragmented and inhomogeneous
data currently available. The combination of biophysical and patient-specific anatomical
models of atria and ventricles allows simulating cardiac electrical activations for a given

1 http://upload.wikimedia.org/wikipedia/commons/d/d5/Conductionsystemoftheheart.png
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Figure 1.2: Main components required for the development of a cardiac conduction system
model. Image from [96].

patient and has the potential for helping in decision-making processes for electrical ther-
apies such as cardiac resynchronization therapy or radio-frequency ablation. One of the
main drawbacks of current cardiac computational models is the difficulties for obtaining
patient-specific data for all the anatomical components that take part in the electrical acti-
vation of the heart. Among them the CCS has remained largely elusive due to the impos-
sibility to observe it in-vivo and the little amount of information available in the literature.
Figure 1.2 lists the main components needed for a complete model of the CCS, as pro-
posed in [96], together with the challenging data (e.g. invasive electro-anatomical maps,
histology, ex-vivo) that can provide partial information about its anatomy and functional
behaviour (i.e. electrophysiology). As a result, the CCS is often not modelled in compu-
tational models or is oversimplified. Among the most common approaches followed to
avoid explicitly modelling the PK system, though still synchronously activating the ven-
tricles, is the use of excitation points [88]. In this approach, a set of discrete scattered
excitation points is placed all over the endocardium. Following the measurements from
ex-vivo electrical mapping studies (see Durrer et al. [58]) the points are activated, as small
pacemakers, thus creating a virtual activation map. More sophisticated approaches build
simplistic PK trees that define the locations of the PMJs based on electrical landmarks
[123, 173]. Although simple geometrical models allow including specific PK cellular
models and PMJs, none of them tried to reproduce the pattern or structure of the PK sys-
tem, or its complexity. In the following sections information about the cardiac conduction
system, both anatomically and electrophysiologically, including the sequence of electri-
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cal activation, from ex-vivo histological or microscopy studies in animals and human ca-
davers, is discussed. Subsequently, state-of-the-art in structural and electrophysiological
models of the CCS is presented.

1.2 Anatomy of the cardiac conduction system

Because of the challenges for identifying conductive tissue, there has been considerable
wheel spinning over the last century, often leading to contradictory results, thus contro-
versy abounded. This is partly due to the lack of markers for this specific tissue. The
understanding of the PK pattern was delayed for a long time. In 1845 Jan Evangelista
Purkinje published his discovery of a part of the heart conduction system that we call PK
fibres [81]. He observed these fibres in sheep hearts. In 1906, Sunao Tawara published the
results of his two and a half year research. In his publication he described anatomy and
histology of the electrical conduction system in several animal specimens and in humans
and emphasized the morphological unit of transfer of the AVN to the atrioventricular bun-
dle, bundle branches and PK network [167]. His research was essential for the knowledge
of the CCS and PK fibres. Two years later, Einthoven used Tawara’s research in the inter-
pretation of the ECG [61]. In 1910, Aschoff [10] and Monckeberg [104] defined the three
conditions to identify a structure as a part of the CCS: 1) the cells of the tract needed to
be histologically discrete when compared to their neighbors; 2) the cells should be able to
be traced from section to section in the histological series; 3) the cells of the tract should
be insulated from their neighbors by a sheath of fibrous tissue. The cells of the SAN and
of the AVN satisfied the first two criteria, whereas the pathways for the ventricular con-
duction system satisfy all the three. Several studies described the anatomy of the HB and
its branches [7, 58, 100, 148, 167]. To visualize the net structure it is necessary to apply
sub-endocardial injections of ink or stains. It is very difficult to observe the Purkinje-net
system in humans, because these fibres do not stain well. Ex-vivo histological and mi-
croscopy animal data of the PK network is available due to the use of specific stains such
as Indian Ink [8], Goldner Trichrome Stain [147] or immunolabeling markers [45], which
can be analyzed afterwards from histological and microscopy images. The HB is one of
the easiest parts to observe. It extends from the atrioventricular bundle and has a non-
branching bundle, which is usually very short, and branches after perforating the septum
in several fibres that form the LBB and in a compact group of fibres that form the right
bundle branch (RBB), as shown in Figure 1.3 and Figure 1.4.

The most proximal portion of the RBB is identified at the top of the inter-ventricular
septum. The bundle branch passes down the septum to the base of the anterior papillary
muscle, and after crossing it fans out into multiple free running false tendons terminating
on the free wall of the ventricle as a profuse sub-endocardial PK network [8, 148]. Fibres
to the septum from the portion of the bundle branch proximal to the anterior papillary
muscle are generally not visualized. However, there are consistently tracts of conducting
fibres that reflect back from the base of the anterior papillary muscle and the apical free
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Figure 1.3: Serial examination of section of His Bundle and initial branches from a human
heart. Image from [51].

Figure 1.4: His Bundle described by Tawara [167]. Image from [7].
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Figure 1.5: Pertinent anatomic features of the proximal left ventricular conducting system.
Image from [107].

wall to the lower portion of the septum. The RBB is anatomically separated from the right
septal muscle by fibrous tissue.

The left bundle branch (LBB) is buried deep in the muscle of the inter-ventricular
septum and continues to the apex. The gross anatomy of the LBB system is much more
complex than that of the right system. The short main LBB divides into two or three
divisions high on the left side of the inter-ventricular septum. Large portions of the ante-
rior (superior) division and the posterior (inferior) division course directly toward the two
papillary muscles. A profuse sub-endocardial network of interlacing PK fibres courses
through the septal endocardium, which is bordered by the two major divisions and the
papillary muscles. Figure 1.5 depicts the main LBB and how it bifurcates into an ante-
rior division (AD) and a posterior division (PD) that course toward the apical portions of
both papillary muscles (out of picture). A network of sub-endocardial PK fibres (SEPF) is
present between the two divisions. The endocardial true ventricular muscle tissue (VM)
can be seen between the tracts of conducting tissue. In humans, it usually forks into three
divisions: anterior, medial and posterior. The anterior bundle continues to the apex and
forms a sub-endocardial plexus in the area of the anterior papillary muscle. The posterior
bundle goes to the area of the posterior papillary muscle, divides into a sub-endocardial
plexus and extends to the rest of the LV.

The RBB becomes sub-endocardial and forks near the junction between the inter-
ventricular septum and the anterior wall of the RV. It passes under the septal endocardium
to the papillary muscle and fragments to the network of PK for the walls of the RV.
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Figure 1.6: Purkinje network in the LV. Tawara’s illustration is very similar to the real
network in the photograph. (a) Tawara’s illustration, showing the three divisions in human
left bundle branch. (b) Purkinje network of a calf heart. Image from [167].

The PK network is, as mentioned above, the terminal part of the CCS (see Figure 1.6).
In general, the sub-endocardial PK network has an elliptical disposition in both ventri-
cles, as shown in Figure 1.6 (b). In humans, PK fibres only reach the endocardial layer
and are connected to the working myocardial cells by intercalated disks. In some species,
especially in large mammals, it has been reported the existence of intramural fibres that
penetrate the ventricular wall and create new branches or anastomosis, forming a complex
three-dimensional network in the ventricular muscle. Ryu et al. found PK cells within the
mural myocardium of sheep ventricles, whereas no intramural Purkinje-type cells were
detected within the human ventricles (see Figure 1.7) [147]. In the sheep septum, every
intramural PK cell forms a three-dimensional network throughout the mural myocardium,
which proximally connects to the sub-endocardial extension of the bundle branches and
distally forms an occasional junction with ordinary working myocytes. Anatomical char-
acteristics of the intramural PK or Purkinje-type myocytes are yet to be fully clarified in
mammalian hearts.

Junctions between the PK network and the subjacent ventricular myocytes (PMJ) are
electrophysiologically defined components of the CCS, where the electrical impulse is
delivered to the sub-endocardial tissue after a certain delay of around 5ms [11, 169, 186].
PMJs are distributed along the course of the PK network that is in contact with the ven-
tricular fibres. In several studies [7, 130, 166] there has been shown the existence of tran-
sitional cells between the terminal PK fibres and the ventricular fibres (see Figure 1.8).
Transitional cells have been observed in pig, rabbit, dog and goat, but not in human or
bovine where PK fibres gradually become smaller and eventually similar to ventricular
myocytes.

Using rabbit RV, Cates et al. [40] successfully detected around 170 PMJ by recording
unipolar electrograms from 528 electrodes, and studying fast electrical deflections (Purk-
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Figure 1.7: Purkinje cells within the right and left ventricular free walls of a sheep heart.
The specialized myocyte with distinctive morphologies (open arrows) are found in both the
inner and the outer layers of the ventricular walls. Image from [147].

Figure 1.8: Scanning electron micrograph of the transitional cells of the sheep sub-
endocardial network (a) and a close-up view of the ruled area(b). P (Purkinje), M (My-
ocardium), T (Transitional). Image from [166].
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(a) (b)
Figure 1.9: Schematic of the preparation including the position for the recording array (a)
and (b) means ± SD for the number of sites with P deflections during sinus mapping and
endocardial pacing experiments. Image from [40].

inje) followed by >2 ms slow deflections (ventricular) (see Figure 1.9). They suggested
a more continuous PMJ coupling where antegrade and retrograde conduction are mixed,
which is in line with new findings that show a high electrical propagation velocity through
trabeculae [105]. This hypothesis is supported by observations of ventricular deflections
closely preceding PK deflections in endocardial electrograms in sinus rhythm [40], mean-
ing that the PK and myocardial electrical wavefronts advance in parallel in some regions.
More recent, studies of activation of PK fibres in pigs [57] and dogs [165] under fibrilla-
tion have also shown an intense activity of the PK fibres both antegrade and retrograde.
Assuming a homogenous distribution of PMJs and considering the density of electrodes
and size and properties of the endocardial rabbit RV [40], the mean number of PMJ can
be estimated in the order of hundreds to thousands.

1.3 Cardiac cell electrophysiology

Cardiac excitation involves the generation of the action potential (AP) by individual cells
and its conduction from cell-to-cell through intercellular gap junctions. The combination
of a locally regenerative process (AP generation) with the transmission of this process
through flow of electric charge is common to a broad class of reaction-diffusion pro-
cesses. AP generation is accomplished through a complex interplay between nonlinear
membrane ionic currents and the ionic milieu of the cell. The discovery by Hodgkin and
Huxley (principles of nerve excitation) [77], made it possible to relate important prop-
erties of membrane ion channels to the generation of the AP. Later, evidence for electric
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coupling of cardiac cells through low-resistance gap junctions was established [107]. This
property is crucial for the propagation of the cardiac impulse. Over the past three decades,
researchers have employed reductionist approaches to define the multitude of ion chan-
nels that contribute to transmembrane currents that generate the cardiac AP. For a sin-
gle cardiac cell under space-clamp conditions, an equation can relate the transmembrane
potential (Vm) to the total transmembrane ionic current (Iion). There have been reported
differences between AP in PK cells and the rest of myocardial cells. The AP duration
(APD) is longer in PK fibres than in ventricular cells [16, 33]. The AP morphology ob-
served in rabbit exhibit a prominent phase 1 of repolarization, a more negative plateau
and a significantly longer APD90 (APD AT 90%) compared to ventricular cells [116].
The prolongation of the APD in PK cells compared to ventricular cells also has also been
observed in canine fibres [137, 171]. The total amplitude of the AP and the maximal rate
of rise of the AP upstroke (Vmax) are much larger in PK fibres than in ventricular cells.

The heart is known to beat because an automatic electrical impulse is generated by a
set of specialized cells. The full CCS consists of different types of those specialized cells
that initiate and coordinate the contraction of the heart chambers. This system became un-
derstood within the 20th century. Knowledge of the time course and instantaneous distri-
bution of the excitatory process of the normal human heart is of great value for a better un-
derstanding of the QRS complex for certain pathologies. To obtain information concern-
ing the time course and instantaneous distribution of the excitatory process in the normal
human heart, studies have been made on isolated human hearts and animals using tech-
niques based on electro-anatomical and micro-electrode mappings [58, 107, 123, 173].
The overall activation sequence in healthy subjects is well understood in proximal sec-
tions. Distally, impulses of the CCS are transmitted first to the papillary muscles and then
through the ventricular wall. At first, inter-ventricular septum is activated, then the RV
and the anterior wall of the LV, following the lateral wall of the LV and, finally, the poste-
rior wall of the LV. Figure 1.10 shows the path followed by the activation signal from the
SAN to the ventricles (yellow arrows in the figure).

1.4 The sequence of electrical activation

Due to the complexity of the PK network, the distal section of the CCS, the sequence
of activation in the ventricles is not fully understood, and only micro-electrode map-
ping has been able to bring some light into this complex process. Using 870 intramu-
ral micro-electrodes Durrer [58] was able to determine three endocardial areas that were
synchronously excited 0 to 5 ms after the start of the left ventricular activity potential.
These areas increased rapidly in size during the next 5 to 10 ms and became confluent
in 15 to 20 ms. The order of activation of the left ventricular areas observed by Durrer
was the following: (1) high on the anterior paraseptal wall just below the attachment of
the mitral valve; (2) central on the left surface of the inter-ventricular septum; and (3)
posterior paraseptal about one third of the distance from apex to base. The last part of
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Figure 1.10: Specialized electrical conduction system of the heart. Yellow arrows indicate
the path followed by the electrical impulses from the SAN to the PK fibres.

the LV to be activated usually was the postero-basal area. Endocardial activation of the
RV was found to start near the insertion of the anterior papillary muscle 5 to 10 ms after
onset of the LV cavity potential. Septal activation starts in the middle third of the left
side of the inter-ventricular septum, somewhat anteriorly, and at the lower third at the
junction of the septum and posterior wall. The epicardial excitation pattern reflected the
movements of the intramural excitation wave. A nearly completely closed front is present
after 30 ms, except at the postero-basal area. At this time, excitation has already reached
the epicardial surface of those sites overlying the areas of earliest endocardial excitation.
Figure 1.11 depicts the activation sequence obtained for a human subject.

In the different hearts processed in [58] the latest times of activation were: 71 ms
(QRS, 0.08 s), 62 ms (QRS, 0.07 s), 65 ms (QRS, 0.07 s), 80 ms (QRS, 0.08 s), and 74 ms
(QRS, 0.08 s). Detailed studies by Myerburg et al. [107] helped to better understand the
activation sequence of the inter-ventricular septum. This area is especially relevant since
it is one of first activated ones and its activation has a large influence due to the organi-
zation of the bundle branches. They found that most of the endocardium of the RV free
wall is activated simultaneously whereas the LV muscle is activated in an apex-to-base se-
quence. Right septal activation is from apex to base, and the left septum is activated first
at the junction of the middle and lower thirds of the septum and then as a bidirectional
wave front toward the apex and the base. In particular, The RV sequence of activation of
the conducting tissue starts from the bundle branch and goes to false tendons, and then
to the sub-endocardial PK network on the free wall of the ventricle. The major ramifica-
tions of the bundle branch are a group of false tendons spreading throughout the free wall
endocardium as a network of interconnecting tract of conducting tissue (see Figure 1.12
(a)). These major tracts were activated 10-15 ms and the RBB at the base of the papillary
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Figure 1.11: Representation of activation sequence by means of isochronal maps at differ-
ent horizontal cuts of a human isolated heart obtained by Durrer using micro-electrodes.
Scale is in milliseconds. Image from [58]

muscle 8 ms after the stimulus. The white numbers on black backgrounds represent in-
tervals from stimuli to PMJ depolarization. The black numbers on white backgrounds are
stimulus-to-muscle depolarization times. The earliest PMJs and muscle activated on the
free wall are in the apex, but most of the free wall is activated a few milliseconds later.
Only the most basal portion of the free wall is activated later (30-36 ms). In the LV septum
(see Figure 1.12 (b)) the general pattern of activation of the upper two thirds of septum is
from the bundle branch, along the major divisions and sub-endocardial PK fibres, to the
junction of the middle and lower thirds of the septum, at which point muscle activation
begins and travels back toward the base through ordinary muscle.

More recently, ECGI (Electrocardiographic imaging) has been used to image normal
human cardiac activation and repolarization in vivo in seven intact hearts from healthy
adults under completely normal physiological conditions [128], as illustrated in Fig-
ure 1.13. The first breakthrough occurs in the antero-paraseptal RV region during early
QRS and is termed RV breakthrough (RVB). Its timing and location are salient features of
normal RV activation. After RVB, additional breakthrough minima appear on RV and LV
epicardium. During mid-QRS, more breakthroughs appear in the left-anterior paraseptal
region, right-inferior RV, and apical RV region.

1.5 Computational models of the cardiac conduction sys-
tem

1.5.1 Structural models

The structural models account for the anatomical properties of each tissue or part, e.g.
cardiac geometry, the tissue heterogeneity or their structure. The distal section of the CCS
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(a) (b)
Figure 1.12: Activation of (a) the right ventricular free wall and (b) the left ventricular
septum. Image from [107].

(a) (b)
Figure 1.13: Ventricular and atrial isochrones. Ventricular epicardial isochrones from sub-
jects number 1 (a) and 3 (b). Numbers in the figure indicate location of early activation sites.
Image from [128].
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Figure 1.14: Two-dimensional representation of the model with a damaged region in the
LV represented by the light gray area. Image from [1].

shows a very complicated structure, but it is still crucial to define models which resemble
as much as possible to the patterns observed in histological studies. The simplest CCS
models used to stimulate the ventricles lacked of any structure, and only aimed at repro-
ducing the electrical activation patterns described in other electrophysiology studies by
means of early activated sites. This is still the technique used by many researchers that
use phenomenological electrical models or fast endocardial conductivities to simulate an
infinite dense PK system. The first CCS models including structural information date from
the late eighties and incorporated the HB and a few branches. Aoki et al. [9] model was
composed of approximately 50000 cell units (spatial resolution of 1.5 mm.) arranged in
a cubic close-packed structure according to anatomical data. The conduction system was
composed of the bundle branches and PK fibres, consisting of a few hundred elements.
Abboud et al. [1, 20] developed a finite-element three-dimensional model of the ventricles
with a fractal conducting system. The two ventricles were modelled as prolate spheroids
with a resolution of 0.3-0.4 m, containing around half a million elements. The PK sys-
tem was modelled like a self-similar fractal tree, assuming that the shortening factor and
the bifurcation angle are the same for each generation, as depicted in Figure 1.14. The
model was used to simulate the high-resolution QRS complex of the ECG under normal
conditions and ischemia.

