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In a linear discrete-time control system a linear difference equation characterises the dynamics of the 
system. In order to determine the system’s response to a given input, such a difference equation must 
be solved. With the Z-Transform method, the solutions to linear difference equations become 
algebraic in nature. Just as the Laplace transformation transforms linear time-invariant differential 
equations into algebraic equations in s the Z-transformation transforms linear time-invariant 
difference equations into algebraic equations in z. The main objective of this section is to present 
definitions of the Z-Transform, basic theorems associated with the Z-Transform, and methods for 
finding the inverse Z-Transform.  
 

2.1 The Sampling Process 
In general, discrete-time signals arise in a system when a sampling operation is carried out on a 
continuous-time signal. The sampling process can be likened to the operation of a switch, see Figure 
2.1(a), namely when the switch is open no information about the continuous-time signal is captured, 
but when the switch is closed the signal passes through and hence information is gathered. The 
switch closes periodically with period T. The operation of the switch is not instantaneous, hence if 
the input is the continuous signal f(t) the output from the switch, denoted f(kT), consists of shaded 
pulses, as illustrated in Figure 2.1(b). This output pulse train f(kT) may be approximated by an 
impulse train where each impulse function has an area equal to the value of the input signal at the 
sampling instant t = nT which is the time of the impulse. 
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Figure 2.1: The sampling process: (a) The sampler as a switch; (b) Sampled output as pulses; (c) 

approximation to f(kT) in terms of impulses. 
 
Alternatively the sampling process may be seen as the modulation of an impulse train by the input 
signal f(t), see Figure 2.2. The expression for the modulated train, f(kT), is then  
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Eqn. 2.1 

Taking the Laplace Transform of equation 2.1 and recalling that (a)  L [δ(t)] = 1, and (b)  L [f(t-
T)] = F(s)e-sT, yields 

L [ ( )] *( )f kT F s=   
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Figure 2.2. Modulation of the input signal by an 

impulse train to obtain a sampled signal 
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Eqn. 2.2 

As an example consider the function f(t) = e-at and recall that 
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sFtf
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1)()]([  

Eqn. 2.3 

However, if we sample the function f(t) to get the sampled or modulated signal f(kT), one is then 
interested in the Laplace Transform of f(kT). Equation 2.2 is used to obtain the Laplace Transform of 
the sampled signal f(kT) i.e. 
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Eqn. 2.4 

which is an infinite series that cannot be easily summed. In general the Laplace Transform of the 
sampler output is in the form of an infinite series. Consequently the sampler output cannot be 
described in terms of a conventional transfer function relating output to input transforms and the 
standard techniques for control system analysis and design are not applicable. This difficulty can be 
overcome, and the analysis simplified, by defining the Z-Transform.  
 

2.2 The Z-Transform 
The Z-Transform describes the behaviour of a signal at the sampling instants. The Z-Transform of an 
arbitrary signal may be obtained by applying the following procedure – 

1) Determine the values of f(t) at the sampling instants to obtain f(kT); f(kT) is now in the 
form of an impulse modulated train. 

2) Take the Laplace Transform of the succession of impulses to obtain F*(s). F*(s) now 
contains terms of the form eTs. 

3) Make the substitution  

Tsez =  Eqn. 2.5 
into F*(s) to give F(z).  
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Note also that F(z) ≠ F(s) and F(z) ≠ F*(s). F(s) is the Laplace Transform of the signal f(t) and as 
such is a continuous-time description of the signal f(t) i.e. it contains information as to what is 
happening between sampling instants as well as at the sampling instants. The Z-Transform contains 
information about the signal at the sampling instants only, and hence the two descriptions cannot be 
equivalent. Furthermore F(z) cannot be equal to F*(s) as this would imply that the Laplace variable s 
is equal to the discrete-time variable z. From equation 2.5 it is clear that this is not so, in fact the 
relationship is – 

)ln(1 z
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and the equivalence is 
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From equation 2.2 we had that the Laplace Transform of the modulated train f*(t) is 

L  2[ ( )] *( ) (0) ( ) (2 ) ...Ts Tsf kT F s f f T e f T e− −= = + + +  

Hence steps one and two of z-Transform procedure are complete. Note that F*(s) may be re-written 
as - 
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and making the substitution z = eTs yields 
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Hence the Z-Transform of an arbitrary function f(t) is defined by 
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Eqn. 2.6 
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2.3 Examples 

Z-Transform of the Unit Step Function 
The unit step function is defined as 

⎩
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t
t

tu   

The unit step function is sampled every T seconds, yielding a discrete-time or sampled unit step 
signal denoted as u(kT) and defined by 

( ) 1; 0,1,2,3,...u kT k= =   
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t

u(t) 

1 

 
(a) 

 
(b) 

Figure 2.3:  Unit step signal; (a) continuous-time representation and (b) discrete-time or sampled 
representation 

u (kT) 

