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4.1 Introduction

Recently, several papers have been published on the intertemporal properties
of a carbon tax. Among them we can quote Hoel (1992, 1993), Sinclair
(1992, 1994), Ulph and Ulph (1994), Wirl (1994), Wirl and Dockner (1995),
Tahvonen (1995, 1996), Farzin (1996), Farzin and Tahvonen (1996), and
Hoel and Kverndokk (1996). These papers can be classified in two groups
depending on the approach followed by the authors. A first group formed by
Hoel, Sinclair, Ulph and Ulph, Farzin, Farzin and Tahvonen, and Hoel and
Kverndokk have focused on the optimal pricing of a non-renewable resource
with environmental stock externalities'. If the different results obtained in

I'Within this group we could differentiate Hoel's approach from the one followed by the
rest of the authors. Hoel uses a dynamic pollution game with N countries and defines the
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these papers are analysed, it appears that the optimal time path of the
carbon tax depends critically on the specification of the carbon accumulation
process, and in particular on the irreversibility of CO; emissions. Thus, if
the emissions are partially irreversible, as in Farzin and Tahvonen’s (1996)
paper, or if reversibility is costly, as in Farzin’s (1996) paper, the optimal
carbon tax may increase monotonically or have a U-shaped form. However,
if reversibility is costless, i.e. if a constant rate of decay of the cumulative
emissions is assumed, as happens in the Ulph and Ulph (1994) and Hoel and
Kverndokk (1996) papers, the tax should initially increase when the initial
stock of cumulative emissions is small, but fall later on when the stock of oil
nears exhaustion. This is quite evident when the Farzin and Tahvonen and
Hoel and Kverndokk papers are compared, since these two papers only differ
essentially in the specification of the cumulative emission dynamics and give
different temporal paths for the carbon tax.

The second group of authors follows a somewhat different approach. They
have tried to capture the strategic features of the global warming problem,
developing a model of long-term bilateral strategic interaction between a
resource-exporting cartel and a coalition of resource-importing governments?.
In this framework, they have studied the strategic taxation of CQs emissions
by the governments of the importing countries. Their model is a global
warming differential game with irreversible emissions where the coalition of
governments chooses the carbon tax and the cartel the price’. Wirl (1994)
and Wirl and Dockner (1995) have shown, for the case of zero extraction
cost, that the tax increases monotonically up to the choke price, whereas the
price declines monotonically to zero when a Markov-perfect Nash equilibrium
in linear strategies is computed. In Tahvonen (1995, 1996) the monopolistic
extraction is computed as a feedback Stackelberg equilibrium assuming that
extraction costs are independent of the resource level. When his results are
compared with those of Wirl (1994) and Wirl and Dockner (1995) it turns
out that the intertemporal properties of the carbon tax and price are the

optimal carbon tax as the pigouvian tax that reproduces the social optimum. We can also
include Forster’s (1980) paper in this group, although he does not draw out consequences
of his model for the temporal path of a pollution tax.

’In fact, their model considers a simple stock externality, of which carbon dioxide is
Jjust the most discussed example.

3In section 4 of Tahvonen’s (1996) papcr, the case of reversible pollution with deplction
effects is studied. But the difficulty of deriving an analytical solution leads the anthor to
compute numerical examples.
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same irrespective of whether we have a Nash or Stackelberg equilibrium.

In this chapter we propose a revision of these two approaches that consists
in the introduction of depletion effects into the analysis. We assume that
the extraction costs depend positively on the extraction rate and cumulative
extractions. In this way, we extend and complete the analysis of the strategic
taxation of CO; emissions and present new results on the optimal pricing of
a polluting non-renewable resource®.

Our results show how the depletion effects affect the temporal path of the
carbon tax and what the distributive effects of strategic taxation are, making
more precise the results obtained by the previous authors. We find that the
tax can be decreasing and the price increasing if the environmental damage
is not very high, or that the tax and producer price can both be increasing.
With depletion effects the dynamics of the tax depends critically on the effect
a variation in cumulative extractions has on marginal environmental damage.
Nevertheless, if the marginal damage is high enough, the producer price
should be decreasing, whereas the tax should be increasing. Furthermore,
we find that the tax defined by the Nash equilibrium is a neutral pigouvian
taz, in the sense that the tax only corrects the market inefficiency caused
by the stock externality, and not the inefficiency associated with the market
power of the resource cartel. When the efficient solution is computed, we find
the same kind of results for the user cost or shadow price of the resource.
The dynamics of the shadow price also depends on the environmental damage
parameter value so that an increasing user cost must only appear when the
environmental damages are high enough. For this solution we get a simple
expression for the critical value of this parameter that leads us to conclude
that the shadow price would have to be increasing only when the pollution
damage is high with respect to extraction costs. Moreover, we find that
the two equilibria converge asymptotically to the same values as in Wirl
(1994). However, we clarify this result showing that the aggregate welfare of
the market equilibrium is lower than the aggregate welfare for the efficient
solution. This means that the strategic taxation of CO3 emissions does not
allow us to re-establish the efficiency of the market since the tax only corrects
the inefficiency caused by the stock externality as we have just mentioned
above, but does not eliminate the market power of the producers. For this
reason, we find that the market equilibrium is more conservationist than

1See Rubio and Escriche (1998) for another extension that consists in the computation
of the feedback Stackelberg equilibria.
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the efficient equilibrium because the pr¢ ducers use their monopoly power for
reducing, for their own profit, the rate ' extraction.

Our chapter is organised as follows: * present the global warming differ-
cntial game with depletion effects in scCton 4.2; in section 4.3 we compute
the Markov-perfect Nash equilibrium, 2™ in section 4.4 the optimal pricing
of polluting non-renewable resources #** compare the two equilibria. Sec-
tion 4.5 summarises the conclusions 2#*“ suggests directions for additional
research.