Pollard and Barr [122] developed an anatomically based model of the human conduc-
tion system with almost 35000 cylindrical elements, although it was not incorporated in
a ventricular model. The model was validated with activation time data. In their model,
they defined a set of 35 endocardial points from which only 4 were extracted from studies
of cardiac activation and draw a set of cables to connect them. The cables were highly
refined to form small elements suitable for cardiac electrical simulation, and all the PMJ
in the model were fully connected forming a closed network. The model did not show a
high correlation with experiments, probably due to the little coupling and the scattered
and low number of PMJ used.

Berenfeld and Jalife [19] proposed a CCS that also included 214 PMJs, based on
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Figure 1.15: A two-dimensional representation of the left and right PK network superim-
posed on the flattened left and right endocardial surfaces. Post. Indicates posterior wall;
Ant., anterior wall. Image from [19].

Figure 1.16: Normal excitation with propagation from the HB downstream past the bundle
branches and into the right and left septum, and finally into the myocardium. Numbers
indicate milliseconds. Image from [19].
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(a) (b)
Figure 1.17: The geometry of the conduction system observed from different angles. (a)
Model from Simelius [157] and (b) Model from Ten-Tusscher [173]. The PMJs are shown as
light green spheres.

the procedure of [122], to study Purkinje-muscle reentries. The model tried to mimic the
geometry of main PK strands visualized using stains [167]. Figure 1.15 shows the sites of
interaction where the PMJs are indicated in green and the sites of interaction with the HB
by arrows. Figure 1.16 shows snapshots of the excitation process following an external
stimulation of the HB obtained in [19]. Excitation spreads rapidly from the HB (red) to
the right and left bundle branches and their subdivisions. More recently, Simelius et al.
[157] delineated a PK model for human ventricle by minimizing the difference between
simulated isochrones and measurements by Durrer [58] (see Figure 1.17 (a)). Similarly,
Ten-Tusscher and Panfilov [173] built the peripheral conduction system using a similar
structure, which included 214 PMJs and followed descriptions available in the literature
to place the main bundles (see Figure 1.17 (b)). Vigmond and Clements [179] developed
a PK model by manually drawing the 2D tree structure in an unfolded rabbit ventricle
that was afterwards adapted to the corresponding 3D ventricular heart to study sawtooth
effects in the PK system. The model had a high spatial resolution and was made of cubic
Hermite elements on the endocardial layer.

1.5.2 Electrophysiological models

Once the structural domain of the heart model is defined, a mathematical model is re-
quired to simulate the electrophysiological behaviour. Figure 1.18 summarizes the main
components and different approaches for cardiac electrophysiological modelling, as pro-
posed in [96]. Some of the earlier studies were based on cellular automata [101] but these
simple approaches were soon replaced by equation-based models, which have two stages:
the cellular-level equations and the tissue-level equations. The former are mainly based on
the pioneering work of Hodgkin and Huxley that established their formalism more than
60 years ago [77]. In this formalism, the cellular action potential (AP) and the underlying
ionic currents are characterized by a system of non-linear first order ordinary differential
equations (ODEs) that models the kinetics of individual ionic channels, pumps and ex-
changers and the electrical interaction thereof [64]. Markov-type models, still under the
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Figure 1.18: Main components and different types of cardiac electrophysiological models.
Image from [96].

framework developed by Hodgkin and Huxley, have also been proposed to build more
biophysically-based models of ion channels [146]. Observations on the dynamic prop-
erties of ion channels have been possible with extensive patch-clamp experiments per-
formed during the past decades. Such information have provided unique data to formulate
comprehensive mathematical descriptions of ionic currents of different animal species,
heart portions (e.g. atria [99], ventricle [112], Purkinje cells [161]) and pathophysiologi-
cal conditions (see [64, 136] for reviews on this topic).

Ventricular tissue is heterogeneous in nature, with cardiac myocytes having differ-
ent properties (e.g. ionic currents and APs) in different regions of the heart. Electro-
physiological heterogeneities in the ventricles include epicardial-endocardial [95], apico-
basal [164] and left-right [182] differences in ion channels and thus in APs. Some the
most advanced EP models include these regional differences such as the one proposed
by O’Hara et al. [112] that assigns different behavior to endocardial, epicardial and mid
myocardial cells. Other authors [75, 168] have also included other type of regional EP het-
erogeneities in the atria (e.g. Bachmann’s bundle, crista terminalis or pectinate muscles
). Nevertheless, there are not experiments clearly demonstrating the boundaries between
these different regions.

Electrical coupling between myocardial cells is needed to ensure current flow from
one cell to its neighboring ones. Therefore, the EP models listed above require an addi-
tional tissue-level formulation where axial currents flow between cells through low re-
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sistance gap junctions. This tissue-level model must include the anisotropic behaviour of
the myocardium and the composition of the muscle tissue into intra- and extra-cellular
media (domains), which are separated by cell membranes. A mathematical homogenisa-
tion of this formulation, referred as to the biodomain model, was originally proposed by
Miller and Geselowitz [101]. This model is composed of two partial differential equations
(PDEs) that provide extra- and intra-cellular potentials. The bidomain model equations
(tissue level) are coupled to the cellular-level ones since membrane potentials depend on
ionic currents. As a result, the complete bidomain model consists of the two tissue-level
PDEs and a certain number of ODEs that are strongly non-linear. Intra- and extra-cellular
conductivity tensors, which are determined by fibre orientation in the myocardium, are
included in the two tissue-level PDEs of the bidomain model. In order to simplify this
model Roth [143] proposed a mono-domain approach where equal anisotropy ratios are
assigned for both intra- and extra-cellular domains, thus the two PDEs become uncou-
pled. In this way, one PDE is of the reaction-diffusion type and includes all the ionic
current ODEs in its independent term. Membrane potentials can be obtained by solving
this system, while extracellular potentials can be derived directly from the second ODE
once membrane potentials are known.

There is a large variety of complexity in these models considering the number of
state variables in the ionic models, which is related to the number of ODEs needed in
the formulation. These systems of equations with PDEs and several ODEs represent a
challenging mathematical and numerical problem that cannot be solved analytically, thus
advanced numerical techniques (e.g. Finite-Element Methods, FEM) that are quite ex-
pensive computationally are needed. For this reason it is often desirable to make use
of high-performance computing (HPC) facilities to run these models. An alternative, at
the expense of losing realism in the mathematical description of the modelled phenom-
ena, is to develop simplified and less mechanistic approaches that replicate observations
such as phenomenological models, which in the case of EP models reduce the number of
state-variables substituting the actual ionic current descriptions by simple mathematical
equations. Fitzhugh [65] proposed the first of these phenomenological models, which was
successfully adapted later to cardiac electrophysiology [4, 103]. These models cannot ac-
curately represent complex dynamical patterns of excitation and repolarization since their
state variables are not easily related to biophysical correlates in the form of ionic cur-
rents. Minimal models[32, 63] were proposed as an evolution of phenomenological ones
to partially overcome these limitations by associating each term to actual but simplified
ionic currents. The electrical wave propagation can also be simplified with the use of
Eikonal models, where the reaction-diffusion equation is replaced by a simpler Eikonal
equation [68, 86]. Some authors such as Relan et al. [131] developed a new strategy com-
bining minimal and Eikonal approaches. These hybrid frameworks combining models of
different complexity (e.g. mechanistic and phenomenological models) can be very con-
venient to assimilate available EP data for the most relevant parameters at relatively low
computational demands (with phenomenological models) to initialize more realistic bio-
physical models [34].
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1.6 Conclusions
Despite the significant advances in cardiac electrophysiological modelling in the past
decades the cardiac conduction system is still often neglected or over-simplified with
non-realistic structural models, although its relevance in the (patho-)physiological mech-
anisms of the heart is well-known. The main reason for this CCS ostracism is arguably the
difficulties to obtain good quality data to personalize and validate the models, from the
macroscopic (e.g. main bundle branches) to the microscopic (e.g. distal part of the CCS)
levels and both structurally and functionally. In consequence, the main goal of this PhD is
to develop computational models of heart electrophysiology including the CCS and study
its role in a normal sequence of activation, when it is affected by electrical abnormalities
and how it is related to existing cardiac therapies. Multi-resolution imaging experiments
obtaining structural information at different parts of the cardiac conduction system are
performed in order to improve the realism of the proposed EP models.

Research advances on the modelling of the CCS performed during this PhD is thor-
oughly in the following chapters, all of them adapted from articles published and sub-
mitted to high-impact journals. The structure of the manuscript is organized as follows.
Chapter 2 presents a computational finite-element model to study the relevance of the
CCS, in particular the PK system, for the optimization of Cardiac Resynchronization
Therapy, including dilated and hypertrophic hearts. Therefore, Chapter 3 describes the
methodology to automatically generate the CCS anatomy for a patient-specific realistic
geometry of the left ventricle. Chapter 4 is devoted to an improved version of the CCS
anatomical model which is personalized with macroscopic data acquired on experimental
models. Furthermore, a detailed morphological analysis of the acquired data is comple-
mented with electrophysiological simulations using the improved CCS model, illustrating
the need for incorporating the CCS in EP models to generate realistic sequences of activa-
tion. Chapter 5 presents an analysis of the cardiac conduction system at the microscopic
scale, characterizing the morphological architecture of the distal section of the Purkinje
network on confocal microscopy imaging data acquired from rabbit hearts. Finally some
general conclusions are given in Chapter 6.
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Effects of the Purkinje system and

cardiac geometry on biventricular

pacing

Abstract - This chapter studies in a computational finite element model the importance of
the cardiac conduction system, and in particular the Purkinje system, for the optimization
of cardiac resynchronization therapy. While cardiac resynchronization therapy (CRT) is
a recognized treatment for restoring synchronous activation, it is not clear how changes
in cardiac shape and size affect the electrical pacing therapy. This study used a human
heart computer model which incorporated anatomical structures such as myofiber orien-
tation and a Purkinje (PK) system to study how pacing affected failing hearts. The PK
system was modeled as a tree structure that reproduced its retrograde activation feature.
In addition to a normal geometry, two cardiomyopathies were modeled: dilatation and
hypertrophy. A biventricular pacing protocol was tested in the context of atrio-ventricular
block. The contribution of the PK system was examined by removing it, as well as by
increasing endocardial conductivity. Results showed that retrograde conduction into the
PK system was a determining factor for achieving intra-ventricular synchrony. Omission
of the PK system led to an overestimate of the degree of electrical dyssynchrony while
assessing CRT. The activation patterns for the three geometries showed local changes in
the order of activation of the lateral wall in response to the same pacing strategy. These
factors should be carefully considered when determining lead placement and optimizing
device parameters in clinical practice.

Adapted from: Romero D., Sebastian, R., Bijnens, B., Zimmerman, V., Boyle, PM., Vigmond, EJ., Frangi, AF. Effects
of the Purkinje system and cardiac geometry on biventricular pacing: a model study. Annals of Biomedical Engineering,
39(4):1388-1398, 2010.
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2.1 Introduction

Cardiac resynchronization therapy (CRT) is a pacemaker treatment for heart failure pa-
tients (New York Heart Association class III and IV). It improves systolic function in
ventricular dyssynchrony [69], leading to amelioration of functional capacity, inverse re-
modeling, and reduction of morbidity and mortality [2, 41, 69]. Despite these benefits,
clinical trials have demonstrated that around one third of patients do not respond favor-
ably to CRT using standard clinical selection criteria. Sub-optimal resynchronization re-
sulting from current pacing protocols has been proposed as a potential cause underlying
treatment failure [2, 46].

As the use of whole heart computational models for electrophysiological simulations
becomes more feasible [125, 177], they are starting to be considered as a practical way to
explore certain hypotheses that are difficult to study in vivo. Various computational stud-
ies have undertaken the task of unveiling pathological substrates and assessing treatment
methodologies. Current available cardiac models, ranging from single cell [62, 111, 172]
to tissue level [76, 124] and organ level [110, 180], are sufficiently accurate to model
complex processes, including ion kinetics in healthy and pathological conditions. In many
cases, cardiac modeling can be used to investigate phenomena such as drug effects on the
electromechanical response and arrhythmogenesis [76, 138].

Although cardiac geometry can be extracted from existing image modalities, many
other important features to the modeling process (i.e. myofiber orientation, tissue con-
ductivity) cannot be non-invasively obtained; thus, population based data is used instead.
Such is the case for the Purkinje fibers, the fast conducting cardiac tissue responsible for
synchronous activation of the ventricles during the cardiac cycle. Despite its relevance,
its structure and effects are commonly not considered in cardiac simulations [134]. Previ-
ous studies have attempted to model the Purkinje system following anatomical landmarks
based on maps of the activation sequence. These maps helped determine roughly the Purk-
inje myocardial junctions (PMJ) which are contact points for electric impulse transmis-
sion between the PS and bulk myocardium [173]. In some electrical modeling studies
researchers have estimated a time delay function for stimulating a number of nodes on
the endocardium to reproduce the depolarizing pattern of the PK system [67, 180]. Others
have used high subendocardial conduction velocities to represent the PK system influ-
ence [88]. These approaches to incorporating PK system functionality through bypassing
its specific modeling is problematic because it disables an intrinsic property of the PK
system: retrograde conduction. Bidirectional electric flow along the PK system might not
be necessary for normal sinus activation of a healthy heart, but its contribution is impor-
tant during analysis of CRT, where the electrodes are positioned close to the distal portion
of the PK system.

Another factor to bear in mind during evaluation of CRT candidates with heart mod-
eling is the geometry of the ventricles. Heart failure patients can suffer from pathological
conditions that lead to ventricular remodeling. Such are the cases of dilated cardiomyopa-
thy (DCM), characterized by an increase in ventricular diameter [39], and hypertrophic
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cardiomyopathy (HCM), a thickening of the ventricular wall [135].
Previous model studies on paced hearts include work focused on the electromechani-

cal effects of pacing each ventricle [87], or optimizing CRT pacemaker settings based on
electrical information [134]. The study presented in this paper aims to elucidate changes
in the activation pattern due to the interaction of CRT pacing and PK system in normal
and pathological human geometries. For this purpose a specific CRT model was built
which included a novel and more accurate modeling of the cardiac conduction system
than previous approaches. The main advantage of this approach is the possibility to sim-
ulate the retrograde activation of the PK system resulting from the pacing. Understanding
the activation sequence for a particular patient, given the geometrical characteristics and
knowing the effect of the underlying structures, could facilitate selection of appropriate
treatments and tailor the CRT devices to optimize therapeutic outcome on an individual
basis.

The influence of ventricular geometry and PK system interaction on the paced heart
was studied using three models: i) a normal patient biventricular (BV) mesh, to which
geometrical changes were introduced to emulate ii) DCM and iii) HCM. The geometrical
models were used to simulate electrical activation under normal sinus rhythm and paced
conditions in the context of a third degree atrioventricular (AV) block. Complete blockage
of AV conduction leaves the task of ventricular activation to the pacemaker alone.

Electrical propagation in cardiac tissue was modeled using the monodomain formu-
lation. For the PK system an embedded structure was built which allowed to model both
Purkinje-Purkinje and Purkinje-myocardium properties independently. For BV pacing,
the pacemaker leads were model as current injection points at certain sites of the geome-
tries. A pacing protocol was defined using different sequential pacing strategies (inter-
ventricular delays), to understand how histological structure and geometry affects cardiac
activation for different pacemaker configurations. For each geometry, each pacing proto-
col was performed with and without the PK system. Furthermore, models with increased
conductivity at the endocardium were used to represent a dense PK system as in [88].

Section 2.2 details the construction of the normal BV mesh and the process for ap-
plying transformations to arrive at pathologic geometries representing DCM and HCM.
Section 2.3 outlines the mathematical models used to simulate cardiac activity and de-
scribes pacing protocols. Section 2.4 presents the simulation results with a discussion
of the most prominent findings and describes the limitations of the modeling approach.
Section 2.5 presents the conclusions from this study.

2.2 Anatomical model construction

2.2.1 Healthy anatomy

A human anatomical model of the right and left ventricles with landmarked endocardial
and epicardial surfaces was used in this study. The BV surface mesh was obtained from
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Figure 2.1: Ventricular models. Basal and anterior views of the biventricular surface mod-
els: (a) original healthy subject, (b) dilated (DCM), and (c) hypertrophic (HCM) cardiomy-
opathies. Solid lines represent the RV (blue) and LV (red) branches of the PK system.

the segmentation at the end diastolic phase of a cardiac multislice computed tomography
(MSCT) scan of a 53 year old male. A normal anatomy was determined as the subject
underwent a diagnostic CT scan. For the patient-specific segmentation, a heart statistical
atlas trained and built with 100 MSCT patient scans was used [115]. An active shape
model replaced manual delineations by a model based method, and enhanced the transfer
of a number of functional substructures incorporated in the atlas (i.e. the PK system) and
anatomical labels [66]. The models used for the simulations were all BV since general
CRT procedures require implanting a pacemaker lead in each ventricle.

2.2.2 Generation of pathological anatomies

The original surface mesh (see Figure 2.1(a)) was mathematically transformed into two
new meshes to represent DCM and HCM. In clinical practice, DCM is diagnosed when the
ventricular diameter exceeds 117% of the expected normal, age-adjusted value and HCM
is diagnosed when wall thickness exceeds 125% of the expected maximal thickness [35].
Based on these criteria and comparing to typical patients, the HCM mesh was constructed
by scaling the LV endocardium to achieve a 50% increase in wall thickness measured
radially (see Figure 2.1(c)). For the DCM mesh, the LV endocardial surface was radially
displaced to obtain a 50% increase in diameter. Subsequently, the epicardial surface was
further dilated to achieve a 30% thinning of the average wall thickness. The latter step
was done to assure the property of conservation of mass in the myocardium of dilated
(non volume overloaded) hearts (see Figure 2.1(b)).
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2.2.3 Volumetric meshing

The three surface meshes were used to create high-resolution volumetric tetrahedral meshes
needed for numerical simulations. Volumetric mesh quality was ensured by controlling
both the maximum distance between neighboring nodes and the radius-to-edge ratio to as-
sure regularly-shaped elements. The average inter-node distance was smaller than 500 µm,
with between 2.5 and 3.5 million nodes and between 15 and 21 million linear elements.
The conduction velocity at this mesh resolution was tested on a slab of tissue with con-
ductivity values recommended by Clerc [48]. From this we obtained a maximum velocity
of 0.67m/s which is in the range of reported values [108].