1

0 T 3 T   2T nT   

 
Figure 2.3 depicts the relationship between the continuous-time function u(t) and the sampled signal 
u(kT). To obtain the Z-Transform of the unit step function equation 2.6 is applied to obtain -  
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Recall that sum of an infinite geometric series is given by the formula 

r
aSn −

=
1

  

where a is the first term in the infinite geometric series and r is the ratio between any two terms of 
the series (provided r is less than one). In this case a = 1 and r = 1/z, therefore the Z-Transform of 
the unit step function is - 
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ztu  Eqn. 2.7 

and the series converges provided z > 1. Recall 
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Z-Transform of the Exponential Function 
The exponential function is defined as – 

0)( ≥= − tetf at   

Assuming that this function is sampled every T seconds, the value of the function at the sampling 
instants is simply f(kT) = e-akT. The Z -Transform of f(t) is therefore given by – 
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Therefore the Z-Transform of the exponential function is - 

Z aTez
ztf
−−

=)]([  Eqn. 2.8 

Recall 

L 
as

e at

+
=− 1][   

Note that just as the continuous-time pole location is defined by s = -a, the location of the discrete-
time pole is defined by z = e-aT. Since both a and T are constants e-aT is also a constant and the 
location of the discrete-time pole is fixed (obviously enough!!). However the pole position in the z-
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plane depends on the position of the pole in the s-plane AND on the sampling interval, T. Hence by 
varying the sampling rate it is possible to vary the position of discrete-time pole. 
  

Z-Transform of the Unit Ramp Function 
The unit ramp function is defined by – 

0)( ≥= tttf   
with 

( ) 0,1,2,...f kT kT k= =   

i.e. the values of f(t) at the sampling instants are 0, T, 2T, 3T, …By applying the definition of the Z-
Transform, equation 2.6, we get that 
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To obtain the summation in closed form, consider 
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zF  Eqn. 2.9 

Multiplying through by dz and integrating yields 
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where K is a constant of integration. The terms in z form a standard infinite geometric series and may 
easily be summed to yield – 
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Differentiating the above with respect to z yields 
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Hence the Z-transform of the unit ramp function is given by – 
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Second-Order Example 
Find the Z-Transform of the function whose Laplace Transform is – 

)1(
1)(
+

=
ss

sF   

The simplest method of obtaining the Z-Transform of the above function is to split the second-order 
transfer function into first-order transfer functions (whose Z-Transforms we know) via partial 
fraction expansion i.e. 

1)1(
1

+
+=

+ s
b

s
a

ss
  

where a = 1, b=-1. Hence 
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From equations 2.7 and 2.8 we have that 
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Note that the Laplace Transform of f(t) and the Z-Transform of f(t) have the same number of roots, 
hence the Z-Transform preserves the order of the equation. 
 

Z-Transform of a Sinusoid 
The sinusoidal function  
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may alternately be expressed as 
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The Z-transform of the sinusoid – 
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Eq. 2.11 

while 

L 22] [sin(
ω

ωω
+

=
s

t   

 

Z-Transform of the Sequence [an] 
The Z-Transform of the sequence an is given by  
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This infinite sum is 
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Therefore the Z-transform of the sequence – 
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Eq. 2.12 

 
 
In this section several examples have been presented which illustrate how to obtain the Z-Transform 
of a time function f(t) by direct application of the one-sided Z-Transform, equation 2.6. It should be 
noted that alternative methods of obtaining the Z-Transform are also possible. A table of commonly 
encountered Z-Transforms is very useful when solving problems in the field of discrete-time control 
systems; Table 2.1 presents such a table. 
 

 
Table 2.1: Table of commonly encountered Z-Transforms 
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2.4 Theorems & Properties 

Multiplication by a Constant 
If F(z) is the Z-Transform of f(t), then  

Z ataf =)]([ Z )()]([ zaFtf =  Eq. 2.12 

where a is a constant. To prove this, note that by definition 
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Linearity Property 
The Z-Transform possesses an important property: linearity. This means that if it is possible to obtain 
the Z-Transform of two functions, x(t) and g(t), and α and β are scalars, then the function f(t) formed 
by the linear combination - 

)()()( tgtxtf  βα +=    

has the Z-Transform 

Z )( )()]([ zGzXzF βα +=  Eq. 2.13 

 
Exercise: Prove this. 
 

Theorem No. 1: Multiplication by Exponential Function 
Assuming that the function f(t) has the Z-Transform F(z), then the Z-Transform of the function 

 is )(tfe at−
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In words, to get the Z-Transform of the function e-atf(t), one obtains the Z-Transform of f(t) i.e. F(z) 
and replaces the variable z with zeaT. As an example, consider the unit step function, u(t), whose Z-
Transform is 
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aTez
z
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=  

which is the same as that obtained previously, see equation 2.8 i.e. multiplication by the unit step 
function (or unity) will not alter the result. 
 