4.2 The Model

In this chapter we extend Wirl and DO pers (1995) model®. We begin by
describing the demand side of the mar’ke?, assuming that the consumers of
the importing countries act as price-tak®" agents. Under this assumption, we
can write the consumers’ net welfare as’ >° e~ {ag(t) — (1/2)q(t)? — [p(t) +
»(t))g(t) + R(t) — dz(t)?}dt, where ag(t) - (1/2)q(t)? is the consumers’ gross
surplus, ¢(¢) is the amount of the resour©®bought by the importing countries,
p(t) is the producer price, (t) is the tf‘x fixed by the importing country
governments, R(¢) is an income transfer that the consumers receive from the
government, and dz(t)? is the environt®*tal or pollution damage function,
where z(t) is the cumulative emissions ?'d d is a positive parameter. If we
consider that global warming is a cle#” sxample of a stock externality we
have to establish that consumers take ?* a given not only the price of the
resource but also the evolution of the #¢“imulated emissions and, moreover,
the income transfer, since this is cont*Cled by the governments, so that,
finally, the resource demand only depen@® n consumer price: q(t) = a—p(t)—
¥(t). On the other hand, as ¥(t) reprc*“its the tax fixed by the importing
country’s government, we are implicitly #“uming that there exists a coalition
or some kind of cooperation among t}*€ importing countries’ governments
which allows us to represent the resot* market as a model of long-term
bilateral strategic interaction between # resource exporting cartel (OPEC)
and a coalition of resource importing ¢<’Yitries’ governments (the West).
The governments are supposed to t2* smissions in order to maximise the

5See that paper for more details. Our versiTof the game is also closely related to the
one developed in section 3 of Tahvonen’s ( 1997 paper. The novelty of our approach in
the specification of the model, with respect t©7 “ese two papers, is that we suppose that
average cxtraction costs depend on cumulativ?’ tractions.
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discounted present value of the net consumers’ surplus. We also assume that
tax receipts, 1(t)q(t), are completely refunded to the consumers through the
transfer R(t). As a result the optimal time path for the tax is given by the
solution of the following problem?®:

mas [ e {ata () - wit) - @ plt) = (1))
—p(t)(a — p(t) — p(t) — d2(t)*} dt, (4.1)

where § is the discount factor.
The dynamics of cumulative resource consumption determines simultane-
ously the dynamics of the CO, concentration in the atmosphere:

5(8) = a — pt) — ¥(t), 2(0) =z > 0. (4.2)

Following Wirl and Dockner’s and Tahvonen’s approach, we suppose that
the identity between resource consumption and CO; emissions is not crucial
as long as we can measure oil in terms of that unit that releases one ton
of carbon into the atmosphere. This simplified version of the cumulative
emission dynamics has also been used by Hoel (1992, 1993)".

Let us turn to the other side of the market. We assume that extrac-
tion costs depend linearly on the rate of extraction and on the cumulative
extractions, C(q(t), 2(t)) = [cz(t)]q(t), and that the objective of cartelised
producers is to define a price strategy that maximises the discounted present
value of profits®:

mas /0 T e {(plt) - cz(t))(a~ p(t) — (1)} dt. (4.3)

Although we incorporate depletion effects into the analysis, we consider that
the stock externality is largely irrelevant to the welfare of exporting countries,

6In Wirl and Dockner (1995) a study is made of how the Leviathan motive of the
governments modifies the temporal path of the tax in a global warming differential game
without extraction costs.

7Given this linear relationship between resource consumption and emissions, ¥ could
be interpreted as well as a resource import tariff, and the chapter as a study on import
tariffs and non-renewable resources with stock externalities.

8 Because in our model therc is no uncertainty, we can establish that in the equilibrium
market resource consumption is equal to extraction rate and, conscquently, cumulative
emissions are equal to cumulative extractions.



http:chapt.er
http:relat.ed

lq
74 Chapter 4. Ty, on Non-Renewable Resources

and that the cumulative extractions ane HOt{.tftonstrained by the resource in
the ground but by its negative impact on extf]

X {Ction costs and climate. More-
over, following Karp (1984), we assume that {, % producers get no utility from
consuming the resource. Th >

SUII] : 1 asSUMPtion js ot too great a departure from
reality since most major res

ource eXPlrters  ynsume a negligible portion of
their production. Th t tl Mo oS

eir production. Thus, we represent the stra; gic interactions in the resource
market as a differential game between g caali

’ . ,On of importing countries’ gov-
ernments and cartelised exporters of oil, v ¢ the coalition of governments
chooses the tax and the cartel the prics.

4.3 A Neutral Pigouvigy Lax

In this section we obtain the solution to t},, gf]ih e through the computation of
a Markov-perfect Nash equilibrium. W e - C“[arkov strategies because these
%nnds of st'rategles capture essential St.r?‘tegicq\lht eractions, provide a dynam-
ically consistent, subgame perfect equility,, 1 and are analytically tractable.

1\/{I)arkov strategies have to satisfy the 1) Wing system of Bellman equa-
tions”:

Wy = max{ala—p -1 »%(‘(" ~p—9)°

4

—pla—p—1) —dz2, ‘L,l,(a —p—1)}, (4.4)
Wy = n{lg}x{(p—w)(a—p-u)+W;(a—p—¢)}. (4.5)

From the first order conditions for ¢}
Bellman equations we get the reactiop
producers:

n
ler, Wimisation of the r.h.s. of the
fin’ tions of the governments and
wN = —W,

. (4.6)

S
= §(a+czsz_¢1v), (4.7)
where superscript /V stands for the Markoﬁ,_},qgj.fect Nash equilibrium. These

results establish that the optimal tax i nc e .
the producers, and that the price and 1, " .[‘)e‘ndentfo f the price fixed by
. strategic substitutes for the