2.2.4 Myocardial fiber orientation

The fiber orientation was calculated for every element of the mesh, using a mathematical
formulation based on the work of Streeter [162] validated by Jouk et al. [83]. The Heli-
cal fiber structure in the Healthy model was computed with fibers rotating from +50◦ at
the endocardium to −60◦ at the epicardium. This helical pattern was also used to calcu-
late the fiber orientation for elements in the DCM and HCM meshes. MacGowan et al.
demonstrated that anatomic fiber angles were not different between normal subjects and
idiopathic DCM patients [98].

2.2.5 Purkinje system

The PK system was manually delineated as an independent structure in the atlas, and
fitted to the healthy subject surface mesh during segmentation. Terminals were positioned
to reproduce the activation sequence reported experimentally by Durrer [58] and more
recently by Ramanathan et al. [128]. Paths between terminals were built using splines
to form a branching network. The resulting PK system model consisted of the bundle
branches and 100 segments distributed over the endocardial surface mesh, with no loops
in the network. In Figure 2.1, the RV (blue) and LV (red) PK system are superimposed on
the ventricles.

The PK system for the pathological meshes was obtained using the previously-described
transformation algorithms. It was assumed that in the pathologies modeled, the number of
branches in the PK system was unaffected and no terminals were generated or destroyed.
This is reasonable, considering that in HCM and DCM myocytes and Purkinje cells do
not undergo hyperplasia during ventricular remodeling [35].

2.3 Mathematical modeling of electrophysiology

Modeling cardiac electrophysiology involves two main steps: first, calculating the un-
derlying variations in ionic concentrations across the cellular membrane at each node;
second, determining the dynamics of electrical activity at the tissue level.
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The electrophysiological cell models used in this study were the Ten Tusscher-Panfilov
model [172] for the bulk myocardial cells and the DiFrancesco-Noble model [54] for the
PK system. The maximum sodium conductance was increased by a factor of 3 in the
DiFrancesco-Noble model to augment the conduction velocity.

For the propagation of the electrical impulse in the cardiac tissue, the monodomain
formulation was used [121]. Compared to the bidomain formulation, the monodomain ig-
nores the extracellular field contribution, but it has been demonstrated that for simulations
such as those undertaken in this study the difference in results can be neglected [125].
Thus, choosing the monodomain over the bidomain is a matter of computational effi-
ciency since it only requires solving a parabolic equation as opposed to the parabolic plus
an elliptic equation. The semi-implicit Crank-Nicholson method was used to update trans-
membrane potential as in [181, 184], solving a linear system and preserving stability for
large time steps.

The modeling of the PK system was performed as described in [179]. The network
was constructed from 1D cubic Hermite elements to ensure continuity of current at junc-
tions and bifurcations. Fibers were described as 1D cables that branched at certain po-
sitions forming a network structure. The PK system was isolated electrically from the
myocardium, with the two tissues connected at PMJs, which were modeled as fixed resis-
tances. Each PMJ was coupled to a group of myocardial nodes within a specified radius.
For further information see [30, 179]. Table 2.2 gives the specific parameters used in the
cable model, where ΩPMJ is the PMJ resistance and ΩPPJ is the resistance between PK
system segments, σ is the intracellular conductivity, and IHis is the current injected into
the His bundle to trigger the Purkinje activation.

Table 2.1: Constant values used for the Purkinje cable model

Parameter Value
ΩPMJ 27 MΩ

ΩPPJ 100 kΩ

σ 0.024 S/m
IHis 220 µA/cm3

All the numerical calculations were performed using the Cardiac Arrhythmia Re-
search Package (CARP) [120, 181]. The simulations were run for 230 ms of the cardiac
cycle since only the onset of depolarization was of interest.

2.3.1 Application to study electrical activation in CRT

To assess the influence of cardiac geometry and the PK system, a set of standard sequential
pacing protocols were conducted on the three cardiac models. Seven pacing scenarios de-
termined by different time delays between the RV and LV pacing leads (inter-ventricular
delay, or VVD) were tested. The time delays ranged from 30 ms RV lead pre-activation
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(VVD −30) to 30 ms LV lead pre-activation (VVD 30) with intervals of 10 ms between
pacing strategies. A third degree AV block was assumed for all the pacing scenarios. Pac-
ing leads were positioned on the apical endocardium (RV lead) and on the lateral free
wall epicardium (LV lead) as commonly done in CRT. A physiological activation (start-
ing from the His bundle) was also simulated for each geometry for control purposes. We
follow clinical guidelines regarding the positioning of the LV and RV lead. Therefore,
we do not consider positioning the leads in other areas such as the the His bundle that
could be considered a better position in order to produce physiological activations. The
reason is that the insulation that surrounds the Purkinje network plus the lack of Purkinje
terminals in that area would prevent the electrical impulse to get inside the system [107]
and the re-synchronization will not succeed. The pacemaker lead stimulus was modeled
as a 1 mm3 cube where transmembrane current of 0.05 µA/cm3 was injected for 1 ms.

To further study the contribution of the PK system to the activation sequence, all pac-
ing simulations were repeated in absence of the PK system. Two types of models were
used: i) models with physiological conductivity values in all myocardial tissue, and ii)
models with increased conductivity values on the endocardium (10% of the wall thick-
ness on the whole ventricles). The increments in the conductivities at endocardium were
adjusted to reach a conduction velocity of 2 m/s. With this velocity the LV endocardial
depolarization takes place in approximately 60 ms, which is in the range of normal values.

2.3.2 Data analysis

Isochrone maps of local activation times (LATs) in the 3D models were used to study
activation patterns during each simulation (Figures 2.2 and 2.3). LAT was calculated as
the time with respect to a reference (i.e. initial lead stimulus) at which the potential of a
cell reached a threshold (depolarized). Isochrone maps depict the spatial distribution of
LATs in 10 ms intervals.

Patterns observed for each pacing scenario and cardiac anatomy were analyzed with
cumulative frequency histograms of the amount of activated LV myocardium. Each his-
togram shows the percentage of LV myocardial tissue activated in time intervals over the
depolarization sequence.

In each case, the LV was further analyzed by calculating the mean activation time for
each region of the American Heart Association standard 17 segment division. Apart from
the overall activation pattern that the histograms convey, it is important to consider the
spatial order of activation and study whether the LV segments are properly synchronized.
These data are important to search for the scenario that shows a better synchrony between
the different walls from the point of view of the electrical activation.

2.4 Results and discussion
In the physiological simulations, the activation sequence was triggered from the AV node,
which activates the His bundle. The right and left bundle branches propagate the activation
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Figure 2.2: Local activation times in DCM with PK system for different pacing strategies.
Anterior view of the LV’s posterior wall showing the 3D isochronal maps of the local activa-
tion times for three pacing scenarios, (a) VVD −30 ms, (b) VVD 0 ms, (c) VVD 30 ms and
their corresponding basal views (d)-(f).

Figure 2.3: Local activation times in HCM with PK system for different pacing strategies.
Anterior view of the LV’s posterior wall showing the 3D isochronal maps of the local activa-
tion times for three pacing scenarios, (a) VVD −30 ms, (b) VVD 0 ms, (c) VVD 30 ms and
their corresponding basal views (d)-(f).
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to the PK system. Since Purkinje fibers are isolated from the myocardium, they only stim-
ulate the tissue through PMJs. The PK system initiates as many activation wavefronts on
the endocardial surface as there are PMJs on the network, giving rise to a rapid sequence
of activation that propagates from apex to base and from endocardium to epicardium, in
accordance with previously reported values [58, 106]. The time for all ventricular tissue
to depolarize (total activation time; TAT) was computed using the first endocardial break-
through as a starting point. The values were 90 ms for the healthy heart, 105 ms for HCM,
and 119 ms for DCM.

In the case of stimulations triggered by a pacemaker the activation sequence presented
significant differences as compared to sinus activations. Figures 2.2 and 2.3 show the
LATs in a cut plane displaying the LV’s posterior wall for the DCM and HCM models
in three different pacing scenarios, (a) VVD −30 ms, (b) VVD 0 ms, (c) VVD 30 ms
and their corresponding basal views (d)-(f). During ventricular pacing in models with PK
system, the propagation of excitation is slower and less uniform than during His stimula-
tion. The stimulus given by the LV lead of the pacemaker gives rise to a wavefront that
propagates through the myocardial tissue near the pacing site. After crossing the LV lat-
eral wall, the wavefront retrogradely activates the closest PMJ on the endocardial surface.
Once in the PK system, the depolarization spreads rapidly, entering the bulk myocardium
through other PMJs and rapidly activating remote areas. For the RV lead, which is placed
on the thin-walled right endocardial apex near the PK system, the onset of retrograde ac-
tivation occurs quickly after the initial stimulus generating a wavefront that travels across
the septum at different heights. It contributes to the septal activation, and it also heavily
influences the LV’s anterior and posterior wall in pacing strategies with VVD −30 ms
and VVD 0 ms. Moreover, due to the proximity of the RV lead to the septal wall, the
wavefront crosses the septum and contributes to the activation of the LV apex (see Fig-
ures 2.2 and 2.3) and initiates retrograde activation of the PMJs on the LV endocardium.
For the models with PK system considered, this last effect was only observed for VVD
−30 ms. In the other cases the LV PMJ closest to the RV lead generated breakthrough had
already been activated by the LV lead. However, RV pacing in models with increased en-
docardial conductivity always caused retrograde activation of the LV apical endocardium
as seen clinically [89]. Consequently, the activation sequence highly depends on the wall
thickness and PK system distribution on the endocardial surface. Due to our assumption
for the PK system, for which we fitted a unique structure onto the three geometries, the
number of PMJs per endocardial unit area varied between geometries. The HCM, with its
smaller endocardial surface, had the highest PMJ density, while the DCM had the low-
est. Figures 2.2 and 2.3 show the wavefront on the lateral wall crossing from epicardium
to endocardium faster in the DCM than in the HCM model; however, once on the endo-
cardium, both impulses have to propagate towards a PMJ and, given the density of these,
the HCM’s wavefront has a higher chance of finding one.

Figure 2.4 shows histograms of the percentage of activated LV tissue for three pacing
scenarios. Simulations with VVD −30 ms ((a),(d) and (g)) show a period of inactivity
on the LV myocardium while the wavefront from the RV lead reaches the septal wall.
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Figure 2.4: Cumulative frequency histograms of the normalized percentage of activated
tissue. The lines correspond to: healthy (solid); DCM (dashed); and HCM (dotted) models.
The first row corresponds to simulations with PK system while the second and third rows
correspond to simulations without the PK system and with normal and increased endocardial
conductivities, respectively.

On the remaining plots, activation always starts at 0 ms, although this initial excitation is
almost imperceptible on the plots because of the very slow rate of initial rise. As activa-
tion spreads, the associated curves start to drift apart. For simulations with an underlying
PK system, Figure 2.4 (a)-(c), a high slope represents the contribution of retrograde PK
system activation. Thus, the wall thickness and the distance to the closest PMJ determine
the instant and rate of the major increase in slope on each curve. The LV PK system is
reached first in the healthy model (solid line), whereas in HCM (dotted) due to the thicker
wall and in DCM (dashed line,) due to the lower density of PMJs, there is a higher delay.
Simultaneous activation (VVD 0 ms) produced the most uniform results.

Simulations using myocardial models with normal conductivity values but lacking
the PK system take longer to activate (see Figures 2.4 (d)-(f)). The main reason is that
the wavefront has to reach remote areas traveling only through bulk myocardium. In Fig-
ure 2.4(f), the slowest in completing the activation of the LV was the DCM geometry (230
ms) the one with the largest circumferential distance to cover, while the Healthy and HCM
geometries had finished by about 200 ms. The shapes of the Healthy and HCM curves do
not differ significantly.
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Figure 2.5: Bullseye plots of the AHA 17 segment division, showing LV activation times for
simultaneous pacing (VVD 0 ms). The first row corresponds to simulations with PK system
while the second and third rows correspond to simulations without the PK system and with
normal and increased endocardial conductivities, respectively.
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Another example of the dependence of the activation sequence with the PK system
distribution is illustrated in Figure 2.4(c) (VVD 30 ms). In this figure the curve repre-
senting the HCM model (blue; dotted) achieves its maximum slope later than the other
geometries. This can be attributed to the fact that retrograde excitation in the HCM occurs
later than in the healthy or DCM hearts. While the excitation wavefront is still propagat-
ing through the thick ventricular wall in the HCM model, it has already reached a PMJ on
the endocardial side in the other two cases. Notably, the trajectory of this curve is nearly
indistinguishable from the activation histogram for the HCM heart with no PK system
(Figure 2.4(f)).

In Figures 2.4(g)-(i) the curves correspond to models without PK system but with
increased endocardial conductivity. This implies the assumption that every node on this
layer behaves as a PMJ, explaining the very steep slopes of the curves. Moreover, it also
implies that the retrograde activation for these models was only dependent on wall thick-
ness. As a consequence, the DCM model, which has the thinnest ventricular wall, was
always the fastest to depolarize (shortest TAT), followed by the Healthy and HCM mod-
els. Another aspect to note on these simulations is that the depolarization caused by the
RV lead reached the LV apex at the endocardium and initiated rapid activation wave-
fronts that contributed greatly to LV depolarization. This effect is highlighted in the DCM
curves, which tend to move closer to the Healthy curve as the pacing shifts from RV pre-
activation to LV pre-activation (see the distance between the dashed and the solid line,
which diminishes from Figures 2.4 (g) to (i)). Nevertheless, this modeling approach is
fundamentally inaccurate, since PMJs are not homogeneously distributed with extremely
high density on the endocardium [58, 88]. Therefore the time required to retrogradely
activate the PK system is neglected.

The bullseye plots (see Figure 2.5) correspond to VVD 0 ms with the possible com-
binations: the three geometries with PK system, no PK system with normal conductivity
values, and no PK system with increased endocardial conductivities. Results from models
with PK system when compared to results from models with an absence of the PK system
and normal conductivity values indicate that corresponding geometries have very similar
mean activation values for the lateral wall (pairs (a)-(d), (b)-(e), (c)-(f)). This highlights
the role of the LV lead alone on this task. In contrast with lateral wall, the septal activation
on these plots indicates a significant delay between corresponding models.

Intra-ventricular dyssynchrony is referred to as a marked delay of the onset of con-
traction between the septal and LV lateral wall. One potential treatment is a CRT device
with the LV lead positioned at the site of longest delay. Therefore, the electrical activation
as displayed on the bullseye plot conveys information that can be associated to intra-
ventricular dyssynchrony. The analysis of activation sequences across geometries with
PK system (Figures 2.5 (a), (b) and (c)), shows the propagation wavefront on the septal
wall always following an apex to base pattern. However, this pattern is lost for the lateral
wall activation due to the action of the LV lead in the mid postero-lateral wall. Moreover,
in this region, the order of activation depends on the geometry. Within models lacking the
PK system but with normal conductivity values (Figures 2.5 (d), (e), (f)) the apex to base
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activation pattern of the septal wall is preserved, although with a significant prolongation
in activation compared to with-PK system counterparts. This same pattern is observed in
models with increased conductivity values (Figures 2.5 (g)-(i)) which have the earliest
onset and fastest depolarization of the LV’s septal and lateral wall.

Our simulations show that the mean activation times of the septum and the lateral
wall are more synchronous and physiological in models with PK system (see Figure 2.5)
as compared to models without PK system, which highlights the role of the PK system
in maintaining synchronicity between the walls of the ventricles by minimizing their ac-
tivation delay. The models with normal conductivity values and no PK system showed a
prolonged activation on their histograms and an activation widely spread in time when
compared to simulations with PK system. TAT is associated to the QRS interval, an index
that is used to assess the CRT optimization [84]. Thus activated tissue histograms can be
interpreted as a global index of intra-ventricular synchronicity. Simulations with lower
intra-ventricular delays, as displayed on bullseye plots, showed a higher maximum slope
and a reduction of TAT.

2.4.1 Limitations of this study

The use of computer models to study and predict the response to specific therapies is
still in an early stage. The uncertainty of basic physiological constants, coupled with the
spatial heterogeneity, is a clear source of concern.

The ionic models used come from two different species. Since only the onset of de-
polarization was of interest, propagation velocity was of primary importance. To this end,
sodium conductance in the PK system was adjusted, and junctional parameters were tuned
to properly model propagation across the PMJs. Differences in action potential duration
between the two ionic models did not affect the results. For future studies involving repo-
larization, a more realistic human ionic model of Purkinje fibers should be implemented.

Even though we were able to show the importance of the PK system in the electrical
activation and its effect in CRT, the PK system model needs to be improved. The density
of terminals in the system is lower than it has been reported in histological studies [100],
and therefore delays in the initial activation could be observed. The time to reach the PK
system from a lead can be affected by the density of terminals. A specific study to find
out a more accurate density and ramification model of the PK system remains to be done.

Invasive techniques, such as electrical mapping are among the few in-vivo studies that
can be used to validate the functioning of the heart electrical system. Although the data is
sparse and difficult to interpret, a validation based on these recording remains to be done.
This is a very challenging step that requires specific techniques in order to bring together
electrical and geometrical properties of the heart.
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2.5 Conclusions
We have presented a cardiac electrical simulation study to assess the importance of anatom-
ical and histological substructures on the paced heart. The computer model includes im-
portant substructures, such as the PK system and myocardial fiber orientation based on a
mathematical formulation. The branching Purkinje structure was approached by manual
delineation following anatomical landmarks and its electrical behavior was modeled as a
1D cable network [179]. The model is able to simulate the electrical activation produced
by a BV pacemaker and reproduces the effect of retrograde activation at PMJs.

The results showed that the use of a detailed and sophisticated PK system is vital
to account in simulations with CRT. Its retrograde conduction property is important to
determine the synchronous activation between the LV walls. The usage of models without
a PK system can over estimate the degree of intra-ventricular dyssynchrony.

