Fundamentals Multiprotocol Label Switching – MPLS III **Design of Telecommunication** Infrastructures 2008-2009

Rafael Sebastian

Departament de tecnologies de la Informació i les Comunicaciones Universitat Pompeu Fabra

MPLS VPN

- Basics AoTM
- VPLS
- Test Questions

Goals of the section

 The operation of MPLS VPN
What RDs and RTs are
The role of Multiprotocol BGP in MPLS VPN networks
The packet forwarding through the MPLS VPN network

The operation of PE-CE routing protocols and their specifics for MPLS VPNs

- Architecture of MPLS VPN
- BGP Review
- Packet Forwarding
- PE-CE Protocols
- Topologies in MPLS VPNs

Review Questions

- VPN emulates a virtual private network over a common infrastructure
- They provide Layer 2 or 3 communications
- All customer inside the VPN must have connectivity
 - Connectivity to other VPN might be required
 - Connectivity to the Internet is desired

MPLS VPN Review

- If P would forward looking at IP address
 - Addresses in customers cannot be private (possible overlap)
 - P and PE must have complete routing tables → large routing table for many customers
 - If that's the case: Use of iBGP mandatory in all P-routers
- If P have a separate routing table/Customer?
 - One routing process/VPN at each P (not scalable)
 - P cannot distinguish between VPN
- SOLUTION \rightarrow P uses Labels
 - P completely unaware of VPNs

Virtual Routing Forwarding

- A virtual routing/forwarding (VRF) is a VPN routing and forwarding instance
- A PE router has a VRF instance for each attached VPN

2008/2009

Route Distinguisher - RD

- VPN prefixes carried into MPLS by MP-BGP
 - Prefixes across ISP must be unique (no overlap)

In case same prefixes are in different customers

• Use of RD \rightarrow Unique ID (64-bit field)

Now prefixes = IPv4 + RD = vpnv4

- MP-BGP carries vpnv4 prefixes between PEs
- RD (e.g. 1:1:10.100.1.0/24)
 - Option 1: ASN:nn (ASN = Autonomous system)
 - Option 2 IP-address:nn

Route Targets - RT

What if I want to communicate two different VPNs?

- RD will not match!! \rightarrow not sharing routes
- RT → routes that should be imported from MP-BGP into the VRF
- Exporting an RT
 - Export vpnv4 routes with the RT on the PE from VRF
- Import an RT
 - Received vpn4 route from MP-BGP imported by VRF

Prefixes are transported inside MPLS Network → BGP

VPNv4 Route Propagation In detail

Architecture

NPLS VPN

Packet forwarding

- How does the egress PE router know which VRF the packet belongs to?
 - Not in IP Header or Label
- SOLUTION
 - Use another Label associated to VRF
 - All packets in MPLS VPN have two labels
 - IGP Label (top) and VRF Label (bottom)
- How egress PE signal ingress PE router the label to use for a VRF prefix?
 - MP-BGP signals VPN labels

Packet forwarding

In Summary

- VRF-to-VRF traffic has two labels in the MPLS VPN
- Top label is the IGP label distributed by LDP or RSVP for TE between all P and PE routers
 - P routers use the IGP label to forward the packet to the correct egress PE router
- Bottom label is the VPN label that is advertised by MP-iBGP from PE to PE
 - Egress PE router uses the VPN label to forward the IP packet to the correct CE router

MPLS VPN - BGP

BGP Review

- BGPv4 is an established inter-domain routing protocol
- eBGP used to peer with other ISPs
- iBGP run inside the ISP core
- Enabled to enforce policies
- iBGP is the best option to vpnv4 prefixes between PE routers

BGP Multiprotocol

- Original definition (RFC 1771) → For carrying IPv4 prefixes
- Extended (RFC 2858) → Multiprotocol Ext.
 - Negotiation: Routers capabilities exchanged

sydney-ce#show ip bgp neighbors BGP neighbor is 10.10.4.1, remote AS 1, external link BGP version 4, remote router ID 10.200.254.5 BGP state = Established, up for 00:00:37 Last read 00:00:30, hold time is 180, keepalive interval is 60 seconds Neighbor capabilities: Route refresh: advertised and received(new) Address family IPv4 Unicast: advertised and received ipv4 MPLS Label capability: advertised and received

BGP

- NAV

MPLS

BGP Extended Community RT

- The extended community is a optional BGP attribute (required for MPLS VPN)
 - Indicates to BGP speakers (PE routers) if the route should be imported into a VRF