AL &
producers. Thus, for the governments (f}, | importing countries the opti-
“ining a neutral pigouvian tax

mal policy consists, as we show below
’ y O ¢
“Time arguments will be eliminated when n, :.)11‘11‘,

ston arises.
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mulative emissions. This means

hadow price of cu
equal to the user cost or sha p o when the two players move

that when there is no strategic advantage, ‘
simultaneously, the importing countries cannot use the tax for reducing the

market power of the cartel, since the optimal ta:f only correc;s ﬁth: t?lﬁzré{:)t(
inefficiency caused by the stock externality. For this re:.asogi we e T;ssociated
as a neutral pigouvian taz that does not correct the 1¥1e Cn.atr?cy S
with the market structure. Notice also that the tax 1 poséhwte ' t bls' by
fers from the well known proposition, see Buchanan (19392; ajuE:ig 1?}?:
that the pigouvian instrument under a monopoly shoul 19;;) bha.ve a}i.read
explanation of this divergence is, as Wirl ar}d Dgckner ( oo) have 8 ort}j
pointed out, that the resource market is divided into expor d%l o suf e
ing countries, and the latter do not take into account the pro b

in their objective function. .
Applying standard techniques of optimal co
Schwartz (1991, section 23)):

00 ®s(r— op
—/ e N2dz dr —z e t)p'é‘; dr.
t

ntrol we get (see Kamien and

nomic interpretation of the user
of an increment in one unit
first component appears in

This expression allows us to present an eco .
cost or shadow price for the importing countries

. - i The
of the cumulative emissions at any time . ) )
different papers on the optimal pricing of a non-renewable resource with en

vironmental stock externalities; see, for instar_lce, Farzin (199(?;) Zld Fo?r:}tré
and Tahvonen (1996); and it is equal to the discounted present value

. by an incre-
increment in future and present environmental damage caused by

a‘b tlIIle 1 Of tlle t V €1mi1ssions. HOVVG Ver, the second Cco .

only appears when the interdependence between the e}):poren (1006); o it
ing countries is taken into account; see in this case Tahvon ;

is equal to the discounted present value of the effect on f'uture antd .pretsent
consumers’ welfare caused by the reaction of the exporting gqun ;18; to ?
variation of cumulative emissions at time t. Notice that the sign of this el-
fect can be positive or negative, depending on the optimal policy or strategy
adopted by the cartel. i

gy sub};titution of (4.6) in (4.7) we get the solut}i\fm O1f the price VE;/S’ Ei f‘l;ll;l’c_
tion of the first derivatives of the value functions: p= = E(a ez +t' 1 (424))'
Next, incorporating the optimal strategies into t}}e Bezllman Eszzllc?lrllfxtioﬁﬁ
and (4.5) we eliminate the maximisation and obtain, after sor S,
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a pair of non-linear differential equations:

Wy, = %(a — ez + Wi+ W,)? —d2?, (4.8)
W, = i(a —cz + W, + W,)2 (4.9)

Notice that both value functions depend on W, + W,, and so does the con-
sumer price, 7 = p + 1, and the rate of extraction:

1 ! !
¥ = §[a+cz—(Wl+W2)}, (4.10)
& = %(a—cz+w;+w2’). (4.11)

This regular occurrence of the term W, { + Wé simplifies the solution of the
differential equation system (4.8) and (4.9) and allows, as happens in Wirl
and Dockner’s model, a complete analysis of the asymmetric game defined
in section 4.2.

Before presenting the Markov-perfect Nash equilibrium we want to estab-
lish and demonstrate the result we have mentioned above.

Proposition 4.1 The Markov-perfect Nash equilibrium of the game defines
a neutral pigouvian taz.

Proof. This proof is quite obvious if one realises, firstly, that in the market
there exist two kinds of inefficiencies, one caused by the stock externality
and the other by the market power of the producers, and, secondly, that the
optimal tax is equal to the user cost of the cumulative emissions. The strategy
of the proof is simple: we compute the monopolistic equilibrium without
intervention of importing countries’ governments, assuming that consumers
take into account the damage caused by the cumulative CO, emissions, and
then we check that this equilibrium is identical to the Nash equilibrium.
The monopolistic equilibrium is calculated in two stages. In the first stage,
price-taker consumers determine the demand function, and, in the second,
the cartel decides the price. Then the extraction rate is determined by the
demand function.

The Bellman equation for the consumers, if they internalise external
costs, is:

1., / .
Wy = n{laix {ag — 5(1‘ — pq — dz* + Wiq}. (4.12)
q
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The maximisation of the right-hand side gllvest U the resource demand func-
tion, ¢ = a — p — W), and substitution m 4, .o qycers’ profit function
yields:

5W£:n{w§><{(p—cz)(a—P~Wl)+W?:(a—p—wl’)}. (4.13)
P
From the maximisation of the right-hand S%?e we obtain the same optimal

strategy as in the Nash equilibrium, M =p = latez+ W, — W,), where
the superscript M stands for the mOflopougClc ‘quilibrium without the inef-
ficiency caused by the stock externality. Then E o v oot tion of the control
variables into the Bellman equations, W€ get Wy, e system of differential
equations (4.8) and (4.9) and, consequentlys th, e solution. Therefore,
the monopolistic equilibrium, without stock “*ternality, is identical to the
Nash equilibrium and we can comClqule that' thy optimal tax defined by the
Nash equilibrium is a neutral pigouvian taz 104 conse that it only corrects
the inefficiency caused by the stock externality 14 joaves the cartel with its
monopolistic profits.

The solution to the differential equation Sys (4.8) and (4.9) allows us

to calculate the linear Markov-perfect Nash €y om strategies.

Proposition 4.2 Let

0, zoj\é <z
N(y) = 4.14)
9" (2) N (
%[a*‘yN’(cﬂx )z 2< 2
where
2 1/2
1 4 16 < 5 + é, + '
SN =5—|—=1l¢C 2 4.15
3a(c — zV) oV
N _ o oaemr 0, a+Y -z 4.1
Vo= B3 >0 andc—z" >0 (4.16)
and 9 - n
N = (2 — 2N exp{=1/2(¢ = My 4 N (4.17)
where ~ ab
Zoo = 5 4 2d (4.18)
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Then qM(2) constitutes a global asymptotically stable Markov-perfect Nash
equilibrium (MPNE) for the infinite horizon differential game under consid-
eration, where z¥ is the cumulative emission long-run equilibrium.

Proof. See Appendix A (section 4.7).