Although while pacing from the epicardium it is not possible to reproduce a physio-
logical pattern, it can however maintain the most electrophysiological resemblance (apex
to base) depending on the pathological structure. Applying the same pacing strategy to
different models elucidates important local variations, made manifest by differences in
activation pattern. Between geometries for a given VVD, the most notable effect on the
activation pattern is seen on the lateral wall, where the apical and basal segments changed
their order of activation. This should be considered in clinical practice at the moment of
the LV lateral wall lead positioning to improve the outcome of the procedure. Further
work on simulations should test different lead positions to achieve this goal.

Table 2.2: Constant values used for the Purkinje cable model

Parameter Value
ΩPMJ 27 MΩ

ΩPPJ 100 kΩ

σ 0.024 S/m
IHis 220 µA/cm3
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Construction of an anatomical
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system

Abstract - This chapter presents a methodology for the automatic construction of a ven-
tricular model of the cardiac conduction system (CCS), which is currently a missing block
in many multi-scale cardiac electro-mechanic models. It includes the His bundle, left bun-
dle branches, and the peripheral CCS. The algorithm is fundamentally an enhancement of
a rule-based method known as the Lindenmayer systems (L-systems). The generative pro-
cedure has been divided into three consecutive independent stages, which subsequently
build the CCS from proximal to distal sections. Each stage is governed by a set of user
parameters together with anatomical and physiological constrains to direct the generation
process and adhere to the structural observations derived from histology studies. Several
parameters are defined using statistical distributions to introduce stochastic variability in
the models. The CCS built with this approach can generate electrical activation sequences
with physiological characteristics.

3.1 Introduction

The cardiac electrical conduction system is formed by a network of fibers, which rapidly
propagates the electrical impulse from the sino-atrial node to the peripheral cardiac con-
duction system (CCS) or Purkinje network [107]. Purkinje-myocardial junctions (PMJ)

Adapted from: Sebastian R., Zimmerman V., Romero D., Frangi A.F. Construction of a Computational Anatomical Model
of the Peripheral Cardiac Conduction System. IEEE Transactions on Biomedical Engineering, 58(12): 3479-82, 2011.
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scattered over the ventricular endocardial surface are the only points of connection be-
tween the CCS and the bulk myocardium, in species like humans and rabbits [107]. The
structure of the CCS determines the order and timing of activation of the ventricles. There-
fore, it is key to reproduce normal and pathological cardiac activation through multi-scale
biophysical modeling. Combining patient-specific anatomical models of the heart with
detailed computational models of cardiac electrophysiology has the potential to help in
decision making in cardiac rhythm management therapies such as cardiac resynchroniza-
tion therapy. However, the CCS is a complex structure, which can not be imaged in-vivo.
Only data available is obtained from histological studies, by specific inks that highlight
the structure (Indian Ink [8]) and markers used for confocal microscopy. Most computa-
tional models of the CCS have only accounted for the PMJ location and activation times
indirectly and based on electrical mapping studies. More recent approaches included the
structure of the His bundle (HB) and a few main large branches using a manual delin-
eation on the endocardium [173] or free-running Purkinje strands from segmentation of
high-resolution MR of ex vivo animal models[175]. Innovation on the modeling of the
CCS was only introduced in recent years by [80], where they presented a method for gen-
eration of a tree-like structured on a 3D endocardial surface based on a rule-based method
known as the Lindenmayer systems (L-systems). The lack of anatomical constrains on
this algorithm results in regular unrealistic anatomical structures.

In this paper, we present a methodology to automatically build a ventricular model of
the CCS, including His Bundle, main branches and peripheral CCS. The core algorithm is
fundamentally based on L-systems and corresponds to an evolution of our previous CCS
models [139, 188]. Our improvements over the previous approaches are better realism and
improved model flexibility by a set of user-defined parameters and rules that control the
outcome of the generative process and adhere to the available knowledge on the CCS.

3.2 Materials and methods

3.2.1 Ventricular modeling

A left ventricular model (LV) was segmented from a MSCT scan to generate the Purk-
inje networks[187]. Anatomical landmarks were added automatically to locally guide the
generation of the Purkinje tree. The LV was meshed with tetrahedra. The micro-structural
arrangement of the cardiac tissue was approximated at each tetrahedral element by calcu-
lating the fiber orientation according to Streeter measurements as in [141].

3.2.2 Purkinje network modeling

The CCS generative algorithm deploys the network from proximal to distal regions in
three consecutive stages. At each stage, specific parameters are used to build the network
and generate a characteristic portion of the Purkinje tree. The first stage is guided using
fixed landmarks in the LV model to add the His bundle and left bundle branch. The latter
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is formed by three subbranches that extend to the apex, the anterior and posterior walls,
where the insertion of the papillary are located. Several subbranches might be generated
to interconnect those branches. Figure 3.2 (a) shows the results after the first stage. Af-
ter reaching the apex and papillary muscle insertion, points all the branches are forced
to turn up to the basal region. The length of those branches is bounded by a parameter,
which is function of the LV longitudinal-axis length to avoid PMJs close to the base. The
second stage generates the core or backbone branches (PKBB) of the peripheral CCS,
which span over most of the endocardium but the basal areas. These branches will cover
the endocardium as a ’fishing-net’ [8], forming polygonal irregular shapes. The expansion
process of each strand is controlled by an L-system, which encodes geometrical rules that
will give rise to the final pattern. The third and last stage forms the terminal branches
(PKTB), which eventually connect to the bulk myocardium by PMJs at specific points.
These branches are shorter than PKBB and fill the space let by the larger polygonal struc-
tures. The procedure used to grow PKBB and PKTB is the same, based on stochastic L-
systems, but with different parameters. Two rules are defined for the growing procedure, a
L-rule and a Y-rule [188], which determine the angles between parent-child branches and
therefore the overall pattern. L-rule produces a longitudinal growth, whereas Y-rule pro-
duces a wider expansion over the endocardial surface. There are two additional types of
branching parameters, distribution of angles and distribution of lengths as depicted in Fig-
ure 3.1. In addition, over the expansion branches take into account the areas surrounding
them to avoid collisions, if possible, by gradients that keep them away from each other.
Under certain conditions each branch might intersect with one another and will form a
closed loop.The total number of desired branches in each stage needs to be established,
giving rise to different densities of branches and PMJs. They are not allowed on basal
regions or at upper section of the septum. The selection of input parameters for each stage
is the most critical part, since it will determine global and local i) patterns, ii) PMJ den-
sity, iii) inhomogeneities, iv) sequence of electrical activation and v) total activation time
(related to QRS width).

3.2.3 Electrophysiology modeling

The electrical propagation in the myocardium was modeled using the monodomain equa-
tion, and the Luo-Rudy 1991 [97] ventricular cell model of ion kinetics. Purkinje strands
were modeled as an uniform signal propagating at a constant speed of 3 m/s. PMJs were
the only connection points to the tissue and generated an intra-cellular current that trig-
gered the activation of its surrounding ventricular nodes within an area of 1 mm3. All
the electrophysiological simulations were performed with CHASTE [22]. We simulated
120 ms of cardiac activation.
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3.3 Results and discussion

The presented methodology was used to build CCS models with different terminal den-
sity and structure. Input parameters show a great dependence among them and therefore
a top-down procedure, from HB to PKBB and PKTB helped to understand the result-
ing trees. Under visual inspection the backbone of the model shows a branching pattern
similar to anatomical studies [8, 107]. First of all, the PKBB define the initial expansion
and overall polygonal structure. The ratio between branch lengths PKBB/PKTB is im-
portant since PKTB end up growing in the spaces left by the PKBB. The distribution of
new PKTB branches (buds) that come out from the PKBB can be considered to follow a
Poisson distribution along the branches. Therefore, PMJs are expected to be distributed
over the entire endocardium if generated with enough density. Locally, PKTB length will
determine the distance between PMJs and hence how clustered they are. By restricting
the minimum distance between PMJs, the local density can be controlled to go from a
clustered model to a homogeneously distributed one. The algorithm is competitive and
colonizes the different regions by growing new branches and considering the proximity
of surrounding branches (calculated as a gradient) over its expansion. When intersection
between branches cannot be avoided for a given set of rules, the algorithm either stops
growing a branch or merges it generating a loop. A combination of rules and parameters
allowed to control how straight or curly are the branches being laid on the endocardium.

Figure 3.1: Parameters for the CCS generative process. Distributions of branch angles and
lengths used during the network growing. Each branch is divided into small segments to allow
curved branches. Angles between branches (α), between consecutive segments (γ), between
first-last segment (β ), and for new branches grown from inserted buds (ω) are defined. The
branch length (λ ) and segment length (µ) must be also defined. A parameter κ can be used to
locally control the maximum density of terminals in an area.
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Figure 3.2: Purkinje network model. Purkinje model automatically generated on a human
LV endocardial geometry. (a)-(c) show the basal view of the Purkinje network overlayed as
a set of branching structures at stages I to III of the expansion algorithm, respectively. Thick
blue branches represent the PKBB and thin yellow branches are the PKTB that grow from
backbone. PMJs are represented by small spheres for which color indicates the order of acti-
vation. (d)-(g) show four different Purkinje network configurations taken from the lateral wall.
Differences in branching curvature, density, length, number or homogeneity of PMJs can be
observed.

This is mainly controlled by the rule (Y-rule, broad expansion and L-rule, longitudinal
expansion) and three normal distributions that define branch angles for a given scale,
between consecutive scales (backbone and terminal) and within a branch, i.e. between
consecutive subsegments of a branch (see Figure 3.1). In addition, the total curvature of
a branch is bounded to avoid non-physiological patterns, such as fully-circular or spiral
shapes. PMJ density is globally controlled by the number of PKTB, which is of great
importance since it has a direct effect in the total activation time (TAT). Therefore, the
number and density of PKBB will affect the overall order of activation and PKTB num-
ber and PMJ density the local timing and speed. Table 4.2 summarizes the values used for
the most important used-defined input parameters.

Since there is no histological information to set the algorithm parameters, we study
their effect on the pattern by using the model. The main effect of each parameters is
summarized in Table 4.2 and observed in Figure 3.2 (d)-(g). The most common problem
was observed when PKBB did not reach distal regions, preventing the deployment of
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Table 3.1: Effect of parameters in Purkinje model

Parameter Description PKBB/PKTB Affect
Rule Growing rule Y / L

α Branch angle 60±0.1◦ (1,4)
γ Segment angle 5◦ (2,4)
λ Branch length 6.0/2.0±0.3 mm (1,2)
ω Bud angle 6.0/2.0±0.3 mm (1,2)

λ/µ Segment number 20 (2,4)
Brmax # branches 200/300 (2,3)
Bdmax # Buds 30/150 (2,3)

BB: backbone branches; TB: terminal branches
1: curvature; 2: density; 3: overall morphology; 4: loop density.

PMJs, or when the number of backbone buds was small decreasing the density of terminal
branches. In both cases, highly inhomogeneous trees were obtained. Low resolution trees,
i.e trees built with few number of elements per branch produced straight branches mainly
forming loops.

One of the models was used to simulate and study the electrical activation sequence
(see Figure 3.2 (a) and (b)). The resulting model had 9K segments for the backbone, 16K
segments for the terminal section, and a total of 853 PMJs. The activation sequence was
simulated as a sinus activation and resembled remarkably to studies in human LV [58].
TAT of the endocardium alone was of 40ms, while the TAT for whole LV, from the initial
breakthrough to the latest activated node of the LV was 70 ms. Both values are within
physiological range for normality (see Figure 3.3).

3.4 Conclusions
A method to automatically build a realistic CCS has been presented. Networks are grown
by using a set of user-defined parameters and mandatory hard-coded rules that control
the main characteristics of the structure and ensure a more realistic result. We show that
CCS structures built with this approach generate electrical activation sequences within
physiological range without further user interaction than selection of the input parameters.
Given the importance of the CCS network to simulate realistic cardiac activation sequence
and the impossibility of obtaining the patient-specific CCS structure, an stochastic CCS
model might help to achieve more accurate simulation results.
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Figure 3.3: Local activation times. An electrical activation sequence obtained for a model
that included the embedded Purkinje network shown in Figure 3.2 (a). Left side corresponds
to the septal wall that is first activated in its lower third. Right side corresponds to the lateral
wall. Latest activated areas belong to the postero-lateral wall in the basal area. Isochrones of
local activation times (LATs) are binned in blocks of 5 ms. LATs are given in milliseconds.
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Characterization and modeling of

the cardiac conduction system

Abstract - This chapter presents a methodology to extract morphological macroscopic
information about the cardiac conduction system and an extended algorithm to use that
information to build computational models for cardiac simulation of electrophysiology.
The development of biophysical models of the heart has the potential to get insights in
the patho-physiology of the heart, which requires to accurately modeling anatomy and
function. The electrical activation sequence of the ventricles depends strongly on the car-
diac conduction system (CCS). Its morphology and function cannot be observed in vivo,
and therefore data available come from histological studies. A review on data available of
the peripheral CCS including new experiments is presented. In order to build a realistic
model of the CCS a procedure to extract morphological characteristics of the CCS from
stained calf tissue samples has been developed. A CCS model personalized with our mea-
surements has been built using L-systems. The effect of key unknown parameters of the
model in the electrical activation of the left ventricle has been analyzed. The CCS mod-
els generated share the main characteristics of observed stained Purkinje networks. The
timing of the simulated electrical activation sequences were in the physiological range for
CCS models that included enough density of PMJs. These results show that this approach
is a potential methodology for collecting knowledge-domain data and build improved
CCS models of the heart automatically.

Adapted from: Sebastian R., Zimmerman V., Romero D., Sanchez-Quintana D., Frangi A.F. Characterization and Modeling
of the Peripheral Cardiac Conduction System. IEEE Transactions on Medical Imaging, 32(1):45–55, 2013.
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4.1 Introduction

The cardiac conduction system (CCS) is a heterogeneous network of cells responsible for
the fast and coordinated distribution of the electrical impulses that triggers the contrac-
tion of the heart. It was first characterized by Tawara in 1906 [167], who described the
atrio-ventricular (AV) conduction axis. In the ventricles, it is composed of the His bun-
dle (HB) and bundle branches (BB) that are connected to the most distal section, often
called peripheral cardiac conduction system or Purkinje system. In species such as rabbit,
dog or pig it has been observed that the Purkinje system is electrically connected to the
myocardium muscle through transitional cells or Purkinje-myocardium junctions (PMJ)
distributed throughout the ventricular sub-endocardial layer [114, 169]. The morphology
of the distal section of the CCS plays a key role in the synchronous activation of the
ventricles, since it dictates the starting points of activation and therefore the electrical ac-
tivation sequence [58, 100, 107].

Over the last decade, multi-scale computer models of the heart have helped under-
standing complex electrical interactions, disorders and pathologies at different levels [47,
78, 82, 110, 170, 178]. The accuracy and usability of those models depends mostly on
their capacity to represent heart anatomy, microstructure and function. However, integrat-
ing such a variety of biological data for a given patient is often not possible mainly due
to technical limitations, e.g. acquisition of microscopic structural information. Therefore,
the natural solution to obtain patient-specific models is to combine patient-specific data,
and knowledge-domain data. This can be obtained from ex-vivo studies or invasive imag-
ing techniques on a certain population. The CCS cannot be personalized from in-vivo
images because the size of its structures is in the order of cellular resolution, and cur-
rent clinical imaging systems cannot differentiate them from the rest of the myocardium.
Recognizing its importance, modelers have attempted to incorporate the CCS function in
ventricular models using different approaches. Techniques to include the CCS are often
based on i) functional approximations that emulate the fast endocardial activation [43];
ii) simplified tree-like representations based on mathematical models such as fractals or
manual delineations [1, 71, 80, 141]; iii) detection of PMJ locations from electrical record-
ings [19, 123]; and iv) invasive data collected from animal studies such as rat, rabbit or
dog, where the main features of the structure are captured [27, 28, 119, 175]. Moreover,
a number of computational studies have already integrated CCS models to analyze its
role in non-physiological scenarios such as defibrillation shocks [31, 52], drug-modeling
interaction [59] or rare polymorphic arrhythmias [15]. Recently, Cherry et al. [42] seg-
mented a Purkinje network from photograph of a stained dog heart, and deployed it in
a 2D mesh to study the role of the CCS during ventricular tachy-arrhythmias. All these
studies reproduce Purkinje cell electrophysiology by means of tailored action potential
models [12, 161] that capture their main behavior.

In this study, we first review anatomical quantitative descriptions available in the lit-
erature about the morphology of the peripheral CCS as observed at macroscopic resolu-
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tion [5, 8, 49, 107, 147, 167]. Then, we analyze photographs from ex-vivo calf and lamb
hearts stained with Indian ink, and present a procedure to extract quantitative macroscopic
information about the branching pattern of the stained CCS. These measurements param-
eterize an automatic algorithm that constructs a computational 3D model of the CCS,
given a ventricular anatomy [150]. Following, we run a sensitivity analysis on fundamen-
tal parameters of the growing algorithm and study how they affect the final density and
distribution of PMJs, as well as the electrical activation sequence. Finally, we compare
our approach with current modeling techniques and discuss limitations.

4.2 Materials and methods

4.2.1 Data acquisition

Ex-vivo calf and lamb hearts were stained in order to differentiate the CCS, and to extract
quantitative parameters about their macroscopic structure. The procedures were accord-
ing to those described by previous researchers (see Table 4.1. Five calf (weights ranging
600 to 670 kg) and five lamb hearts (weights ranging 65 to 75 Kg) were obtained from the
slaughterhouse after the animal died, and were instantly immersed in a solution of Krebs-
Henseleit at 4◦C (118 mM NaCl, 4.75 mM KCl, 25 mM NaHCO3, 1.2 mM MgSO4, 1.25
mM CaCl2, 1.2 mM KH2PO4, 11 mM glucose). Subsequently, two incisions were made,
one at the right ventricle, on the right side anterior inter-ventricular sulcus and another
at the obtuse edge of the left ventricle (LV), thereby exposing (as a book) the endocar-
dial surface of both ventricles. An insulin syringe and needle were used to inject black
Indian ink, between the endocardium and the sub-endocardial connective tissue sheath,
at the origin of the left and right branches of the HB. Indian ink diffused first through
the sub-endocardial Purkinje network and then in the intra-myocardial direction to the
epicardium. Later, the injected hearts were fixed and stored in buffered formalin at 7%.
Additionally, 6 high-resolution histological samples from right or left ventricle contain-
ing the peripheral CCS were acquired and serially sectioned at 7-10 µm. One of every
10 histological sections was stained by Masson’s trichrome or Goldner trichrome. Pho-
tographs were taken using a stereo microscope equipped with a digital camera (Nikon
SM 1500). The resolution of the histological images was 300 pixels/inch, width: 2560
pixels, height 1920 pixels. The software of the microscope was used to perform different
measurements. The tissue handling for the paper was in accordance to the European Di-
rective for the Protection of Vertebrate Animals used for experimental and other purposes
(86/609/EU).