Iondon#show ip b BGP table version i Status codes: s sur	is 31, local route			best, i - int	ernal,			
r RIB-failure, S Stale								
Origin codes: i - IGP, e - EGP, ? - incomplete								
Network	Next Hop	Metric	LocPrf	Weight	Path			
Route Distinguisher: 1:1 (default for vrf cust-one)								
*> 10.10.2.0/24	0.0.0.0	0		32768	?			
*> 10.10.100.1/32	10.10.2.1	0		0	65001 i			
*> 10.99.1.1/32	0.0.0.0	0		32768	?			
Route Distinguisher: 2:2 (default for vrf cust-two)								
*> 10.140.1.1/32	0.0.0.0	0		32768?				

BGP carrying the label

- BGP advertises the vpnv4 prefixes in the MPLS VPN network
- PE Routers needs a *new label* to forward VPN traffic to the correct CE router
 - The label is simply piggybacked along with the vpnv4 prefix and advertised by BGP

BGP label advertisement

Network	Next Hop	In label/Out label	
Route Distinguish	er: 1:1 (cust-one)		
10.10.2.0/24	10.200.254.2	29/36	
10.10.4.0/24	0.0.0	26/nolabel	
10.10.4.2/32	0.0.0	37/nolabel	
10.10.100.1/32	10.200.254.2	32/35	
10.10.100.3/32	10.10.4.2	38/exp-null	
10.88.1.1/32	10.200.254.2	34/34	
10.99.1.1/32	10.200.254.2	28/33	
10.99.1.2/32	0.0.0.0	27/nolabel	
10.200.200.1/32	10.200.254.2	30/32	

NOTE: Each vpnv4 prefix is assigned a unique MPLS label

BGP

MPLS VPN -

NPLS VPN - BGP

Route Reflectors – RRs Review Note

- An RR is a BGP speaker that reflects routes from other BGP speakers
- iBGP requires a full-mesh topology
- RR reflects BGP routes but not forward traffic

PE-CE Routing Protocols

Routing is necessary between the PE and CE

- Static routing
- OSPF
- EIGRP
- IS-IS
- eBGP

Static Routing PE-CE

- It is the simplest but it is tedious
- Redistribution of static routes (as vpnv4) into BGP → All PE learn them

PE-CE Protocols

MPLS VPN

Static Routing PE-CE

- Used in environments where a customer site has a single connection to P-network and uses a single IP prefix
- Recommended in environments where the Service Provider needs tight control (some Central Services)
- Use default routes on CE routers in combination with static routes on PE routers
- Note: static routes increase the management burden on Service Provider

Dynamic Routing PE-CE OSPF

Customer routes from PE to PE

- OSPF is redistributed into iBGP and vice versa on the PE routers
- Use in cases where every CE router needs to know all of the routes

Protocols

PE-CE

VPN

MPLS

Dynamic Routing PE-CE OSPF redistribution

SOLUTION

- BUT from PE to customer OSPF routes are marked as "External" → worse metric!!
- Routes are advertised as "Summary routes" (LSA Type 3). i.e inter-area routes
- This is not the normal way of working

Dynamic Routing PE-CE OSPF redistribution

F

Protocols

PE-CE

MPLS VPN

Dynamic Routing PE-CE OSPF

OSPF Metric Propagation

- Redistribution from OSPF \rightarrow MP-BGP on the PE
 - OSPF Metric used to set BGP MED (*external metric*)
 - BGP MED also use to redistribute MP-BGP→OSPF

BGP Extended Communities for OSPF

 Router type, Area number, OSPF Router ID Domain ID,

Dynamic Routing PE-CE Recommendations

- RIPv2, OSPF and Exterior BGP are supported
- Use RIP for stub sites and when convergence is not an issue
- Use OSPF only as an exception
 - Very large customer network
 - Migrating existing large OSPF customer
- Use eBGP in complex PE-CE routing scenarios
 - Many routes exchanged between PE and CE
 - Multi-homed sites
 - No redistribution involved

MPLS VPN Topologies

- Overlapping
- Central Site
- Hub-and-Spoke

MPLS VPN Topologies

Overlapping scenario

- Can be chosen for security reason
- Companies where central sites participate in corporate network and in an extranet
- Company with several security conscious departments that exchange data between their servers