As we have just seen in Appendix A, Proposition 4.2 permits us to cal-
culate the optimal dynamics of the rate of extraction, the producer price,
the tax and the consumer price and the discounted present value for the
two players, providing a complete analytical characterisation of the solution
of the game. The long-run equilibrium value for cumulative emissions has
been computed as a particular solution of the differential equation that de-
fines the dynamics restriction of the problem. However, this value can be
derived directly using more straightforward economic arguments. The pro-
ducers exploit the resource until the value function is zero. This implies
from (4.5) that p — cz = —W,. On the other hand, the first order condi-
tion which gives the reaction function of the producers can also be written as
p—cz—(a—p—1) = —W,, so it follows immediately that a—p—1) = goo =0
and a — p = —W),, using the reaction function of the governments. With
goo = O the consumers’ value function is §W; = —dz2, and ~W, = 2d2,/6
and by equalisation we get p = a — (2dzs/6). Finally, if we assume that
extraction of the resource continues until the marginal profit is zero we get
p = cz, and then we obtain z, = ad/(c6+2d). This means that the exploita-
tion of the resource must end for a zero marginal profit and value function.

The solution includes the pay-offs of the players, which are given by the
value function for the initial value of the state variable, z,

Wi (2) = %ai"zé + Bz + 1 (4.19)
where
N 171 NA2
ap = gigle—z )" - 2d|, (4.20)
_ N
o= grléj—(;(ai :I)TN)’ (4.21)
pl = la+y™) (4.22)

W
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Thus, for the consumers and for the prcducers,

Wy (20) = %aﬁ’sz_ By 20 + iy, (4.23)
where
ay = %(c—x’v){ (4.24)
(. _.N
gy = —E%%F:—)N), (4.25)
uY = 4i6(a+3,~>2. (4.26)

From these expressions, the following corollary holds.

Corollary 4.3 If the initial cumulative emissions are zero, the discounted
present values of the net consumers’ weljare and profits are positive and equal

to (4.22) and (4.26).

Proof. Straight from (419) and (423) If we make z; = 0 in the value
functions we have W1(0) = g(a+y")* and W, = Lla+y")

However, we cannot extrapolate this result for zy in the interval (0, 2oo)
because, as we have shown above, the value function for the consumers is
strictly negative for z.. This means that the extraction of the resource will
be profitable only if the initial value for the cumulative extractions is not
very high. In particular, the exploitation of the resource will take place if
the initial value is in the interval [0, Z] where z is defined by the positive
root of the equation Wy(2z) = 0. For the producers, the extraction gives a
positive pay-off provided that the initia| value of the state variable is in the
interval [0, z). However, as long as the consumers only demand a positive
quantity of the resource when the cumulative emissions are below the upper
bound, Z, the exploitation of the resource will occur only when the initial
value of cumulative emissions is below this critical value. From now on, we
will assume that zo = 0. This simplifiey the analysis enormously and helps
us to reduce the length of the chapter. Nevertheless, we want to point out
that the results obtained in the rest of the chapter can be generalised for z
in the interval (0, z)."

WThe generalisation of the results for zg € (1), %) is available from the authors.




i

80 Chapter 4. Taxes on Non-Renewable Resources

Finally, we compute the dynamics of the rate of extraction, the producer
price, the emission tax and the consumer price. To get the temporal paths
of these variables we substitute W, and W, in the linear strategies for g,
p, ¥ and 7 by the coefficients of the value functions we have calculated in
Appendix A, and then we rearrange the terms and eliminate z, using (4.58):

¢" = 1/2(a+y")exp{~1/2(c — z")t}, (4.27)
pN = cécihlw - %(c + ol — o)z exp{~1/2(c — 2™)t}, (4.28)
PN = c62—cil-d2d + a2l exp{—1/2(c — zM)t}, (4.29)
™ = a—1/2(a+y")exp{—1/2(c — z™)t}. (4.30)

We can now summarise the dynamics of the variables and the long-run equi-
librium of the game as follows.

Proposition 4.4 Along the equilibrium path the rate of extraction decreases
while the consumer price increases. The producer price is increasing (de-
creasing) if ¢ + ol — o is positive (negative) and the emission taz is in-
creasing (decreasing) if & is negative (positive). Moreover, the market equi-
librium approaches a long—run equilibrium characterised by: qoo = 0, Too = a,

and ’lp 2ad

Poo = c6+2d = ot2d

If we focus on the tax dynamics, we have just seen that this depends on
the sign of coefficient o, which is given by (4.20). This expression allows us
to study the relationship between this coefficient and the damage parameter,
d, and hence the relationship between the pollution damage and the optimal
temporal path of the tax. We know that a) is positive when d = 0; see
(4.20). Now, using (4.15) it is easy to establish that ol¥ is decreasing with
respect to d and that there exists a positive value, that we name as c_lf/f ,
for which the coefficient of the value function W is zero. Thus, we get that,
when d is lower than d?, the emission tax is decreasing, and, when d is higher
than dﬁ , it is increasing. Or, in other words, if the pollution damage is high
with respect to extraction costs the optimal tax would have to be increasing.

The interpretation of this result is quite intuitive if one realises that the
differential game under consideration integrates characteristics of two models
with different properties. Making ¢ = 0 we have Wirl and Dockner’s (1995)
model, and for d = 0 we have a version of Karp’s (1984) model, where ¢
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must be interpreted as an import tariff and the issue addressed is whether
it is advantageous for the importing countrles to fix a tariff on the resource.
In the first case, we can check that z" and of are negative for any positive
value of parameter d and that the tax is always increasing''. For ¢ = 0,
(4.29) is written as Y = a + o 2¥ exp{z"t/2} and then dwN/dt > 0.
This means that if there are no depletion effects, the optimal tax for the
importing countries must rise. In the second case, it is evident that oz1 is
ositive and the tax is decreasing. For d = 0, (4.29) is written as 9"
o 2N exp{—1/2(c — z")t} and then dy™ /dt < 0, since the sign of ¢ — xN
does not change (this is shown in the next paragraph). We obtain, in this
case, that, when the environmental damage is zero and the depletion effects
are positive, the optimal policy for the importing countries is a decreasing
import tariff. Thus, we have two trends of opposite sign acting in our game,
and we find that when the pollution damage is high with respect to extraction
costs, the increasing trend dominates, and the tax is increasing. However, if
on the contrary the pollution damage is low, the decreasing trend dominates
and the tax is decreasing.
If we focus now on the temporal path of the producer price we get the
same kind of results. The dynamics of the variable depends on the sign of
the following expression:

_ 2
5

It is easy to show that for d equal to zero this expression is positive. As
c+al¥ — o) can be written as ¢ — "V + 2}, we can use this last expression

for determining the sign of the former. For d = 0 we have found that o}

c+al —aof —c——(c— Ny2 (4.31)

is positive; then ¢ + ¥ — o is positive if ¢ — " is positive for d = 0. To
calculate ¢ — =V we use (4.15), yielding:
1 16 &2
L) 5 . 4.32
c—1z 2{ 5+[3(+3)J } (4.32)

N is negative or zero, the following must be satisfied:

16/ . &\ 4
< =9).
3 (o+3)] <3

11p fact, the tax is also increasing when the extraction costs are quadratic but inde-
pendent of the cumulative extractions, as has been showed by Tahvonen (1996).

If we suppose that ¢c—z
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Taking the square of this inequality we get 16/3(cd) < 0, which is a contra-
diction. As a result we have to accept that ¢ — zV is positive and conclude
that ¢ + o’ — o is positive as well. Now, applying calculus to (4.31) and
using (4.15) we can establish that ¢ + o) — o is decreasing with respect to
d and that there exists a positive value, that we represent by d’ d,;, for which
the producer price is constant. Thus, we get that when d is lower that _d_;,v
the price is increasing, whereas it is decreasing if d is higher than dg . Or, in
other words, if the pollution damage is high with respect to extraction costs
the optimal producer price must be decreasing. This result is also justified
by the two opposite trends we have found in our model. For ¢ = 0 we know
that the producer price is decreasing, but for d = 0 it is increasing. Conse-
quently, when these two parameters are positive we can obtain both types
of dynamics depending on the values of the parameters. On the other hand,
the compatibility between a decreasing quantity and price can be explained
by resorting to the reaction function (4.7). According to this function the
producer price and the tax are strategic substitutes since the tax reduces the
marginal revenue of the cartel. Moreover, the reaction function establishes
that the price increases, ceteris paribus, with the complete marginal cost
of the resource, defined by the marginal extraction cost plus the user cost,
cz — Wz' Then as the tax increases and the complete marginal cost decreases
along the equilibrium path, when the pollution damage is high enough, we
find that the dynamics of the producer price have to be decreasing. Obvi-
ously, as the extraction rate is decreasing, the negative effect of an increase of
the tax on the quantity must be higher than the positive effect of a reduction
of the complete marginal cost on the extraction rate.

Finally, we can describe the different temporal paths that the tax and
producer price can follow, depending on the environmental damage. First,
we define the existing relationship between d}) and dlY. As ¢+ off — ol is

equal to ¢ — ¥ + 2o, we get that Whend——dh,l,c—%a{v~ozév=c—x1v,

which is positive for any positive value of d, as is established in (4.16). Thus,
¢+ ay — a) is zero for a higher value than dJ, and then we can conclude
that d is lower than Qf,v Now, we are able to present the different temporal
traJectorles depending on the value of parameter d. Given ¢ and §é, if d is
lower than d) the price is increasing and the tax is decreasing; if d is in
the interval ( 7\;1/:’ ,d}7) the price and tax are increasing; and, finally, if d is
higher than d, the price is decreasing but the tax is increasing. This last

relationship can also be presented as follows.
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Corollary 4.5 If an increase in cumulative emissions has an effect on mar-
ginal damage higher than 2d , then the optimal producer price is decreasing
whereas the optimal tax is mcreasing.

Notice that the effect of an increase in cumulative emissions on marginal
damage is given by 8%D/02z* which is equal to 2d, so that it is sufficient with
%D /02z* higher than 2c_iﬁ to have an increasing tax with a decreasing price.

This result already appears in Wirl and Dockner (1995) and Tahvonen’s
(1996) papers, but as long as they do not take into account the depletion
effects on the extraction of the resource, the pollution tax is increasing and
the producer price is decreasing for all d. In this chapter we complete their
analysis showing that the tax can be decreasing and the price increasing if
the pollution damage is not very high, or that the tax and producer price
can both be increasing.

4.4 Optimal Pricing of Polluting Resources

In order to get a welfare evaluation of the MPNE we compute in this sec-
tion the Pareto efficient solution of the game. To obtain this solution we
maximise the addition of the consumers’ welfare and profits taking into ac-
count the evolution of the cumulative emissions. Then the efficient strategy
of extraction has to satisfy the Bellman equation:

1 /
SV = n{wjx {agq — §q2 —dz* —czq+V'q}. (4.33)
q
From the first order condition for the maximisation of the r.h.s. of the
Bellman equation we get the optimality condition: marginal utility (price)
equal to marginal cost, which includes two components, the marginal extrac-
tion cost and the efficient shadow price or user cost of the resource:

a—q=cz—V, (4.34)
so that the efficient extraction strategy is given by:
F=a—-cz+V, (4.35)

where superscript E stands for the efficient solution. Next, incorporating the
efficient strategy into the Bellman equation (4.33) we eliminate the maximisa-
tion and obtain, after some calculations, the following non-lincar differential
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equation:

8V = 2(0 —cz+ V') = d2? (4.36)

The solution to this differential equation allows us to calculate the linear
efficient strategy.