4.2.2 Image segmentation

An automatic segmentation pipeline was designed to extract the His-Purkinje system
structure from photographs where CCS had been stained with Indian ink. Color-based
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Figure 4.1: Photograph of calf heart showing the Purkinje network. Open calf heart with
stained Purkinje network using Indian ink. Overlapped red color highlights the proximal HB
and BB, whereas blue color highlights the distal Purkinje network. Sub-figure in the upper-
left corner shows a histological sample of the LBB acquired with higher magnification and
marked with Goldner trichrome. Fibers are arranged longitudinally under the endocardium
in the septum. Sub-figure in the lower-right corner shows a zoom to the network system where
the Purkinje pattern can be observed.

segmentation was the technique chosen to segment the black stained fibers from the my-
ocardium (see Figure 4.2b). First, images were converted to the CIELAB (CIE 1976
L∗a∗b) color space [144]. CIELAB creates a more perceptually uniform color space,
which helps in the pixel color-based classification. Then, reference tissue colors of Purk-
inje and myocardium were manually chosen for each histology sample. All pixels of each
image were classified using a nearest neighbor color rule algorithm to the previously se-
lected reference samples. Following, images were binarized with the threshold (see Figure
4.2c) that better split classified pixels. In some cases there was small noise in the images
due to lack of diffusion of the ink. These were corrected by using mathematical morphol-
ogy operators, in particular an opening with a circle of 2 pixel radius. In some complex
cases, binary images were manually edited to remove persistent noise. Finally, a standard
skeletonization function was applied to the binary images to obtain the branch centers.

In order to extract quantitative measurements, branching points were determined, and
each branch was separated and labeled. The length of each branch was extracted by count-
ing the number of pixels. In addition, all branches meeting at a particular branching point
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Figure 4.2: Purkinje segmentation steps. (a) Sample of original stained image of a calf LV.
(b) PK fibers segmented using CIELAB (CIE 1976 L*a*b*) color-based segmentation. (c)
Threshold binary image. (d) PK fibers skeleton and branching points on top of original stained
image.

were classified to measure the angles formed by every pair of branches. Finally, the curva-
ture of each individual branch was calculated measuring and averaging the angles between
consecutive blocks of three pixels belonging to the same branch. We required at least three
consecutive angle measurements to characterize curvature for a given branch. Therefore,
only branches of at least 8 pixels were considered. The circular statistics toolbox from
Matlab CircStat [21] was employed to compute histograms, average and standard devia-
tion of angles.

4.2.3 The cardiac conduction system model: ventricular anatomy

A segmented human ventricular model at the end diastolic phase was used as a layout
for the generation of the CCS. This model had been previously segmented [150] from a
multi-slice computed tomography (MSCT). Several anatomical landmarks including the
endocardial apex, the approximate position of papillary muscles, the septal region, and the
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starting point of the HB, were added. The Purkinje generation algorithm needs to identify
anatomical regions to apply proper constrictions in several rules.

4.2.4 The cardiac conduction system model: description of the method

The methodology used to generate the CCS models is an extension of the one recently pre-
sented in [150]. The method is designed to produce the models in three consecutive stages
that correspond to His and bundle branches, backbone branches (PKBB), and terminal
branches (PKTB). Figures 4.3b-4.3d show the three consecutive stages for a Purkinje tree
generation. The extended method can be personalized independently at each stage with
the information extracted from ex-vivo images. In the first stage (Figure 4.3b), three main
long branches are generated. They represent the HB and BBs. The first of them starts
at the AV node and expands towards the LV apex and back to the base, bounded by a
maximum length parameter. The other two branches start out of the first one in the up-
per third of the septal wall. They are initially directed towards landmarks included in the
LV model that are placed close to the area of the papillary muscle insertions. After ap-
proaching the landmarks, they turn in the direction of the basal region. Setting a number
of additional sub-branches that interconnect the first three branches completes the first
stage. All branches in this stage are generated sequentially, with their length constrained
by the length of the LV long-axis. Branches are composed of several small segments that
allow adjusting them to the ventricular model surface, obtaining a more realistic branch
curvature. The main parameters that define the first stage are branch length, angles be-
tween consecutive segments (to define the curvatures), length of the segments, starting
angle of new branches (angle between the first segment of a ’child’ branch and the ’par-
ent’ branch), starting position of new branches, approaching distance to the landmarks
and to previous branches, and number of branches. Most of the parameters are mean val-
ues for statistical distributions that allow the generation of different and independent CCS
models. For the present paper, parameters were chosen according to the morphological
properties of the CCS proximal regions (BB and PKBB) learned from our observations in
photographs of calf hearts. They are basically the number, the length, the angle and the
end-points of the BB.

The second and third stages are based on concepts of Lindenmayer systems (L-system) [80,
94]. They use a set of rules or productions, similar to those used in formal grammars,
which are applied to build the branches. The closest L-system form to our method is the
stochastic bracketed context-sensitive L-system [127]. Both stages are generated using
basically the same algorithm, but personalized with different parameters. The selection
of different parameters for each stage leads to an improved branch space-filling, and to
a point a better self-avoiding control. The algorithm starts selecting the initial points for
new branches from the tree generated in previous stage. Following, new branches are it-
eratively generated, starting from the endpoints of the previous iteration. The order in
which the endpoints are selected to grow the new branches is randomly chosen at each
iteration. In each iteration two new branches grow at every endpoint. They can follow an
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‘L’ growing rule that leads to tree-like monopodial configurations (child branch that keeps
the direction of the parent branch), or a ‘Y’ growing rule that leads to tree like sympodial
configurations [188]. In the models generated for the present work, branches in the PKBB
stage grow following a ‘Y’ rule, while branches in the PKTB stage follow a more direc-
tional ‘L’ rule. The basic parameters are the branch length λ ±σλ and the angle between
branches α ±σα (see Figure 4.3a for a visual description of other relevant parameters
{α,λ ,β ,γ,ω,κ}). The small segments that form the branches permit the generation of
curved structures controlled by the parameters µ , γ and β . This gives rise to more real-
istic morphologies and allows a better expansion of branches over the ventricular walls.
In addition, a distance gradient similar to the one considered in [80], affects the branch
angles to avoid collisions between branches. However, when it is not possible to avoid a
collision, the branch can either end in a PMJ, or it can form a loop. This is defined by a
probability that depends on the distance to the closest branch, and an additional parame-
ter that can be personalized. In general, for the PKTB stage the parameter is set to avoid
loops, but in any case PMJs are not allowed in proximal regions.

For the second stage (PKBB), parameters were set based on knowledge-domain data
extracted from histological images together with our own data when it was available (see
Figures 4.3c, and Figure 4.5). In the case of the third stage (PKTB) there is little infor-
mation on the Purkinje network topology at high resolution, since it is at least one order
of magnitude smaller than PKBB. Details about PMJ density and location could not be
obtained from our images. However, images taken with a micro-tomograph and Goldner
trichrome stain [114, 147], show that branches seem to form more elongated structures
instead of polygonal ones. These images were only visually inspected.

The code to build the CCS was written in C++ using the VTK 5.2.1 (The Visualization
Toolkit) library, and integrated in the Purkinje plug-in for GIMIAS [92], which is available
under request along with one of our CCS models and its corresponding LV geometry in
VTK format. As supplementary material we provide the parameters used to build the
model, and the resulting PMJ density.

4.2.5 Electrophysiology simulations

Biophysical simulations of cardiac electrophysiology were carried out to test different
CCS configurations. For these simulations, the segmented ventricular surface mesh was
remeshed with tetrahedron to generate a volumetric model. The distance between mesh
nodes was bounded to 350µm, giving rise to a mesh of 8 million linear elements. Tetgen
software [156] was used for remeshing.
Fiber orientation of the tissue was calculated at every element by applying a rule-based
method based on the histological studies of Streeter [163] and validated by Jouk et al.
[83].
All the electrophysiology simulations were performed with the CHASTE solver [118],
which uses a finite element method to solve the electrical equations at cell and tissue
resolutions. The ten Tusscher et al. [174] model was chosen to solve the ion kinetics.
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Table 4.1: Relevant data on the CCS

Section Ink/Stain Branch Length Species Ref
AV-node Dissection 5-7 mm Human [85, 185]

BB
Lugol - Canine [107]
Gieson 18 mm Canine [167]
Goldner trichrome 30-40 mm Human [100]

PKBB Anti-connexin43 12 mm (intramurally) Bovine [114]
Goldner trichrome Sheep/Human [147]
MRI Free-running 13−79mm Rat [28]

PKTB

ATCHI 100µm Rat [74]
180µm Human [80]

Goldner trichrome 25−200µm Sheep/Human [147]
Lugol PMJ Rabbit [40]
SEM Sheep [155]
- Transitional 100−1000µm Rabbit [169]
MRI 448±92µm Rat [28]

SEM: Scanning electron microscopy

For the propagation of the electrical impulse in the cardiac tissue, the monodomain for-
mulation was used [121, 125]. The values for the conductivities were set according to
those measured by Clerc [48]. Since a monodomain approach was used, intracellular and
extracellular conductivities were combined as described in [24]. The ODEs from ionic
models were solved with the backward Euler method with a time step of 10 µs. In the
Purkinje strands, propagation was modeled as a wave traveling at a constant speed of
3 m/s. The Dijkstra algorithm was used to measure the distances from the AV-node to
each PMJ through the CCS network. This approach is limited to test activation sequences
under physiological healthy conditions. The CCS network was considered isolated from
the rest of the ventricular tissue except at the PMJs. Each PMJ was connected to its sur-
rounding tissue and generated an intra-cellular current that triggered the activation of its
surrounding ventricular nodes within an area of 1 mm3. Simulations were run for 150 ms
to reach the full depolarization of the LV in all cases.

4.3 Results

4.3.1 Anatomical measurements on the cardiac conduction system

To analyze the peripheral CCS we virtually divided the network in three parts from prox-
imal to distal sections, according to the three stages of the CCS construction method.
First, the His and bundle branches (HB and BB); second, the major backbone branches
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Figure 4.3: Branch growing. (a) Shows the most important parameters used to control the
morphology of the CCS branches. The consecutive stages followed by the algorithm to gener-
ate the CCS are: (b) the Bundle branches, (c) the PKBB, and (d) the PKTB.

(PKBB, often called free-running PK); and third, the terminal branches (PKTB). The last
section is constructed by structures that require microscopy techniques to visualize them,
although the resolution limit with previous sections was not strictly defined. Big strands
of the CCS can be clearly differentiated in extensive sections of LV and RV endocardium
without any magnification, revealing the macroscopic morphology of the system (see Fig-
ure 4.1). The distribution of Purkinje system in calf and lamb is structurally very similar
because both have a sheet of connective tissue that individualizes the Purkinje system
from the endocardium or the working myocardium.

In Figure 4.4a, only thick LV branches were considered in the segmentation to obtain
the main branching pattern, whereas Figure 4.4b took into account the detailed branch-
ing pattern. At both resolutions a polygonal pattern is clearly present as an extensive
sub-endocardial network [8], also described previously as a fishing-net using electron mi-
croscopy [155].

The PK network extends throughout the ventricles covering most of the walls. Using
mathematical morphology operators we obtained the center line of the branches of the
CCS and the joint points, displayed as white lines for branches and red dots at joints (see
Figure 4.4). This segmentation allowed us to measure branch length more accurately. The
branch lengths segmented were fit to an exponential distribution for each ventricle. Data
was consistent in both ventricles, with average lengths of 3.6 mm for main branches in
both cases. When small branches were included average lengths of 1.0 mm for LV and
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1.4 mm for RV were obtained. These values are also consistent with measurements re-
ported in [80], with an average branch length of 1.8 mm (10 times the measured at high
resolution, 0.18 mm).

Figure 4.4: Histograms of branch length for LV and RV. Segmentation of Purkinje branches
from LV and RV patches and histograms of branch length distribution. (a) and (c) show the
branch segmentation and distribution considering only major PK strands for LV and RV, re-
spectively. (b) and (d) include all the small branches and furcations. An exponential function
was fit to each distribution. Average length for major LV branches was λ = 3.601± 2.2mm,
whereas for all LV branches was λ = 1.004±0.8mm. Average length for RV major branches
was λ = 3.603±2.8mm and for all RV branches λ = 1.368±1.0mm.

For the inspection of the branch angles, we used the segmented PK skeletons. For
each junction point (red dots in Figure 4.5 and Figure 4.5a), we calculated the small angle
between each pair of branches. The resulting average for the four best stained tissue sam-
ples was 60.0±40◦ , which shows a large dispersion probably due to the existence of two
angle populations (90◦ and 45◦), as it can be inferred from Figure 4.5b). No significant
differences were obtained between samples. Angles between parent and child branches
(α1 angle in Figure 4.5b) show a large variance. There was a maximum in the density
function around 90◦, which means that child branches deviate approximately 45◦− 60◦

in opposite angles with respect to the parent direction. Angles larger than 90◦ correspond
in general to α2 and α3 in Figure 4.5b. We also find large angles between parent-child
branches for those cases in which the branch direction is kept, therefore forming angles
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of around 140◦−180◦. Branch curvature was small, with angles around 15◦−20◦ in aver-
age (Figure 4.5d). Only branches larger than 8 pixels were used to measure the curvature.
The main reason was that at least two groups of 3 pixels were required to measure the
angles along a branch, and at least two angles per branch were considered for the curva-
ture. The mean maximum deviation angle (Figure 4.5c) was 33±40◦. Note that the pixel
discretization of the space affects the angles measured.

Figure 4.5: Histograms of branch angles and curvature for LV tissue patch. (a) Skeleton
obtained from the segmentation of an endocardial LV patch. The small subplots show the
meaning of angles α , β and γ . (b), (c) and (d) histograms of angles between consecutive
branches (α), maximum deviation angle (β ) and branch curvature (γ), respectively.

Visual inspection of high-resolution images revealed a fine structure that showed a
clearly directional pattern (data not shown). Those images showed a high complexity
in their patterns and were not segmented. No quantitative information was obtained for
branches below a millimeter resolution.

4.3.2 Analysis of model structure

A series of simulation experiments were performed to study the properties of the auto-
matically generated CCS networks. The aim was first, to obtain a structure that resembled
qualitatively CCS networks observed in anatomical studies. Second, to obtain a consistent
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Table 4.2: Relevant parameters measured for PKBB and used to build the CCS models

Parameter PKBB PKTB
Rule Y L

Branch length (lb±σl) [3.0,10.0]±0.3 mm [0.3,8] mm
Branch angle (α±σα ) 60±40◦ [15◦,90◦]

Curvature (γ±σγ ) 17±40◦ 5◦

Max. curvature (β ±σβ ) 33±40◦ 10◦

Segment number 10 10
Max. branches 300 [8,2048]

Buds 30 [4,1024]

activation sequence and timing for the electrical activation of the ventricle. Since it was
not possible to personalize the most distal section of the CCS (PKTB) due to the lack of
quantitative data, a sensitivity analysis was carried out.

The CCS construction algorithm was personalized with the parameters extracted from
histology for the PKBB, as displayed in table 4.2. The main branches of the trees gener-
ated fairly reproduce the intricate architecture observed in histological and morphological
studies [8, 147] (see Figure 4.4 and Figure 4.6a-4.6b). As it can be observed, the HB is
directed to the apex, and branches out towards both papillary muscles (see black arrows)
around the upper third of the septal wall. The upper areas of the septum and the base do
not show any branch or terminal. Similar to CCS visualized in animals using dyes, our
networks form polygonal patterns that extend over most of the endocardial surface. The
PKTB depend on the previously generated PKBB, as it can be observed in Figure 4.6c-
4.6e. However, if PKBB is not dense enough, as displayed in Figure 4.6e, PKTB have to
cover large areas, which produce more PMJs locally, unbalancing the tree. Figures 4.6c
and 4.6d show a zoom to the lateral wall of a balanced PKBB model in which Y-rule
and L-rule were used for the generation of terminal branches, respectively. L-rule shows
better results in covering the empty regions left by the backbone branches along the main
backbone branch directions, which resembles to images showed by Ryu et al. [147] where
elongated directional branches are displayed.

The densities and distribution of PKTB and PMJs are important unknown parameters.
They depend on the local branch number, branch length and branch angle (since this might
influence the number of loops). Therefore, we generated CCS models with an increasing
number of branches to compare the distribution of PMJs as a function of the branch den-
sity. The proportion and mean distance between PMJs were studied regionally (see Figure
4.7a) and no differences were observed. The PMJ distribution pattern (see Figure 4.7) was
very stable as the branch density was increased, and was independent of the rule used for
growing the PKTB. Trees always showed few terminals in basal areas, and the upper third
of the septum, as a result of the hard-coded rules (non user-defined) included. Lateral and
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Figure 4.6: Branch distribution. (a) and (b) show the CCS branch structure generated for
the apical and lateral walls, respectively. (c)- (e) show trees generated with different rules
and number of parent-child buds for the PKBB-PKTB (200-Y, 200-L, 20-L), respectively. (f)
shows the locations of PMJs for trees generated using L-rule (green spheres) and Y-rule (blue
spheres) for PKTB with the same remaining parameters.