MPLS VPN Topologies

Central Site

- Clients need access to central servers
- Servers can communicate with each other
- Clients can communicate with all servers, but not with each other
- Companies where central sites participate in corporate network and in an extranet
- Company with several security conscious departments that exchange data between their servers

MPLS VPN Topologies

Hub-and-Spoke scenario

- One central site has full routing knowledge of all other sites of the same VPN
 - Hub-Site
- Other sites will send traffic to the Hub-Site for any destination
 - Spoke-Sites
- The Hub-Site is the central transit point between Spoke-Sites

MPLS VPN - Internet Access

Internet routing done via BGP table of the ISP

- Global routing tables used for Internet routes
- By default VRF and global routing separated

Internet in a VPN

- All Internet routes in VRFs
 - Bad decision \rightarrow Huge number of routes
 - If all customers access same Internet VRF \rightarrow Risk

MPLS VPN - Internet Access

Internet access through Global Routing

- PE-CE link for VPN traffic using VRF
- PE-CE link for Internet using global routing
- To avoid using two links
 - Sub-interfaces
 - GRE tunnel for the Internet link \rightarrow default route

MPLS VPN - Internet Access

Internet access through Static Routing

- Forwarding Internet traffic to ISP gateway
- Gateway known by all P routers through global routing tables
- PE router use iBGP to peer ISP gateway

Review Questions

- 1. What is a route distinguisher?
- 2. How is a packet that is coming from the CE router identified as to which VRF it belongs?
- 3. What is the purpose of RTs? What is an RR group?
- 4. When would you use different route distinguishers for routes of the same VPN?
- 5. Why do MPLS VPN packets have two MPLS labels?

MPLS VPN – Review Test

Test Questions

1. How many bits long is a route distinguisher?

- A. 16
- B. 32
- C. 48
- D.64
- 2. Which of the following protocols is used to propagate VPN labels between edge routers?
 - A. TDP
 - B. LDP
 - C. Standard BGP with extended communities
 - D. MP-BGP
- 3. To have a single router appear as many routers, which of the following mechanisms is used?
 - A. RD
 - B. VPNv4
 - C. VPN
 - D. VRF

Test Questions

4. In Multi-Protocol BGP (MP-BGP), neighbors need to be

- A. Configured
- B. Activated
- C. Sent standard communities
- D. Configured with VDP
- 5. Which of the following mechanisms keeps overlapping addresses from doing so in MP-BGP?
 - A. RD
 - B. VPNv4
 - C. VPN
 - D. VRF

6. Which of the following is not a component of a VRF?

- A. VRF-specific routes
- B. CEF
- C. Global routing table
- D. None of the above

Test Questions

7. MPLS VPNs offer overlay VPNs.

MPLS VPNs offer ______ security as traditional

A. The same

B. Worse

C. Better

D. None of the above

- 8. P routers ______ knowledge of a customer's VPN routes.
 - A. Do have B. Do not have

9. A(n) _____ imposes the VPN label.

- A. LSR
- B. LSP
- C. Edge-LSR
- D. None of the above

Test Questions

10. What types of routes are in the PE router's global routing table?

- A. Customer routes
- B. Service provider routes
- C. Customer and service provider routes
- D. None of the above

11. What types of routes are in the PE router's VRF for a particular customer?

- A. Customer routes
- B. Service provider routes
- C. Customer and service provider routes
- D. None of the above

12. MP-BGP within an AS is called _____

- A. MP-BGP
- B. MP-IBGP
- C. MP-EBGP
- D. MP-MBGP

MPLS VPN
Basics AToM
VPLS

Test Questions

Goals of the section

 The purpose and architecture of AToM
 The Layer 2 encapsulation types that can be carried across the MPLS backbone
 How to implement Ethernet over MPLS

- Understanding the need for AToM
- Transporting Layer 2 Frames
- AToM Architecture
- Transported Layer 2 Protocol
- Review Questions

Motivation

- MPLS VPN work over shared MPLS services
- Legacy leased lines, ATM and F/R still in use
- AToM
 - Limited to Layer 2 point-to-point services: Virtual Private Wire Service (VPWS)
 - Intelligence limited to the PE (edge technology)
 - Core MPLS P routers do not need extra conf.
 - Allows MPLS VPN (L3VPN) with legacy technologies (L2VPN) using the same infrastructure
 - Customers have full control of their network