Proposition 4.6 Let

0 ZE < 2
E _ ) oo =
() = { a+ 0% —(c—af)z, z<2E, (4.57)
where
1
of = 5 {20 + 6 — (40(5 +6% + 8d>1/2} ) (4.38)
5 a(c— oF) B B
gF = _m<0,a+,@ >0andc—a” >0, (4.39)
and
27 = (20 — 2E) exp{—(c — o)t} + 2Z, (4.40)
where 5
B __9
Zy = S (4.41)

Then q%(z) constitutes a global asymptotically stable efficient equilibrium
(EE) for the infinite horizon differential game under consideration, where
2E is the cumulative emission long-run equilibrium.

Proof. The proof follows that of Proposition 4.2.

The long-run equilibrium value for cumulative emissions has been cal-
culated as a particular solution of the differential equation that defines the
dynamic constraint of the model. However, this value can be derived di-
rectly using more straightforward arguments. First, we establish that the
exploitation of the resource continues until the marginal cost is equal to the
maximum price consumers are willing to pay. This occurs for a zero ex-
traction rate (g2 = 0), which implies, according to the optimality condition
(4.34), that 0 = cze — %4 o, Where a is the maximum price consumers are
willing to pay. On the other hand, the value function for a zero extraction
rate is Voo = ~d(2£)?/6 and the user cost or shadow price is V| = —2dzE /6;
then by substitution in the optimality condition we get (4. 41)
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The solution includes the pay-offs of the agents, which are given by the
value function for the initial value of the state variable, zg,
1 5
VE(z) = §aEz§ + B8z + u®, (4.42)
where of and 37 are given by (4.38) and (4.39) and nE is oz (a + BF)2. So,
we can conclude the following.

Corollary 4.7 If the initial cumulative emissions are zero, the discounted
present value of the addition of the net consumers’ welfare and profits is

V(0) = 5(a+ GE)2.

Finally, we compute the dynamics of the extraction rate and resource
shadow price. To get the temporal paths of these variables first we eliminate
2 from (4.37) using (4.40), and then using condition (4.34) we obtain the
dynamics of the shadow price'?:

¢ = (a+BF) exp{—(c—a")t}, (4.43)
) 2ad E
- = S r2d + af2E exp{—(c—a”)t}. (4.44)

We can now summarise the dynamics of the variables and the long-run equi-
librium of the efficient solution as follows.

Proposition 4.8 Along the efficient path the rate of eztmctwn decreases.
The shadow price of the resource is increasing (decreasing) if a¥ is negative
(positive). Moreover, the eﬁiczent path approaches a long-run steady state

characterised by g = 0 and =V’ = C?i‘é -

This proposition establishes that the dynamics of the shadow price de-
pends on the sign of coefficient o, which is given by (4.38). This expression
allows us to study the relationship between this coefficient and the damage
parameter, d, and hence the relationship between the pollution damage and
the efficient temporal path of the shadow price. We know that a¥ is positive
when d = 0. Suppose that

2c + 6 — (4cd + 8% <0,

12%Ve assume that the initial cumulative emissions are zero.
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then
2+ 6 < (4c + 6%)V2,

and
(2c 4 6)% < 4dcb + &2,

resulting in a contradiction: 4c? < 0.

On the other hand, o is decreasing with respect to d and there exists
a positive value, that we name as dZ, for which the coefficient of the value
function V is zero. In fact, it is easy to check that d¥ = ¢?/2. Thus, we get
that when d is lower than d? the shadow price of cumulative emissions is
decreasing, and when d is higher than d” it is increasing. Or, in other words,
if the pollution damage is high with respect to extraction costs the shadow
price would have to be increasing. The interpretation of this result follows
the intuition presented in section 4.3 to explain the dynamics of the emission
tax.

This relationship between the coefficient o and the damage parameter
allows us to establish the following.

Corollary 4.9 If an increase in cumulative emissions has an effect on mar-
ginal damage higher than c2, the efficient shadow price is increasing.

Notice that the effect of an increase in cumulative emissions on marginal
damage is given by 92D /8z? which is equal to 2d, so that it is sufficient with
02D /02 higher than ¢* to have an increasing shadow price, since d? = c?/2.

Finally, we use this solution to evaluate the efficiency of the equilib-
rium market. If one compares the two long-run equilibria one immedi-
ately realises that the market equilibrium converges to the efficient values:
2N = 2B = ab/(c6+2d), ¥ = ¢& = 0and ¢, = =V = 2ad/(c6+2d). This
property is explained because the optimality conditions that characterise the
two equilibria, (4.7) and (4.34), are identical in the long-run. Condition (4.7)
can be rewritten as

a—2q=cz— (W, + W), (4.45)

using the inverse demand function to eliminate the price. Using this expres-
sion we have that when the rate of extraction is zero the marginal revenue
is equal to average revenue or the maximum price consumers are willing to
pay, a, and the Lh.s. of the two optimality conditions coincide. On the
other hand, for a zero extraction rate the value function of the efficient solu-
tion, (4.33), and the value function of the importing countries for the market
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equilibrium, (4.4), present the same expression, V = W, = —dz?/§, so that
V' = W,. Moreover, it is well known that with depletion effects the user
cost or shadow price the producers associated to the resource, —Wé, tends
to zero, giving as a result that the r.h.s for the two optimality conditions is
the same and the two conditions define the same long-run equilibrium.

This property has been used by Wirl (1994, p. 11) to conclude that
from an environmentalist’s point of view, cooperation between consumers
and producers is not necessary as long as non-cooperation implies the same
stationary stock of pollution. This is right strictly from an environmentalist’s
point of view but is questionable from an economic point of view since the
equilibrium market is not efficient and, in that case, the cooperation could
increase the pay-offs of the players. To show this argument we compare the
aggregate pay-offs of the two equilibria:

1
VE() =" = 55(a+ 87, (4.46)

and 3
W) = i +p3 = gela+y™)” (4.47)

Let us suppose that V(0) < WY (0); then
8(a+ B7)? < 6(a+y™)%
using (4.39) to calculate a + 3%, and (4.16) to calculate a + y", we can
eliminate them by substitution and get
(45+3(c— :cN)>2 <12 (6-{-6— aE)Q
Developing the squares yields

462 +248(c — zV) + 9(c — z™)?
< 248(c — o) +12(c — oF)%

Using (4.38) to calculate c— | and (4.15) to obtain c—z", we can eliminate
them by substitution yielding

16 5 12 ,
5+3 h <cr5 gt 2d) < 3(deb + 6% + 8d) 12,
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Finally, raising to a square and simplifying terms, we obtain the following
contradiction:

16 5 V2
12c6 + 86% + 24d + 66 {3 <c5 +3+ Qd):l <0.
The sign of this inequality leads us to conclude that the aggregate pay-offs
of the efficient equilibrium are higher than the aggregate pay-offs of the
equilibrium market and, consequently, that the cooperation can increase the
welfare of the economic agents.