Figure 4.7: Distribution of PMJs per AHA segment. (a) shows a division of the ventricles
in 17 regions. In our model segment 17 did not include endocardial tissue. (b) shows the
average percentage of PMJ and (c) the average distance between PMJs, per region. Data was
averaged for the 9 CCS configurations with increasing branch density using for the terminal
branches the Y-rule (solid line) and the L-rule (dashed line).

apical walls were the areas that exhibit a higher number of PMJs in all the CCS trees.
Finally, to study in detail how the number of PMJs was affected by the branch length

(λ ) and branch angle (α) in the PKTB, we used a fix CCS model for the PKBB with
several configurations for the PKTB. In particular, we increased the number of PKTB
branches from 8 to 2048, the branch length from 0.3 mm to 8 mm, and the angle from 15◦

to 90◦. Figure 4.8 shows that for large branches, longer than 4 mm, the algorithm cannot
build enough branches and the number of PMJs decreases. The reason is that PKTB grow
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in the spaces left by the PKBB and therefore affects directly the number of new branches
that can be fit. A recommended configuration for PKTB branch is to use a length ten
times shorter than PKBB. For the angles there were no significant differences, which was
unexpected. The algorithm managed to find the right areas to grow and avoid surrounding
branches. For each PKTB configuration, ten CCS models were built with exactly the
same parameters in order to analyze whether the use of statistical distributions affected
significantly the resulting trees. All the standard deviations obtained were small, in the
order of 5% (not included in the figure because they were not appreciable).

Figure 4.8: Sensitivity analysis of PMJ density. Number of terminals obtained as a function
of the branch number for different (a) branch lengths [0.3, 8]mm and a fix branch angle of
60◦ and (b) branch angles [15, 90] degrees and a fix branch length of 1mm.

4.3.3 Activation sequences

We performed a sensitivity analysis to study how increasing the number of PKTB, which
has a direct impact on the number of PMJs, affected the activation time and the branch
density per region (see Table 4.3). For each of the CCS configurations, we ran an electro-
physiology simulation and measured the total activation times (TAT) for both the endo-
cardium (with 90% and 100% of tissue activated) and the whole LV. TAT was obtained as
the difference between the first endocardial node activated and the last one of the model.

Table 4.3 displays the obtained TAT for each number of PMJs on the endocardium
and whole LV. When compared to measurements obtained by Durrer (70.1±7.2 ms) [58],
TATs show good agreement for models with a minimum of 50 PMJs. An increase in PMJ
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density decreased the TAT for the endocardium but keeping the TAT of the full ventricular
mass constant.

The analysis of local activation times (LAT) shows that the activation sequence started
in apical, anterior and posterior regions, and in some configurations close to basal area
(see Figure 4.9). When the model included enough terminals, more than 200, the se-
quence followed an endocardium to epicardium pattern, with the base of the lateral wall
as the last region being activated. These observations are coherent with measurements in
real hearts [58]. The missing contribution of the RV in the septum was appreciable and
increased the activation time of the septum. For each configuration, we also analyzed the
percentage of tissue activated over time, which is a much more reliable index than the
TAT. It takes into account the evolution of the activation over time instead of considering
only the endpoint (see Figure 4.10).

Figure 4.9: Simulated sequence of activation. Local activation times for a LV model that
includes a CCS system with 162 PMJs.

Table 4.3: Total activation times (ms).

Region 8 25 35 49 94 162 246 312 429
E90 64 61 60 64 60 54 54 48 48

E100 130 80 68 71 71 74 68 63 64
A 130 80 73 74 74 76 76 73 74

Exx: xx Percentage of endocardium; A: Complete LV

Although TATs for the whole ventricle are very similar, the local activation pattern
over time shows a large dependence on the number of PMJs. As expected, the larger
the number of PMJs the faster the tissue is activated over the first 40 ms after the initial
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Figure 4.10: Percentage of tissue activated over time as a function of PMJ number.

endocardial breakthrough. This difference smooths out after most of the tissue has been
activated, since all the initial wavefront initiated in the endocardium meet together into a
single depolarization wavefront. Figure 4.10 shows the percentage of tissue activated over
time for different number of PMJs, where configurations with a larger number of PMJs
show a faster depolarization between 15 ms and 45 ms.

4.4 Discussion

Early CCS models have traditionally tried to reproduce the sequence of electrical acti-
vation of the ventricles neglecting the real morphology of the peripheral CCS, i.e. its
branching pattern. Those models were built mostly manually and only for a given ventric-
ular geometry. In general, the main bundles were located in the models following anatom-
ical descriptions from stained tissues from animal hearts [8, 107, 167, 169]. In the human
heart three major thick branches with several functional interconnections are usually ob-
served in the LBB [167], although morphological variations are known to exists between
subjects [51]. In most species, the LBB divides into anterior and posterior branches, that
reach both papillary muscles, and extend towards the apex forming a superficial sub-
endocardial network [148]. These findings are in agreement with our observations in the
CCS of calf hearts ( and Figure 4.1). The length of the BB varies among species, and it
is in the order of 30-40 mm for the human [100] (see table 4.1). However, it is not fully
clear what the difference is between species in proximal sections [100]. In a previous
study [59] it was found that simpler His bundle branching morphologies produced more
realistic pseudo-ECGs signals in precordial V1-V6 leads.
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In most studies, the distal section of CCS models do not mimic the intricate branching
pattern exhibit in histological samples due to its complexity. A common simplification
in CCS modeling is to set a number of early activated sites scattered over the endocar-
dial surface [88], often based on data from electrophysiology maps [58]. Others modify
the physiological diffusion properties in the endocardium to obtain faster propagation ve-
locities and compensate for the lack of CCS [44, 133]. Those approaches are effective
in reproducing activation sequences with realistic activation times, and recently showed
their potential to personalize Eikonal-based conductivity parameters to predict cardiac
resynchronization therapy on LBBB patients [133] or the induction of ventricular tachy-
cardia on ischemic patients [132]. On the other hand, an explicit CCS structure is still re-
quired to model retrograde activation[89, 126] and Purkinje-tissue macro-reentries. More
sophisticated models made use of fractals to build a CCS [1, 71] as a structure of re-
peatedly bifurcating branches. These models did not show the CCS looping structure or
more complex branching patterns observed in histological studies. Pollard and Barr [123]
presented a model of the human conduction system based on electrophysiological data.
The model did not show a high correlation with experiments, probably due to the little
coupling and the scattered and low number of PMJ used. Berenfeld and Jalife [19] pro-
posed a His-Purkinje model that included PMJs, based on the procedure of [123], to study
Purkinje-muscle reentries.

More recently, CCS models are trying to build the system using so-called knowledge-
domain data, i.e., ex-vivo histological and electrophysiology data from human cadavers
or animal studies. Simelius et al. [157] delineated a Purkinje model for human ventricle
by minimizing the difference between simulated isochrones and measurements by Dur-
rer [58]. Similarly, Ten Tusscher and Panfilov [173] delineated a peripheral conduction
system using a similar structure, and followed descriptions available in the literature to
place the main bundles. Using stains a typical branch length can be extracted by visual
inspection from the larger branches to improve the realism of the models. Atkinson et
al. [13] built a 3D anatomical computer model of the His-Purkinje network of the rabbit
heart after staining the network by immunoenzyme labeling of a marker protein, and fit-
ting it to a 3D ellipsoid model. Vigmond et al. have also presented several studies on a de-
lineated rabbit Purkinje system to study the effect of defibrilation socks [31, 52, 53, 179].
They use this model to perform electrophysiology simulations, which could reproduce
the main expected activation pattern. Vadakkumpadan et al. [175] built a 3D anatomi-
cal model of the rabbit ventricles in which only segmented free-running Purkinje strands
were included, with a total of 71 PMJ in the RV and 99 PMJs in the LV. An extension in-
cluding more distal Purkinje sections modeled by a parameterized L-system was recently
presented and validated by Bordas et al. [27]. Their approach is similar to ours [188] since
they also use L-systems, although the model we present in this work can be further per-
sonalized and adapted if anatomical data is available. They choose to use branches of 4
mm that were fit to the nodes of the underlying endocardial mesh, which is very similar to
our measurements of PKBB, 3.6mm in calf. Our methodology is fully automatic and in-
dependent of the underlying mesh resolution, since CCS model and ventricle do not share



60 4. Characterization and modeling of the cardiac conduction system

their nodes, but only at PMJs. Automatic methods help in reproducibility and enable the
modeler to study a large number of CCS systems in a faster way, avoiding long time in
delineation.
It is important to point out that it has been reported that the branching pattern of the CCS
in the RV shows some morphological differences with respect to the LV one[8], which
would require different methods to build LV and RV models. We did not observe dif-
ferences in the branching angle, although branch length was 30% larger in the RV than
the LV when all the small furcation were considered. Still, CCS ramifies throughout the
RV from the base of the papillary muscles as in the LV. It is not yet clear if more com-
plex Purkinje networks are required or which applications will benefit from more realistic
Purkinje systems.
There is very little information on the density and distribution of PMJ in each region of
the endocardium. Some studies suggest that the distribution of sub-endocardial PMJs and
their electrical coupling is spatially inhomogeneous, and that the junction regions them-
selves have variable degrees of electrical coupling [106, 107]. Some detailed electrophysi-
ology studies have shown the continuous coupling between the CCS and the myocardium,
suggesting a more dense and complex network with thousands of PMJs [40]. In addition,
from histological observations, there are large endocardial areas where PMJs would not be
expected due to the lack of PK branches, such as the base of the ventricles and portions of
the septum [107, 126]. To our knowledge, there are no 3D maps that describe exhaustively
how PMJs are arranged in the ventricles and therefore the only source of information are
the electrical activation sequences and depolarization velocities in the endocardium. Our
simulations show the direct relationship between the total activation time of the endo-
cardium and the density of PMJs as expected. However, It was remarkable that increasing
almost ten times the number of PMJ the TAT decreased only few milliseconds. The rea-
sons were due to i) the variability in the morphology of the CCS tree (sometimes not all
the PMJ activated before its surrounding myocardium); and ii) PMJ inhomogeneities, i.e.
the basal regions and upper septum did not have any PMJ and were always the last areas
to activate. Therefore, some of the PMJs were redundant or can be considered as backup
PMJs, which role might be important in retrograde activation. If PKBB had been changed
between simulations greater differences would have been obtained.

4.4.1 Limitations

The images taken to analyze the statistical pattern of the Purkinje network were flattened
and slightly stretched to show a large endocardial area. Although, medium size patches of
each region have been analyzed independently an error in the angle branches could have
been introduced. In addition, our data only describes information from calf and lamb,
which are presumably different from that in human hearts. However, the methodology
can be applied to images of the Purkinje system of any species in which Purkinje strands
are visible. Electrical simulations with our CCS networks did not consider a specific ionic
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model for the Purkinje cells, but a depolarization with a constant velocity. The lack of a
Purkinje ionic model implied that a specific model for the PMJs was not needed in our
approach to connect Purkinje and myocardium as the ones developed in [179]. This ap-
proach is valid to reproduce ventricular depolarizations with realistic activation times, in
which retrograde conduction is not required, or a more complex pathological model. Our
ventricular model has an average resolution of 350µm, although a resolution of 250µm
is recommended by the authors of the cellular model chosen [174]. This fact can impact
in the conduction velocity of the depolarization wavefront in some areas. Finally, our
CCS models need to be further validated by means of ECG calculated using the Forward
Problem in electrophysiology and endo-cavitary electro-anatomical recordings.

4.5 Conclusions
We have collected and segmented data about Purkinje networks of calf and lamb hearts. A
methodology to extract data on branch length and branch angles has been designed which
can be applied to similar images. Using measured data we produced CCS models with
a branching pattern that resembled those acquired in histological studies at macroscopic
level. Although microscopic data on CCS is not observable directly in living organisms,
the possibility of generating many CCS configurations at microscopic level may assist
in the analysis and better understanding of their physiology. CCS trees built with this
automatic approach generated normal electrical activation sequences, by just specifying
the main input parameters. Given the importance of the CCS network to simulate realis-
tic cardiac activation sequences and the impossibility of obtaining a patient-specific CCS
structure, our stochastic CCS model, which takes into account histological knowledge-
domain data, might help to achieve more accurate simulation results. This is especially
important to model more complex electrical pathologies. The sensitivity analysis carried
out on the density of terminal branches and PMJs showed that there are not significant
differences in TAT after increasing their density from 100 PMJs, which is related to the
QRS width. Differences in angles between branches in the PKTB did not show signifi-
cant overall differences in the branch patterns or activation maps. Nonetheless, the local
activation pattern shows clear differences locally, which could be reflected on the QRS
morphology. Due to the small amount of quantitative data available on the morphology
of the CCS system, it is very difficult to quantify properly the accuracy of the model. If
more data would be available, the input parameters could be defined regionally, so that
local inhomogeneities could be better incorporated.
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Abstract - This chapter presents a characterization of the cardiac conduction system at
microscopic scale. The goal is to characterize the architecture of the distal section of the
Purkinje network by differentiating Purkinje cells from surrounding tissue, performing a
segmentation of Purkinje fibers at cellular scale, and mathematically describing its mor-
phology and interconnections. Purkinje cells from rabbit hearts were visualized by confo-
cal microscopy using wheat germ agglutinin labelling. A total of 16 3D stacks including
labeled Purkinje cells were collected, and semi-automatically segmented. State-of-the-art
graph metrics were applied to estimate regional and global features of the Purkinje net-
work complexity. Two types of cell types, tubular and star-like, were characterized from
3D segmentations. The analysis of 3D imaging data confirms the previously suggested
presence of two types of Purkinje-myocardium connections, a 2D interconnection sheet
and a funnel one, in which the narrow side of a Purkinje fiber connect progressively to
muscle fibers. The complex network analysis of interconnected Purkinje cells showed
no small-world connectivity or assortativity properties. These results might help building
more realistic computational PK systems at high resolution levels including different cell
configurations and shapes.

Adapted from: Romero D., Camara O., Sachse F., Sebastian R. Analysis of microstructure of the cardiac conduction system
based on three-dimensional confocal microscopy. PLOS One, Submitted.
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5.1 Introduction

Efficient pump function of the heart requires synchronized activation and contraction of
cardiac tissues. Specialized tissues known as the cardiac conduction system (CCS) are
responsible for synchronization of mechanical activation by fast distribution of the elec-
trical signals that trigger contraction [73]. In the ventricles, the CCS comprises Purkinje
(PK) fibers, which are able to conduct electrical signals up to almost an order of mag-
nitude faster than the working myocardium, thus facilitating the synchronous electrical
activation of the whole heart [40, 42]. The CCS includes the heart’s primary pacemaker,
the sinus node in the right atria, which initiates each beat. Electrical signals are transmit-
ted to the ventricle through the atrio-ventricular (AV) node. A bundle located high in the
inter-ventricular septum and beneath the AV node, known as the His bundle, branches into
the left and right bundle branches descending sub-endocardially into their corresponding
ventricles [6]. These branches spread out forming a complex network referred as to the PK
network, which is the distal portion of the CCS, which runs both through the ventricular
cavity as free-running Purkinje strands (FRPS) and along the endocardium [107]. Depend-
ing on species the PK network is electrically insulated from other surrounding tissue by a
sheath of collagen, creating an electrical insulation [114]. Electrical signals are therefore
only passed to the working myocardium at terminal points known as Purkinje-myocardial
junctions (PMJs) [40, 107, 130]. The coupling between PK cells and working myocytes
presents two types of configurations: (i) a funnel connection, with a direct coupling to
myocytes and (ii) a sheet interface or resistive barrier, composed of transitional cells (T
cells) that serve as an intermediate layer between the PK cells and myocytes [169]. Tran-
sitional cells are present at the boundaries of the sinus and atrio-ventricular nodes as they
connect to their surrounding tissues [55].

Previous studies about the CCS described qualitatively its structure using 2D imaging
techniques based on ink markers [8, 49, 50, 107, 147, 167], light microscopy [169], pro-
jection microscopy [114], EGFP imaging [102], and optical Imaging [60]. It has only been
in recent years that researchers have extracted 3D information about the macro-structure
of the PK network. In some studies only the free-running Purkinje strands (FRPS) were
analysed using high-resolution ex-vivo MR system [28, 175], while in others the whole
proximal 3D structure was reconstructed or simply visualised [13, 42, 50, 160]. In [151]
it was attempted a quantitative macroscopic description of the PK network structure per-
formed on 2D photographs of bovine hearts stained with Chinese ink, where branch
lengths and furcation angles were measured.

Ono et al. [113] described two types of PK cells, tubular and polygonal, but did not
provide information about their different morphological characteristics. Different tech-
niques have been used to provide quantitative measurements on single cell morphology,
e.g. lengths, widths, heights, areas, volumes. Single cell isolation of PK cells has been
performed in mouse [176] and dog [154], where 2D measurements were provided. Mi-
croscopy studies of PK cell morphology have taken direct measurements of cell dimen-
sions but have used simple ellipsoid models to approximate the 3D characteristics such as
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surface areas and volumes [113, 159]. With regards to working myocytes, single cell 3D
reconstructions have been obtained with confocal microscopy data [93], therefore being
able to compute more accurate measures of cell features. In [93] single working my-
ocytes were segmented in 3D and subsequently, volume, length, width and height were
estimated. Volumes were calculated as the sum of voxels contained inside the cell and
length/width/height estimates were obtained by fitting a bounding box oriented after ap-
plying singular value decomposition on second-order central image moments. In [25]
stained cells were projected onto a digitized surface and the length and width measured
with a sonic digitizer. Volumes were also obtained from rotation of 2D planes along the
long axis and assuming that cells have the shape of irregular cylinders. In [70] and [36]
the volume of myocytes was calculated using a Coulter Channelyzer system as well as by
multiplying the length by the cross-sectional area (obtained from electron micrographs)
of isolated cells, obtaining comparable results. To our knowledge these PK cell measure-
ments had not previously been taken from 3D reconstructions.

An important aspect of the PK network involves the electrical coupling between
neighboring cells, which is achieved through gap junction channels. These are channels
connecting the cytosol of two cells to allow ion flow. Gap junction channels are made
of proteins known as connexins: channels with Cx40 have the largest conductance, Cx43
provides an intermediate conductance, and Cx45 has the lowest conductance in cardiac
cells [29]. Although a combination of these proteins and channels is present across differ-
ent tissues they differ in abundance [55]. The Cx40 is predominantly found in PK fibers,
while Cx43 is mainly present in the working myocardium [72, 153, 183]. Commonly,
gap junctions are preferentially located at cells’ ends (end-to-end connection) to facilitate
longitudinal signal propagation among cells while smaller expression is found allowing
lateral communication between cells [91, 153].