Transporting Layer 2 Frames

- Transporting L2 frames by:
 - Carry traffic across MPLS backbone (AToM)
 - Carry traffic across IP backbone (L2TPv3)
- AToM based on pseudowires
 - Connection PE-PE emulating a wire
 - Use tunneling

-rames

ansporti

ToM

AToM Architecture

- Core (PE-PE): Common MPLS infrastructure with LDP or RSVP
- Border (PE-CE): Attachment circuits (AC)
 - AC can be F/R, ATM, HDLC, PPP, Ethernet
- **LSPs**: Defined for each direction \rightarrow Tunnels
 - Inside each tunnel \rightarrow Several pseudowires
 - Use of additional labels to identify pseudowires
 - Several pseudowires multiplexed in a tunnel
- Labels: 1 for tunnel + 1 for pseudowire

Data Plane of AToM

2008/2009

MPLS III- Rafael Sebastian

EoMPLS

- AToM solution for Ethernet is strictly point-topoint
- Equivalent to LAN-to-LAN bridging over pointto-point WANs
- VLAN header can be carried over the MPLS network transparently
- LAN-like solution over MPLS \rightarrow VPLS
- Two modes can be signaled:
 - Port mode
 - VLAN mode

Scenarios – Simple Ethernet EoMPLS

Scenarios – VLAN Ethernet EoMPLS

PE1#show mpls l2transport vc

Local intf	Local circuit	Dest address	VC ID	Status
	Eth VLAN 100 Eth VLAN 200			UP UP UP

PF

Dot1q Tunneling over AToM QinQ

■ Double tagging (QinQ) \rightarrow VLAN in VLAN

L2 Protocols

Many VLANs customer on 1 VLAN provider

MPLS VPN Basics AoTM VPLS

Test Questions

Explain what VPLS stands for
 Explain how VPLS emulates an Ethernet switched network over MPLS

Need for VPLS
VPLS Architecture
VPLS Forwarding
H-VPLS

Review Questions

Introduction to VPLS

- VPLS emulates LAN segment across MPLS backbone using PW
- Each LAN is completely separated
- Spanning Tree Protocol (STP)
 - Option 1: end at PE
 - Option 2: crosses MPLS Backbone (virtual switch)
- Topology point-to-multipoint
 - Ethernet features:
 - MAC Address learning, broadcast, multicast

Need for VPLS I. AToM

Why deploy VPLS?

Feature	Benefits
Point-to-multipoint multiprotocol services	MPLS is only focused in IP. AToM can carry L2 frames (EoMPLS) but only delivers point-to-point services
MPLS core network emulates a flat LAN segment	Overcomes distance limitations of Ethernet- switched networks → Offer Virtual Private LAN Services Formerly called Transparent LAN Services (TLS)
Extends Ethernet broadcast capability across WAN → Point to Multipoint Connectivity	Connects each customer site to many or all other customer sites – A single CE-PE link transmits Ethernet packets to multiple remote CE routers – Fewer connections required to get full connectivity among customer sites
Multipoint plug-and-play Provisioning	Adding, removing or relocating a CE router requires configuring only the directly attached PE router

VPLS Characteristics

- Forwarding of Ethernet frames
- Forwarding of unicast frames with an unknown destination MAC address
- Replication of broadcast and multicast frames to more than one port
- Loop prevention (*split horizon*)
- Dynamic learning of MAC addresses
- MAC address aging

VPLS Characteristics

- Flooding / Forwarding:
 - MAC table instances per customer and per customer VLAN (similar to L3-VRF) for each PE
- Address Learning / Aging:
 - Self Learn Source MAC to port associations
 - Refresh MAC timers with incoming frames
- Loop Prevention:
 - Create partial or full-mesh of EoMPLS VCs per VPLS
 - Use "split horizon" concepts to prevent loops
 - Announce EoMPLS VPLS VC tunnels

VPLS Signaling

- Full-mesh of *pseudowires* between PE's for each VPLS instance
 - PE neighbors must be defined
 - Targeted sessions established \rightarrow VC & PW
- If VPLS assigned to VLAN on PE
 - Local VC ID assigned to VPLS instance

Example VPLS Signaling

Example VPLS Signaling

VPLS-PE-1#show mpls l2transport vc 1 detail Local interface: VFI cust-one up Destination address: 10.100.100.2, VC ID: 1, VC status: up Tunnel label: 17, next hop point2point Output interface: PO5/1, imposed label stack {17 18} Signaling protocol: LDP, peer 10.100.100.2:0 up MPLS VC labels: local 16, remote 18