In the last part of this section we compare the temporal paths of the
variables of the game. First, we try to establish the relationship between the
optimal linear strategies. We can summarise our findings as follows.

Proposition 4.10 The MPNE is more conservative than the EE, i.e., given
any resource stock level, the efficient extraction exceeds the Nash extraction
rate. Moreover, the efficient initial value for the extraction rate is higher
than in the MPNE.

Proof. See Appendix B (section 4.8).

These results are independent of the parameter values. Besides, they
are consistent with the finding obtained by Hotelling that establishes that
the monopolist is the conservationist’s best friend. In section 4.3, Propo-
sition 4.1, we have concluded that the MPNE defines a neutral pigouvian
tax because it only corrects the inefficiency caused by the stock externality
but it does not affect the market power of the producers. This means that
the inefficiency of the MPNE is caused by the monopoly power of the cartel
that reduces in its own benefit the rate of extraction. Thus, as the ineffi-
ciency caused by the stock externality is corrected by the tax the importing
countries’ governments fix, the rate of extraction would have to increase to
approach the resource efficient intertemporal allocation. For this reason the
extraction efficient strategy is less conservationist than the strategy defined
by the market equilibrium.

From this result we can compare the temporal path of the cumulative
emissions and the rate of extraction.

Proposition 4.11 The cumulative extractions for the EE are higher than for
the MPNE for allt € (0,00). However, this variable converges asymptotically
to the same value in both cases. The rate of extraction for the EE is first
above but later below the MPNE rate of extraction.
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Proof. See Appendix C (section 4.9).

This result establishes clearly the difference between the two equilibria
although they converge asymptotically to the same values. The equilibrium
market is more conservationist throughout the period of exploitation of the
resource, resulting in lower cumulative emissions. However, for the rate of
extraction the temporal paths intersect once since the cumulative extractions
are the same in the long-run. Nevertheless, even with a second phase for
which the efficient rate of extraction is more conservationist the discounted
present value of the aggregate welfare is higher for the efficient solution as
we have just shown above. This is better understood if it is remembered that
the discount effect gives greater weight to the pay-offs closer to the present.

4.5 Conclusions

‘We have examined the strategic pigouvian taxation of CQO, emissions in the
framework of a global warming differential game with depletion effects be-
tween a resource-exporting cartel and a coalition of resource-importing coun-
tries’ governments. We have determined the intertemporal properties of the
carbon tax showing that these depend on the importance of environmental
damage in comparison with depletion effects. Nevertheless, we have found
that if environmental damage is high enough the tax should be increasing
and the producer price decreasing. Besides, we have shown that the pigou-
vian tax only corrects the market inefficiency caused by the stock externality
and that, in that case, the strategic taxation of emissions does not affect the
monopolistic power of the cartel. For this reason we find that the market
equilibrium is more conservationist than the eflicient equilibrium because the
producers use their monopoly power for reducing the rate of extraction and
increasing their profits. From the efficient equilibrium we are also able to
characterise the optimal pricing of the resource and show that if the pollu-
tion damage is high with respect to extraction costs the shadow price would
have to increase.

The scope of our results is limited by the specification of the game and the
irreversibility assumption for the emissions. However, this approach seems to
us, for the moment, inevitable to make the analysis tractable'®. Obviously,

13Notice that the irreversibility of emissions allows us to work with a unique state
variable. See Tahvonen (1996), section 4, to get an idea of the difficulties that appear
when two state variables are considered.
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these limitations point out directions for additional research, although in the
framework of the model developed in this chapter some additional extensions
could be considered. We have supposed that the stock externality is largely
irrelevant to the welfare of exporting countries. However, this reduces the
global character of the greenhouse effect. For this reason it would be in-
teresting to introduce into the analysis environmental damage along with
domestic energy consumption in the exporting countries, and to study the
issue of the unilateral taxation of CO, emissions. Another extension could
be to increase the number of the importing countries to analyse the issue
of cooperation among the importing countries to control the global warming
problem. Finally, cooperative game theory could be applied when the im-
porting countries’ governments have some strategic advantage, since in this
case cooperation could increase the pay-offs of the two players.
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4.7 Appendix A: Derivation of Linear Markov-
Perfect Nash Equilibrium Strategies

The linear strategies can be determined by proposing quadratic solutions for
the value functions:

1

Wi(z) = Eaivzz-kﬁf’z%—u{v,
1

Wy(z) = 5a922+ﬂ§z+u§’.

Substituting the value functions and their first derivatives into the Bellman
equations and equating coefficients yields the following system of equations
(we omit the superscript N when no ambiguity arises):

gm _ %@ Ca—aw)?—d, (4.48)
68, = —%(a—{—ﬁl + B,y)(c — a1 — o), (4.49)
by = é(a + B+ B2)%, (4.50)
g-ag = %(C — oy — o), (4.51)
88, = —5la+ B+ B)le—ar - az) (452
by = 7o+ 5+ )" (453)

Even though this system of equations presents a recursive structure its solu-
tion is quite long and complex. However, a simple transformation enormously
simplifies its solution. We define z = o + a3 and y = 3, + 3, and add equa-
tions (4.48) and (4.51) and equations (4.49) and (4.52), obtaining a simplified
system of equations in the new variables:

br = %(c —z)% - 2d, (4.54)
Sy = —%(a+y)(c—x). (4.55)