An improved understanding of the 3D structure of the PK network, and in partic-
ular their connection to working myocardial cells, has implications for our knowledge
of cardiac diseases [90]. The PK system plays an important role in arrhythmogenesis,
for example in macro- and micro-reentries due to unidirectional blockage giving rise to
ventricular tachycardia [165]. In radio-frequency ablation therapy for ventricular arrhyth-
mias the targeting of Purkinje-like-potentials (PLPs) at the boundaries of a scar border
zone has proven to be an effective method for eliminating the recurrence of ventricular
fibrillation [158]. Therefore an increasing number of computational models have incorpo-
rated and (in silico) analyzed the CCS in order to understand the underlying pathologies
and optimize treatment [27, 79, 142, 173]. Experimental work [186] and modelling stud-
ies [18, 129] on the influence of the PK micro-structure on arrhythmogenesis has focused
on the coupling and electrical disturbances of the PMJs.

An accurate 3D structural analysis of the distal portion of the CCS can enhance the
possibility of developing realistic generational algorithms of the PK system, as it has been
already done at macroscopic scale [38, 80, 151]. The goal of this paper is to obtain a set of
quantitative measurements of the 3D microstructure of the PK system at its distal portion
in order to better characterize its morphology. Firstly, we provide 3D information on cell
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dimensions from segmentations of PK fibers obtained from confocal microscopy imaging.
Furthermore, we analyze the PK system by modeling it as a 3D graph and then estimating
measures of network complexity as well as other measures such as branch lengths and
angles at furcations.

5.2 Materials and methods

5.2.1 Tissue preparation

For the microscopic characterization of the PK system, we designed a pipeline to ac-
quire and process tissue samples from rabbit hearts. All animal usage was approved by
the Institutional Animal Care and Use Committee (IACUC) at the University of Utah.
Adult rabbits were anesthetized with pentobarbital and anti-coagulated with heparin. Fol-
lowing thoracotomy hearts were quickly excised and placed in a modified oxygenated
Tyrod’s solution at room temperature. The hearts were retrogradely perfused. Tyrode’s
solution including wheat germ agglutinin (WGA) conjugated to Alexa Fluor 555 (Invit-
rogen, Carlsbad, CA). Through the hearts, WGA binds to glycocalix of carbohydrates in
the cell membrane and extracellular proteins. This method allowed for a homogeneous
distribution of the dye throughout the heart. The hearts were subsequently fixed through
the same line of the Langendorff perfusion with paraformaldehyde. Biopsies were made
from left and right ventricle lateral walls (mid and apical), papillary muscles, and septal
wall. Afterwards, the biopsies were stored in paraformaldehyde.

5.2.2 Confocal microscopy imaging

Images were obtained within 2 months after tissue preparation. 3D image stacks were
acquired using a confocal microscope equipped with a 40x oil immersion lens (Zeiss 5
Live, Jena, Germany). Image stacks had a spatial resolution of 0.31 x 0.31 x 0.31 µm and
were obtained with a field-of-view (X and Y directions) of 318 x 318 µm extending up
to 60 µm into the myocardium (Z direction). The Z-axis was parallel to the laser beam
direction. An example of a 3D-stack with processed images is illustrated in Figure 5.1
(right panel).

The WGA labelling marked the interstitial space and cell membranes in the samples.
For the process of identifying PK cells and working myocytes the tubular system (T-
system) was examined. A sparse T-system is present in PK fibers while a dense T-system
is a feature of ventricular working myocytes [14].

5.2.3 Geometric reconstruction and structural analysis

Each of the 2D images from the 3D stacks was pre-processed to improve the segmenta-
tion step using previously developed methods [93, 140]. Firstly, the iterative Richardson-
Lucy deconvolution algorithm was applied to all images using a measured point spread
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Figure 5.1: Processed images from 3-D stack of WGA labeled endocardial ventricular tissue
from rabbit. Left panel illustrates a sample stack in XY (plane parallel to endocardium) XZ,
and YZ views where PK cells show a sparse T-system. Right panel shows the corresponding
3D reconstruction of the cells on a slice of the corresponding stack . The image stack was
deconvolved and corrected for depth-dependent attenuation. Field of view: 318×318µm. .

function. Secondly, background signals were removed and depth-dependent attenuation
corrected. Signal-to-noise ratio (SNR) of each image stack was measured as described
previously [91] and the ones with a SNR below 3 were rejected. The PK fibers, i.e. paths
of connected PK cells, were manually segmented from the different 3D image stacks. Au-
tomatic segmentation techniques were not suitable for the accurate extraction of the PK
network trajectories due to the varying levels of diffusion of the WGA in the tissue in
different images. Therefore, we manually located landmarks along the PK pathways in all
3D image stacks at furcation points. The 3D Slicer software [117] (www.slicer.org) was
used to identify the bifurcation points. Spatial coordinates of the landmarks were stored
and were subsequently connected with straight lines, forming the fiber centerlines. Figure
5.1 (right panel) illustrates the 3D reconstruction of several PK strands together. From
this 3D segmentation centrelines were obtained and used to quantitatively analyze the PK
network morphology (angles of furcations and complexity of network). In-house software
developed using Matlab (MathWorks, Natick, MA) was subsequently used to reconstruct
the PK pathways. A set of 10 stacks was selected to perform a full 3D segmentation
and characterize the different cell shapes. A painting tool available in the software 3D
Slicer allowed segmenting in 3D each cell across the stacks. Each cell was represented
by a triangular closed surface mesh. The morphology of the reconstructed PK cells was
quantitatively characterized (3D lengths, surface, volume) to explore possible different
geometrical configurations. For the measurements of length and the diameters in tubular
cells, multiple measurements were taken for each single cell and for each of its dimen-
sions, which were subsequently averaged. Following the longitudinal axis of the cells, two
perpendicular lengths were obtained, the height and the width of the cell relative to the
endocardial plane. In star-like cells, the length was measured using as longitudinal length
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the longest trajectory between borders connected to neighbor cells. The area of the cells
was calculated summing up the surface of each of the triangles that defined the boundary
of the cell mesh. From the 3D surface representation, the volume was obtained using the
divergence theorem.

5.2.4 Analysis of complexity of the Purkinje network

PK network characteristics were quantitatively analyzed from the set of previously defined
landmarks and centerlines along PK pathways. The parameters used to characterize the
PK network were the following; i) branch lengths, considered as the set of connected PK
cells without any furcation; ii) angles at furcation points, differentiating between acute
(α) and obtuse angles (β ). In general, at furcation points, cells are connected to two or
more neighboring cells forming branches with a ’Y’ shape, which can be characterized
by one acute and two obtuse angles. If all branches are arranged in a preferred direction,
acute angles will be 0◦ whereas obtuse angles will be 180◦. However, in networks that
span widely, acute angles will be larger than 45◦ and obtuse angles 90◦. These parameters
were quantified in 3D by extraction from the 3D confocal microscopy imaging stacks,
thus preserving the 3D nature of the PK network.

Quantitative measures based on graph theory were applied for characterizing the com-
plex PK networks extracted from each image stack. We considered state-of-the-art graph
metrics [17] to estimate regional and global features of the PK network complexity, fol-
lowing the work of Rubinov and Sporns [145]. PK networks were then characterized by
a set of connected nodes (i.e. furcation points) and links between these nodes (PK path-
ways) allowing the analysis of important features such as the shortest path length between
two nodes of the network (their average often referred as to characteristic path length).
The chosen metrics were then the following: i) the global efficiency (GE), defined as
the averaged inverse shortest path length between all nodes of the network; ii) the local
efficiency (LE) of a node, computed as the averaged inverse shortest path of all neigh-
bors of the node; iii) and the degree, which refers to the number of neighbors a node has
and estimates network infrastructure. Local efficiency, which is a measure of segregation,
and global efficiency, which measures integration of the network, are combined to test
for ’small-world connectivity’, which is normally used to refer to networks with highly
segregated modules and high number of inter-modular links (integration), such as in the
case of the brain [17]. A small-world connectivity network will then be robust to the mal-
functioning/removal of certain nodes connecting modules since it will be possible to find
alternative small-distance paths between two given modules of the network. As in Achard
and Bullmore [3], we used the following criteria for estimating small-world connectiv-
ity: GElatt < GE < GErand and LErand < LE < LElatt , where latt is a lattice (regular)
equivalent network and rand is a random equivalent network with the same nodal degree
distribution and size as the original graph. These relations state that a small-world con-
nectivity network will have a higher integration (links between different modules) than
a lattice equivalent network but lower than a random one (based on GE). Furthermore,



5.3. Results 69

it will have more segregated modules than a random equivalent network but less than a
lattice one (based on LE).

Additional graph metrics were used to characterize the PK network complexity, in-
cluding: node betweenness (or node centrality), which is an indicator of a node’s cen-
trality in a network, being equal to the number of shortest paths from all vertices to all
others that pass through that node; and the assortativity coefficient, which estimates the
correlation between the degrees of nodes on two opposite ends of a link and shows the
preference for network’s nodes to attach to similar degree ones (indirectly measuring the
vulnerability of a network to insult, i.e. broken links). For comparison purposes, the node
betweenness is represented as a histogram for each network, with the number of shortest
paths normalized by the maximum number of possible paths crossing each node of the
network.

We refer to Boccaletti et al. [26] for more details about these measures. The Brain
Connectivity Toolbox [145] was used to compute graph measures. Weighted global and
local efficiencies were estimated by using the inverse distance of the edges of the network.

5.2.5 Statistical analysis

Data were expressed as mean standard deviation (SD) for all the measured lengths and
angles. The circular statistics toolbox from Matlab CircStat [21] was employed to com-
pute histograms, average and standard deviation of angles. Wherever appropriate, data
were subjected to statistical analysis by one-way analysis of variance (ANOVA). A value
of p < 0.05 was considered significant. Matlab software (MathWorks, Natick, MA) was
used for the statistical analysis.

5.3 Results

5.3.1 Cell identification and morphological analysis

Our results confirm a high T-system density in ventricular myocytes (labeled with V in
Figure 5.2 (b)) and almost absence of T-system in PK cells (labeled with P in Figures 5.2
(a)-(c)). This visual identification of the T-system was only possible due to the very high
resolution of the acquired WGA-labelled images. Figure 5.2 (a) shows the sparse T-system
of the PK cells and their nuclei, in contrast to the regular dotted pattern of T-system in the
working myocytes in Figure 5.2 (b). The shape of PK cells varied significantly at furcation
points, as compared to the regular tubular shape found in bundles and FRPS (Figures 5.2
(d)-(i)). The PK fibers at the junctions in general were more flattened and irregular, taking
two of them to make a junction. We have referred to this type of cell as ’star-like’ in this
paper. These star-like PK cells, as seen in Figure 5.2 (c), showed a lack of T-system. They
are commonly connected to tubular PK cells and share with them a lateral connection.
Five tubular and five star-like PK cells were segmented from the available data. Manual
segmentation of individual PK cells was followed by its 3D surface reconstruction, in
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Figure 5.2: Cell identification and shape configurations. Confocal images from Purkinje
fibers and myocytes (a)-(c). Tubular (d)-(f) and star-like Purkinje cells (g)-(i). Purkinje labeled
as (P), myocytes as (V ), transitional cell (PT ).

which we measured length, diameter, volume, surface area, and surface to volume ratio.
Figures 5.2 (d)-(i) show three examples of each type of 3D reconstructed cell. Quantitative
shape differences between the two types of PK cells are presented in Table 5.1. Although
the sample was small, the similarity in volume and surface area between cell groups was
remarkable.

Table 5.1: Geometrical measurements on individual PK cells as a function of shape.

Parameter Tubular shape Star-like shape
Length (µm) 119.76±28.57 63.27±6.27
Diameter sagittal (µm) 13.76±3.60 19.70±5.20
Diameter coronal (µm) N/A 6.79±1.51
Volume (µm3) 15756.32±1573.40 15843.62±6979.15
Surface area (µm2) 5604.27±107.83 5648.84±1892.67
Surface/volume (µm−1) 0.356 0.357

N/A: Not available
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Figure 5.3: Purkinje-ventricle connection. Purkinje labeled as (P), myocytes as (V ), transi-
tional cell (PT ).

5.3.2 Cellular connections

Extracellular space was clearly labeled by WGA in the acquired images. Figure 5.2 (a)
shows a PK end-to-end connection with a step profile, as highlighted in the figure (red
square). The collagen shielding of the PK fibers was only visible in the periphery, there-
fore we suggest that these cells are longitudinally connected. A PK-myocyte connection is
shown inside the red square in Figure 5.2 (b), where a single PK cell end-to-end connects
with a ventricular myocyte. Nevertheless, the PK cell shown in this figure had a higher
T-system density than regular PK cells (see arrow in Figure 5.2 (b)). The backtrace of the
PK strand in the proximal direction placed it at the endocardial insertion of a FRPS.

Visual inspection of longitudinal and cross sectional projections shown in Figure 5.3
suggests the existence of interconnections between PK cells and ventricular myocytes
through lateral connections. This assumption is based on the close proximity between cell
membranes and the absence of a clear separation in the extracellular labelling. The large
white arrows in Figure 5.3 indicate the potential lateral connection of PK to ventricular
myocytes. However, this observations cannot confirm whether the connections can trans-
mit electrical impulses. Previous works [114] described a layer of transitional cells (PT )
in between PK fibers and ventricular myocytes. In our imaging data we found cells with
different T-system configurations in between PK fibers and ventricular myocytes (Figure
5.2 (b)).

5.3.3 Free-running strands and their connections (network connec-
tions)

The study of the FRPS led us to differentiate two types of fiber configurations. In type
I all PK fibers inside the strand were in contact in the transversal section and shared the
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Figure 5.4: Purkinje free running strand type I. (a) Longitudinal and (b) cross-section views.

electrical information through end-to-end connections in the longitudinal direction. As
the strand reached the endocardium it spread out as a fan (Figure 5.4). In the second type
of FRPS fibers were divided into separate bundles inside the strand, using collagen for
insulation. Figure 5.5 (a) and (c) show how bundles inside a strand diverge going on their
own separate paths as they approximate to the endocardium. Figure 5.5 (b) and (d) show a
case with a smaller strand type II penetrating through the endocardium where its internal
bundles create an exchange of information by making a communication network.

5.3.4 Angles and branch length of the network

We extracted conduction pathways from 16 stacks of imaged tissue samples (see example
in Figure 5.6 (a)). Figure 5.7 illustrates the results of this segmentation for three repre-
sentative cases. Branch lengths of the networks were computed as the length between two
furcation points and plotted as a histogram in Figure 5.6 (b). The mode in branch length
distribution was at around 50 µm, with maximum lengths of about 300 µm. Its average
length was of 84.6 µm and median of 65.6 µm. A concentration of short paths, due to
several connected star-like cells, highlights the intricate communication among fibers at
its microstructure. As expressed above, two angle populations were established based on
their acute (α) or obtuse (β ) nature at the furcations, as illustrated in Figure 5.6 (a) (de-
tail). Figures 5.6 (c) and (d) show the angle distribution at each tissue sample for the α and
β populations, respectively. We conducted a one-direction Anova test for each population
of PK network branch angles, which determined that the values of the α population are
not drawn from the same sample (p=0.0013), and therefore they belong to two different
populations. These acute angles presented a mean of 55.2◦± 20.6◦, with values within
the range [20◦, 90◦], as illustrated in Figure 5.6 (c). In the case of obtuse angles (β ) the
Anova test showed these angles as to belong to the same population. The average of β
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Figure 5.5: Purkinje free running strand type II. (a)-(b) are longitudinal sections, and (c)-(d)
their corresponding cross-sections.

angles was 140.19◦± 25.8◦. From these values the selection of β angles seems to range
the entire interval [90◦, 180◦]. The blue boxes in Figures 5.6 (c) and (d) indicate the 25th
and 75th percentiles, while the red and dashed lines represent the median and extreme
values, respectively. On the other hand, the mean values for β angles are drawn from the
same population (p=0.1116).

5.3.5 Complex network analysis

The complexity graph measurements performed on the extracted conduction pathways is
shown in Figure 5.7. The numerical order of the tissue samples (rows) corresponds to the
order in which the data is presented in Figures 5.6 (c) and (d). GE and LE were computed
for a 100 random and 100 lattice equivalent networks of the same size and degree distribu-
tion (means presented in Figure 5.7). The criteria for small-world connectivity were only
satisfied in one case (first sample, #1 in Figure 5.7). Eleven networks presented a negative
assortativity coefficient, being the simplest non-redundant network the one showing the
smallest assortativity with a value of -0.667, whereas the largest assortativity value was
0.066. With respect to the node betweenness, the shift to the right of its histograms in
Figure 5.7 indicates the presence of highly travelled nodes, which means that a break-
down of one of them would likely change the path of many signals. On the other hand a
histogram with the curve shifted to the left represents networks with more balanced dis-
tribution of paths. In our analysis, 12 out of 16 samples showed histograms shifted to the
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Figure 5.6: Angles and branch length analysis. (a) Overlap of confocal microscopy plane
with the corresponding Purkinje centerlines. b) Branch length histogram; boxplots of the c)
alpha and d) beta angle distribution according to the corresponding tissue sample.
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left, implying networks with redundant paths as observed in the path reconstructions.