Forwarding

ATOM
Tunneling L2 Protocols

It is possible to tunnel L2 protocols

 Protocols transparently tunnel without PE participating (e.g. STP, VTP, CDP)

Forwarding

AToM

CE1#showcdpneighbors

Device ID Local Intrfce Holdtme Capability Platform Port ID VPLS-PE-1 Fas 2/2 175 R S I WS-C6506 Fas 4/2

TUNNELED CONFIGURATION ON

CE1#showcdpneighbors

Device ID	Local Intrfce	Holdtme Capability Platform			Port ID
CE3	Fas 2/2	146	SI	C2950-2	Fas 0/9
CE2	Fas 2/2	150	R	C10720	Fas 2/6

CDP = Cisco Discovery Protocol

2008/2009

Hierarchical VPLS

- The PE routers are no longer directly attached to the customer equipment
- Hierarchy introduced by adding another layer in the access layer toward the CE
- H-VPLS types

ATOM - H-VPLS

- H-VPLS with dot1q tunneling in the access layer
- H-VPLS with MPLS in the access layer

Review Questions

- 1. How many labels are used to forward VPLS traffic, and what is the use of each of those labels?
- 2. Which Layer 2 control protocols can be tunneled across the VPLS network? (name at least 2)
- 3. Why do the PE routers need to be in a full mesh of pseudowires in VPLS?
- 4. Name the six functions that VPLS performs in emulating an Ethernet switch.
- 5. In which two ways can H-VPLS be implemented?
- 6. Are there any differences in the encapsulation of Ethernet frames across the packet network between VPLS and Any Transport over MPLS (AToM)?

ANSWER TO REVIEW QUESTIONS

Review Questions

- 1. What is a route distinguisher?
- 2. How is a packet that is coming from the CE router identified as to which VRF it belongs?
- 3. What is the purpose of RTs? What is an RR group?
- 4. When would you use different route distinguishers for routes of the same VPN?
- 5. Why do MPLS VPN packets have two MPLS labels?

MPLS VPN – Review Test

Test Questions

1. How many bits long is a route distinguisher?

- A. 16
- B. 32
- C. 48
- D.64

2. Which of the following protocols is used to propagate VPN labels between edge routers?

- A. TDP
- B. LDP
- C. Standard BGP with extended communities
- D. MP-BGP
- 3. To have a single router appear as many routers, which of the following mechanisms is used?
 - A. RD
 - B. VPNv4
 - C. VPN
 - D. VRF

Test Questions

4. In Multi-Protocol BGP (MP-BGP), neighbors need to be

- A. Configured
- B. Activated
- C. Sent standard communities
- D. Configured with VDP
- 5. Which of the following mechanisms keeps overlapping addresses from doing so in MP-BGP?
 - A. RD
 - B. VPNv4
 - C. VPN
 - D. VRF

6. Which of the following is not a component of a VRF?

- A. VRF-specific routes
- B. CEF
- C. Global routing table
- D. None of the above

Test Questions

7. MPLS VPNs offer overlay VPNs.

MPLS VPNs offer ______ security as traditional

A. The same

B. Worse

C. Better

D. None of the above

- 8. P routers _____ knowledge of a customer's VPN routes.
 - A. Do have B. Do not have

9. A(n) _____ imposes the VPN label.

- A. LSR
- B. LSP
- C. Edge-LSR
- D. None of the above

Test Questions

10. What types of routes are in the PE router's global routing table?

- A. Customer routes
- B. Service provider routes
- C. Customer and service provider routes
- D. None of the above

11. What types of routes are in the PE router's VRF for a particular customer?

- A. Customer routes
- B. Service provider routes
- C. Customer and service provider routes
- D. None of the above

12. MP-BGP within an AS is called _____

- A. MP-BGP
- B. MP-IBGP
- C. MP-EBGP
- D. MP-MBGP

Review Questions

- 1. How many labels are used to forward VPLS traffic, and what is the use of each of those labels?
- 2. Which Layer 2 control protocols can be tunneled across the VPLS network? (name at least 2)
- 3. Why do the PE routers need to be in a full mesh of pseudowires in VPLS?
- 4. Name the six functions that VPLS performs in emulating an Ethernet switch.
- 5. In which two ways can H-VPLS be implemented?
- 6. Are there any differences in the encapsulation of Ethernet frames across the packet network between VPLS and Any Transport over MPLS (AToM)?