In the light of these two equations and the differential equations (4.8) and
(4.9), it appears that the solution corresponds to an aggregate value function
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V = Wi+ Wa = 22 + yz + w whose coefficients must satisfy equation:
8V =3/8(a—cz+V')?—dz%. Equation (4.54) has two real roots. We choose
the one which satisfies the stability condition: dz/dz < 0. To apply this
condition, we write the rate of extraction (4.11) in terms of coefficients z and
y, resulting in ¢ = 1/2[a + y — (¢ — z)z|, and then as z = ¢ we have that
dz/dz = —1/2(c — x) < 0, which requires that ¢ — z > 0. Expression (4.15)
is the root that satisfies this condition. Given the value of z, (4.55) yields
the value of the coefficient y; see (4.16). Knowledge of these two coeflicients
is sufficient for the computation of the rate of extraction, as can be seen
above, and the consumer price 7. To obtain the producer price and the tax
strategies, we need to solve (4.48), (4.49), (4.51) and (4.52), using (4.54) and
(4.55), to obtain a4, 8;, ag and f,.

Finally, we solve the first order differential equation z = 1/2[a +y — (¢ —
x)z] to obtain the long-run cumulative extraction equilibrium. The solution
to this equation is:

z = Cexp{-1/2(c — z)t} +

oty (4.56)
cC—2X

where (a+y)/(c— z) is the particular solution z = 0 and C' is an integration
constant. Then, as ¢—x is positive, the long-run equilibrium is the particular
solution. If we substitute a + y in the long-run equilibrium value we get:

B 4a6
Foo = 4¢6 — 46z + 3(c — z)?’

which can be rewritten as:

B 4ab B ad
0 = 35+ 8d  co+2d

(4.57)

taking into account that —46z + 3(c — z)* = 8d, according to (4.54). Then
using the initial condition, zp, to eliminate the integration constant we get
the optimal dynamics of the state variable of the game:

z = (20 — 20o) exp{—1/2(c — )t} + 200, (4.58)

and by substitution in the linear strategies the dynamics of the rest of the
variables of the model, achieving a complete analytical characterisation of
the Markov-perfect Nash equilibrium.
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4.8 Appendix B: Proof of Proposition 4.10

If we take into account that the strategies are linear, see (4.14) and (4.37),
and define the same rate of extraction for the same long-run equilibrium value
of the cumulative emissions, it is sufficient to know the relative position of
the independent terms to make the comparison. Let us suppose that a + GE
< %(a+y”). Using (4.39) to calculate a+ 3%, and (4.16) to calculate a+y",
we can eliminate them by substitution and get

26+ 3(c — zV) < 2(c — o), (4.59)

N

Resorting to (4.38) to calculate ¢ — o, and (4.15) to obtain ¢ — z™, we can

eliminate them by substitution yielding
2 1/2
6+§ [E (cé+%+2d>

< (4cb + 8% + 8d)*2.
213

Finally, raising to a square and simplifying terms, we obtain the following
contradiction:

. 16 82 2
46° + 8cH + 16d + 36 3 c§+—§+2d <0.

The sign of this inequality leads us to conclude that a + g% > La+y")

which determines the relative position of the linear strategies and allows us

to establish the comparison between the slopes. As long as ¢}, = ¢% and
N _ B

Zo, = z., = Zs we have that

; 1 1
a+ 3% —(c— o)z = E(a +y) - §(c — 220,

which can be rewritten as

, o1
0+ 87 = 3la+y") = ((e= o) - Se=a")) 2.

Then, as the difference in the Lh.s. is positive, we have that

c—aE>é(c—a:N). (4.60)

The comparison between the initial va_xlues for the rate of extraction is
immediate since ¢V (0) = (a +y") and ¢"(0) =a + BE.
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4.9 Appendix C: Proof of Proposition 4.11

We begin comparing the temporal paths of cumulative extractions. For the
MPNE the dynamics of this variable is given by (4.58), which, for zy = 0, can
be written as zV¥ = 24, (1 —exp{—1/2(c— xN)t}) . For the EE using (4.40)

we get zF = 2 (1 —exp{—(c—aFf )t}), so that the difference between the
temporal paths is
2N = 2P =z, [exp{—(c — o)t} —exp{—1/2(c - mN)t}] ,
which is negative for all ¢ € (0, 00) since ¢ — &f > 1/2 (¢ — zV)
just shown in the proof of Proposition 4.6.
For the comparison of the extraction rate temporal paths we use (4.27)

and (4.43). In this case the difference between the two temporal paths is
given by the following expression

, as we have

" —q® = 1/2(a+y") exp{-1/2(c - 2")t}
—(a+ B%) exp{—(c — a®)t}.

For ¢ = 0 we know that the difference ¢" (0) — ¢®(0) is negative, since 1/2(a+
yN) <a+ (¥, as we have just established in the comparison of the linear
strategies of the two equilibria; see also proof of Proposition 4.6. For ¢ # 0
we can find the number of intersection points from the equation ¢"v —¢% = 0.
This equation can be written as

1/2(a +y")

Py exp{1/2(c — a™)t — (c — aF)t}, (4.61)

where the Lh.s. is a positive constant less than one and the r.hs. is a
decreasing and convex function which takes the value one for ¢ = 0, and
tends to zero when ¢ tends to infinity. This shows us that the temporal paths
cut each other once in the interval [0,00), and, consequently, we can conclude
that for 0< ¢ < t', where ¢ is the solution to equation (4.61), the MPNE
extraction rate is lower than the EE extraction rate, whereas for ¢ < ¢t the
relationship between the two temporal trajectories is the contrary.
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5.1 Introduction

Most of the dynamic phenomena observed in modern economies are due to
a rapidly growing volume of innovations aimed at increasing the efficiency
of firms’ responses to the needs of the market. An important share of the
aforementioned innovations aim at installing or improving the infrastructure
which is required for the transportation of economic goods from the place of
production to the place of consumption. Both the state and private investors
are involved in such an effort. For example, a highway may be the result
of public investment, but firms have to invest in their own transportation
infrastructure if they want to use the highway. Communication networks
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