5.4 Discussion and conclusions

The main goal of our work was to characterize the 3D nature of the PK system. Previ-
ously, morphology of the conduction system and the PK cells was described based on
only 2D images instead of 3D stacks, which makes it difficult to draw conclusions on the
arrangement of the cells and the network. Confocal microscopy images of the substruc-
ture of the PK network confirmed two types of cell morphology, as reported in [113],
star-like and tubular PK cells. In the current work shape measurements were taken to
characterize the two different cell populations. To our knowledge these PK cell measure-
ments had not previously been taken from 3D reconstructions. Significant differences in
cell lengths and diameters were established, although cells preserved a low variance in
their surface to volume ratio (Table 1). These volume measurements are in good agree-
ment to the values reported in [159], even though those were estimated on pig data: 5900
µm2 vs 5600 µm2 of surface area for [159] and for this work, respectively. On the other
hand volume, surface/volume ratio indices and cell dimensions were substantially differ-
ent ( [159] vs this study): volume, 47k µm3 vs 16k µm3; surface/volume ratio, 0.15 µm−1

vs 0.35µm−1; shorter in length but larger width in our study. Other researchers reported
average dimensions of 164x35 µm in canine isolated PK cells [154] and 129x8 µm in rat
isolated PK cells [176], which are comparable to our value of 120x29 µm in rabbit PK
cells. A possible explanation for some of these differences might be that measurements
were mainly made on tubular cells. The morphological heterogeneity of PK cells raises
the question of whether physiological differences are also present, being an interesting
subject of further research. Differences in surface/volume ratios of cardiac working my-
ocytes among mammalian species [149], and regional differences in myocyte dimensions
have also been reported. A limited number of studies have been carried out to charac-
terize the morphological and electrical behaviour of PT s at the PMJs. Ryu et al. [147]
described PT from histological stained samples, as rectangular shaped with a centrally lo-
cated nuclei, as compared to round or oval shaped PK cells. In our current work PT were
positively identified in several data stacks by inspecting the integrity of the T-system on
their membrane: PK cells lacked the T-system structure therefore showing smooth contin-
uous membranes; on the contrary myocardium cells usually had a dense regular pattern
of dots on the membrane representing the invaginations of the T-system; finally PT cells
showed a more sparse membrane dotted pattern (Figure 5.3). Doubts have been cast as
to the existence of these cells at PMJs across all species, although the presence of tran-
sitional cells has been confirmed at many other parts of the cardiac conduction system,
specifically in areas of transition/connection to the working myocytes, as in the case of
the sinus node, the AV node or the His bundle [153, 155]. It has been reported in the liter-
ature [169] that the connection between PK fibers and working myocytes occurs in either
of the two following ways: i) through a 2D interface made of PT that separates the PK
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Figure 5.7: 3D model of reconstructed Purkinje networks and their corresponding graph
theory measurements. G.E: global efficiency, G.E. Rand.: global efficiency random, G.E. Latt:
global efficiency lattice, L.E.: local efficiency, L.E. Rand: local efficiency random, L.E: local
efficiency lattice, C.P. Length: characteristic path length, Assort: Assortativity.



5.4. Discussion and conclusions 77

fiber from the myocardium, and ii) through a funnel connection in which the narrow side
is a PK fiber to which muscle fibers connect progressively. In canine hearts Rawling et
al. [130] described the electrical properties of transitional cells, and their coupling to PK
and myocardial cells, which supported the idea of punctual or funnel PMJ connections.
In an electrical analysis of the PMJs they indicated that at some locations multiple PK ac-
tivation signals contribute to the junction process while others appear to be substantially
uncoupled from neighboring PK cell groups and the underlying transitional cells. This
is contrary to the hypothesis of a 2D interconnection sheet (i.e. 2D interface) that con-
nects PK and myocardium at many locations. The analysis of 3D confocal microscopy
imaging data acquired on rabbits in this work suggests the presence of these two types
of Purkinje-myocardium connections (i.e., 2D interface and funnel ones). The employed
criteria were solely based on the proximity between cells and lack of collagen fibers in be-
tween them. We hypothesized that the connection among PMJs with 2D interfaces (Figure
5.3) is done through lateral connections of gap junctions. In different species connexins
Cx43 and Cx40 have been found expressed on the sides of ventricular myocytes and PK
fibers, respectively, although in much less density than at the cell ends. In [153] it was
observed in mouse that Cx40 and Cx45 are co-expressed both in PK myocytes and in the
underlying transitional cells, suggesting that Cx45 plays an important role in connecting
up the Cx40/Cx43 PK myocyte compartment to the Cx43-expressing working ventricle
via the transitional cells. Other structures of the cardiac conduction system such as FRPS
were more easily identified. These structures are defined as cords made of a PK fiber bun-
dle encased in connective tissue (i.e., collagen). They electrically link different parts of
the endocardium [13]. False tendons have also been proven to carry PK fibers on the in-
side [107, 114]. Our study shows for the first time two different configurations of the PK
fibers within the strand: i) type I strands, where all cells are in contact, therefore sharing
electrical information (as can be observed in Figure 5.4); and ii) type II strands where two
separated bundles run in parallel, with limited information exchange (Figure 5.5). Given
the field of view of the available stacks of images we were not able to trace the strands to
their origin. An intuitive approach at understanding the role of furcations points observed
in these networks is to hypothesize that its main function is to combine electrical informa-
tion by connecting PK fibers coming from different ends. We also hypothesize that type II
strands might be the result of multiple strands coming together but without sharing con-
ductive material. A possible explanation for maintaining electrical information segregated
could be for safety issues; for instance if strand function is compromised at one end of
the network (e.g. due to ischemia) the other ends can still receive electrical stimuli. The
branch length pattern was found to follow an exponential distribution, in agreement with
results previously reported for sheep [80], calf and lamb hearts [151] at the macroscopic
level. The average lengths measured in these previous works cannot be strictly used for
comparison given that the resolution of their images was substantially lower and studied
species were also different. Nevertheless it is worthy to note that the branch length distri-
bution provided by Ijiri et al. [80] has a range from 0 to 300 µm and an average length
of 130 µm, whilst we have measured 84.6 µm in the present study on rabbits. With regard



78
5. Analysis of the microstructure of the cardiac conduction system with confocal

microscopy imaging

to the angles between branches, in [151] angles of 60.0◦± 40◦ were reported from macro-
scopic observations for acute angles (α), which are comparable to 55.2◦± 20.6◦ obtained
at microscopic level. For obtuse angles (β ), macroscopic observations show a range of
160◦± 20◦, whereas microscopic measurements show a wider range of 140.19◦± 25.8◦.
In the complex network analysis based on graph theory measurements, we made several
observations. The majority of the extracted PK networks did not fulfill the small-world
connectivity criterion (just one out of 16). This means that the PK networks studied at this
resolution did not show high modularity (clusters of nodes highly interconnected between
them), being quite sensitive to any possible insult to the network. This is in contrast to the
behaviour of other networks in the human body such as the brain, where the small-world
connectivity criterion is fulfilled [17]. Further research is still needed to study if small-
world connectivity is fulfilled in PK networks at more macroscopic resolutions and with
larger fields of view. Eleven out of 16 of the analyzed networks (69%) showed negative
values of the assortativity coefficient, thus being vulnerable to insult (malfunctioning of a
node or link), which correlates with the absence of small-world connectivity. Negative as-
sortativity is a property that share biological networks in general, since high degree nodes
such as star-like cells tend to join low degree nodes, such as tubular cells. When visually
inspecting the reconstructed PK networks, one could easily identify four very simple net-
works, corresponding to non-plexus regions, which have the largest negative assortativity
values. When ignoring simple networks in the study, there were a lower percentage of
negative assortativity cases (58%). The low robustness to malfunctioning of some nodes
in these networks could cause local microscopic conduction blocks due to alterations of
network properties due to ischemia or pharmacological treatment among other factors.
However, the PK network redundant structure observed at macroscopic level [8, 151]
might compensate microscopic malfunctions. The betweenness measurement in the net-
work analysis complemented the assortativity coefficient by providing local information
about the relevance of a given node within the network. In our analysis, 12 out of 16
samples showed histograms shifted to the left, which involves a balanced distribution of
PK network without critical hubs. This increases the safety factor of the network as a
transmitter of the electrical impulse in case of a local damage of the structure. In addition,
it is important to point out that in a PK network the electrical impulse does not travel
only through the shortest paths, and that a damage or block in a section of the system,
will only delay the impulse, but will not block it completely. The differentiation between
PK and other myocardial cells was based on the high density of the T-system in working
myocardial cells and its absence in PK ones. The use of WGA to identify the outer cell
membrane, T-system and extracellular space has been established in a number of stud-
ies [23, 56]. Other authors have used a variety of techniques for similar purposes, such
as light microscopy [169], scanning and transmission electron microscopy [37, 113, 155],
and confocal microscopy with lipophilic fluorescent dye di-8-ANNEPS [159]. The seg-
mentation of PK cells from 3D stacks was mainly manual given the complexity of the
3D structures and the imperfections in the WGA labelling. Semi-automatic methods such
as region growing techniques were not effective due to the number of discontinuities on
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the cell membrane, causing them to leak through into the extracellular space. Although
several recent semi-automatic and automatic segmentation techniques in cell images have
been proposed [152] manual techniques still remain the gold standard.

5.4.1 Limitations of the study

Analysis of imaging PK cells is a complex task, which involves labor-intensive experi-
ments and tedious manual image processing where many tissue samples need to be ac-
quired in order to have some of them fully analyzed. The results presented in this paper
correspond to sparse tissue samples from different endocardial regions, instead of a sin-
gle region, which prevented us to draw conclusions on local differences of the network.
Another limitation was the lack of data to relate microscopic and macroscopic features in
the same specimen. The hypothesis based on the existence of lateral connections on PMJs
still needs further validation with Cx40-Cx43 labelling studies to confirm their presence
in these areas of close proximity and lack of collagen. Finally, 10 datasets were processed
to extract cell segmentations and then derive morphological indices due to the complexity
of the task that was performed manually. The limited field of view of the acquired micro-
scopic data resulted in simple networks with a small number of nodes and links, unlike
dense networks (e.g. brain connectome) where graph metrics are usually applied, making
some of the complexity network estimates difficult to interpret.

5.5 Conclusions
This study inspects the morphology of PK cells in 3D, revealing the different types of
cell shapes, that conform the large network infrastructure of the cardiac conduction sys-
tem at distal sections. The configurations and pathways formed by the PK system show a
high (but heterogeneous) degree of robustness at the microscopic level as obtained after
performing a network analysis. These results might help building more realistic compu-
tational PK systems at high resolution levels including different cell configurations (e.g.
star- and tubular-shaped cells). In addition, better knowledge on the organization of the
network might help in understanding the effects that several treatments such as radio-
frequency ablation might have when the PK system is disrupted locally.
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General Conclusions

6.1 Overview

The work developed in this thesis was motivated by the necessity to improve the accu-
racy of computational electrophysiology models of the heart that aimed predicting car-
diac activation under different conditions. This goal very soon revealed the importance of
modeling the CCS in detail from the anatomical and electrical points of view.

The first chapter of this manuscript reviews the anatomy and function of the CCS, and
presents several computational models developed during the last years. Existing models
had different drawbacks and were very simple, not being able to accurately reproduce
the electrical activation sequences observed in-vivo. The CCS is a key component in a
heart model aimed to simulate cardiac electrophysiology. Not only to reproduce the nor-
mal activation patterns, but also to study its complex interactions with the myocardium in
common pathologies such as dilated cardiomyopathy (DCM) or hypertrophic cardiomy-
opathy (HCM).

The second chapter describes the methodology to develop the branching structure of
a generic CCS manually, which was integrated into a patient specific heart geometry to
study the interaction of the PK system with a pacing device (i.e. Cardiac Resynchro-
nization Therapy) under normal and two pathological conditions (HCM and DCM). The
model that was drawn on the endocardium of the patient, was only connected to the my-
ocardium at the terminal PMJ points by connectors. A finite-element model was built to
perform multi-scale biophysical simulations that took into account the ion dynamics of
each type of cell present in the heart, including the anisotropic electrical propagation be-
tween adjacent cells. The simulation study revealed that models that do not consider the
PK system will produce a large error in their estimates of important indices such as the
degree of inter-ventricular dyssynchrony, which is used to optimise the pacing devices.
This study demonstrated the importance of the retrograde activation at PMJs, when the
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activation of the heart does not follow the normal pathways. In addition, substantial re-
gional differences were observed depending on the pathology, i.e., the heart geometry, for
the same activation protocol of the CRT leads. The most notable effect on the activation
pattern was seen on the lateral wall, where the apical and basal segments changed their
order of activation. This should be considered in clinical practice at the moment of the
LV lateral wall lead positioning to improve the outcome of the procedure. However, the
morphology of the PK model was not a faithful representation of a complex PK network,
and did not reproduce accurately the patterns of activation, both anterogradely and retro-
gradely. Nevertheless, the developed model still produced simulation results remarkable
similar to a normal pattern of electrical activation, following the typical apical to basal
pattern.

Given the limitations of the first manually developed PK model, an automatic method-
ology to build a realistic CCS was developed, which is fully described in Chapter 3. In
the proposed model PK networks are grown by using a set of user-defined parameters
and mandatory hard-coded rules that control the main characteristics of the structure and
ensure a more realistic result. The method is stochastic and produces different morpholo-
gies from a set of parameters following the principles derived from L-systems approaches.
Given the relevance of the CCS network to simulate realistic cardiac activation sequences
and the impossibility of obtaining patient-specific CCS structural data, an stochastic CCS
model might help to achieve more accurate simulation results. The CCS structures built
with this approach generate electrical activation sequences within physiological range
without further user interaction than the selection of the input parameters. Nevertheless,
the selection of these parameters was still a critical step in the methodology, having a
large influence on the simulation results and requiring considerable fine tuning. An anal-
ysis of the CCS anatomy at macroscopic and microscopic level was carried out to find
the (range of) most appropriate values for these parameters and thus improve the CCS
networks automatically generated.

The fourth chapter is devoted to the developed methodology to extract Purkinje data
from macroscopic images of calf and lamb hearts. Purkinje networks were marked with
ink and subsequently segmented from the acquired images. Information on branch lengths
and angles was obtained from several samples, and used to feed the algorithm to build the
Purkinje network. After visual inspection of the results, the constructed CCS qualitatively
resembled better the complex anatomy of real Purkinje systems than the previous models.
In addition to the measured parameters a set of additional constraints were added to the
model to control the growing with the aim of having a network incorporating the most
relevant knowledge and observations described in the literature. This is especially impor-
tant to model complex electrical pathologies. The sensitivity analysis carried out on the
density of terminal branches and PMJs showed that there are not significant differences
in TAT after increasing their density from 100 PMJs, which is related to the QRS width.
Differences in angles between branches in the PK terminal branches did not induce signif-
icant overall differences in the branch patterns or activation maps. Nonetheless, the local
activation pattern showed clear differences locally, which could be reflected on the QRS
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morphology. The new stochastic CCS models that take into account these new histologi-
cal knowledge-domain data, might help to achieve more accurate simulation results. The
developed PK networks produced good properties from the macroscopic point of view but
did not consider realistic characteristics at microscopic scale, neither for the morphology
nor the density of PMJs.

Chapter 5 presents a study that was carried out to analyze the Purkinje network at
microscopic level, and in particular its morphological structure and PMJs configuration,
where Purkinje cells contact the working myocardium. We find out two different types
of PK cell shapes that conform the large network infrastructure of the cardiac conduc-
tion system at distal sections. The configurations and pathways formed by the PK sys-
tem showed a high (but heterogeneous) degree of robustness at the microscopic level as
obtained after performing a network analysis using graph metrics. These results might
help building more realistic computational PK systems at high resolution levels includ-
ing different cell configurations (e.g. star- and tubular-shaped cells). In addition, better
knowledge on the organization of the network might help in understanding the effects
that several treatments such as radio-frequency ablation might have when the PK system
is disrupted locally.

6.2 Outlook
The methods presented in this thesis are not a definite procedure to build the CCS in a
computational model and present a number of limitations which should be addressed in
the future.

6.2.1 Modeling of pathologies in cardiac electrophysiology

Electrophysiological experiments in cells, tissues and whole specimens have led to a rapid
increase in the body of knowledge regarding the mechanisms underlying arrhythmias.
Modeling and simulation of cardiac electrophysiology in normal and pathological con-
ditions have played an important role not only in hypothesis-driven research at various
levels of integration, but also in providing the framework for the unification of diverse ex-
perimental findings. With the increase in computer power during the past decades and the
progress in imaging technologies, multi-scale, biophysically detailed models of the heart
are finally (even if still slowly) being translated into clinical environments, as part of the
emerging discipline of computational medicine by evaluating therapeutic approaches and
contributing to the patient-specific optimization of cardiac care.

As this trend will continue in the future, cardiac modeling as a tool will necessitate
continuous adaptation and integration of new elements, including model redesign and
evaluation, improvements in the execution time of biophysically detailed cardiac models,
implementation of consistent strategies for comparison with experimental measurements,
and investing in efforts to ensure the repeatability and consistency of modeling results that
are required to work in a medical context.
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The evolution of cardiac modeling will continue to be strongly dependent on devel-
opments in experimental methodologies, which provide data to constrain, improve, and
validate the models. Of particular importance will be the capability to better resolve the
patho-physiological structure and interactions of the four different chambers of the heart
(probably also including the overall cardiovascular system) and to fully characterize the
complex electrophysiological and fibrotic remodeling in disease.

6.2.2 Evolution of models of the Purkinje system

Information of the cardiac conduction system has been continuously gathered over the
last decades, but it has only been during the last years when it has became more relevant
for the modeling of cardiac electrophysiology. Several models of the CCS exist already
that include a tree-like structure, and a specific modeling of the PMJs, which shows the
importance of having a complete description of the system instead of a simplified models
with only PMJs. However, there is still a long way before a patient-specific model of the
CCS can be incorporated to a model, due to the complexity of the system and the lack of
data in patients. Nevertheless, Cardenes et al. [38] recently proposed a new methodology
to constrain or estimate the location of the PMJs and a potential structure of the CCS
using minimal cost geodesics techniques and the available sparse electrophysiological
data from electro-anatomical maps. This combination of modeling and sparse data has
shown promising preliminary results but still needs proper validation. In any case, the
resulting reconstructed patient-specific PK networks can already provide the clinician
information about the PK system that can be crucial in some interventions where the
CCS plays a relevant role such as the ablation of fascicular (Purkinje-related) ventricular
tachycardias or Cardiac Resynchronization Therapy.
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AD Anterior Division
AP(D) Action Potential (Duration)
AVN Atrioventricular Node
BB Bundle Branches
CCS Cardiac Conduction System
CRT Cardiac Resynchronization Therapy
DAD Delayed After-depolarization
DCM Dilated Cardiomyopathy
EAD Early After-depolarization
ECG Electrocardiogram
FRPS Free-Running Purkinje System
HB His Bundle
HCM Hypertrophic Cardiomyopathy
LAT Local Activation Time
LBB(B) Left Bundle Branch (Block)
LV Left Ventricle
PD Posterior Division
PT Transitional cell
PK Purkinje
PKBB Purkinje Backbone Branches
PKTB Purkinje Terminal Branches
PMJ Purkinje-Jyocardial Junction
RBB(B) Right Bundle Branch (Block)
RV(B) Right Ventricle (Breakthrough)
SAN Sinoatrial Node
TAT Total Activation Time
Vmax Maximal rate of rise of the AP upstroke
VVD Ventricle-Ventricle delay
WGA Wheat Germ Agglutinin
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