Theorem No. 2: Multiplication by Ramp Function 
If the function f(t), with Z-Transform F(z), is multiplied by the ramp function or t the Z-Transform of 
the combined function is given by 

Z [ ]
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Eq. 2.15 
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which is the Z-Transform of tf(t) [compare with equation 2.9]. 
 
Example: Find the Z-transform of 

Z [ ])(ttu  
 

where u(t) is the unit step function. 
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which again is the same as that obtained previously, equation 2.10.  
 
 

Theorem No. 3: Initial Value Theorem 
If f(t) has the Z-Transform F(z) and if exists, then the initial value f(0) of f(t)is given by )(lim zF

z ∞→

 )(lim)0( zFf
z ∞→

=  Eq. 2.16 

Proof: 
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Clearly, taking the limit as z → ∞ yields 
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)0()(lim fzF
z
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The behaviour of the signal in the neighbourhood of t = 0 can thus be determined by the behaviour 
of F(z) at z = ∞. The initial value theorem is convenient for checking Z-Transform calculations for 
possible errors. Since f(0) is usually known, a check of the initial value by can easily spot 

errors in F(z), if any exist. 

)(lim zF
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Theorem No. 4: Final Value Theorem 
The final value of f(t), that is, the value of f(t) as t → ∞  is given by 
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Eq. 2.17 

 

Theorem No. 5: Real Translation (Backward Shift) 
Consider Figure 2.4. 
 

f(t)

f(T)
f(2T)

0 T 2T t  
(a) 

f(t)

f(T)
f(2T)

nT

(n+1)T

(n+2)T t

f(0)

 
(b) 

Figure 2.4: Continuous-time function delayed by nT samples; (a) Original signal; (b) Delayed 
version 

 
The continuous-time function has values f(0) at t =0,  f(T) at t =T, etc. When delayed by nT samples 
the resulting function f(t-nT) has values f(0) at t = nT, f(T) at t = (n+1)T, etc. Now 
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Hence  
Z  )()]([ zFznTtf n−=− Eq. 2.18 

 

Theorem No. 6: Real Translation (Forward Shift) 
The concept is illustrated by Figure 2.5. 
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f(t)

f(T)
f(2T)

0 T 2T t  
(a) 

f(t)

f(T)
f(2T)

t

f(0)

f(3T)

0 T 2T
 

(b) 
Figure 2.5: Continuous-time function advanced one sample; (a) Original signal; (b) Advanced 

version 
 
In the forward shift case the signal is project forward in time (no real physical meaning) and hence 
the signal is shifted to the left. In Figure 2.4 the continuous-time signal is shifted to the left by one 
sampling interval T, to yield f(t+T). f(t+T) has the value f(T) at t = 0.  
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And therefore 

Z )0()()]([ zfzzFTtf −=+  Eq. 2.19 

As a special case, if f(0) = 0, i.e. zero initial conditions apply, then 

Z )()]([ zzFTtf =+  
 
Eq. 2.20 

and multiplication of the Z-Transform of a signal f(t) by z corresponds to a forward time shift of one 
sampling period. Equation 2.19 can easily be modified to obtain the following relationship – 

Z  Z  zTtf =+ )]2([ )()0()()1()]([ 22 TzffzzFzzfTtf −−=−+
 
Eq. 2.21 

Similarly, 
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Eq. 2.22 

2.5 Conclusion 
In this section we have modelled sequences of samples as sums of impulse functions, the strength of 
each impulse corresponding to the numerical value of the sample it represented e.g. the sequence 

3, 2, 1, 0, 0, 0, 0, …  

is modelled by 

)2()(2)(3 TtTtt −+−+ δδδ  
 

where the impulses represent the samples at times T = 0, T and 2T respectively. To obtain the 
corresponding Z-Transform, table 2.1 may be utilised.  
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Description f(t) F(s) F(z) 

Unit Impulse at t = 
0 

δ(t) 1 1 

Unit Impulse at t = 
T 

δ(t-T) e-sT z-1

Impulse of strength 
w at t = T 

wδ(t-T) we-sT wz-1

1

2

3

4

0 T 2T 3T 4T  

Table 2.1: Laplace and Z-Transform of Impulse  
  Function  

 
Thus any sampled signal may be modelled using the Z-Transform e.g. for the sequence of samples 
discussed above one gets 

21

2

23

23)2()(2)(3
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++⇒

++⇒−+−+

zz

eeTtTtt sTsTδδδ
 

 

Furthermore the Z-Transform may be used to describe delays e.g. if the original signal is delayed by 
one sampling period it is written as – 

0, 3, 2, 1, 0, 0, 0, 0, … 

)3()2(2)(3 TtTtTt −+−+− δδδ  

321 23 −−− ++⇒ zzz  

 

i.e. the original sequence multiplied by z-1. For this reason z-1 is often referred to as the delay 
operator or the backward shift operator.  
 

2.6 Exercises 
1) Find the Z-Transform of – 

i) cosω t 
ii) 3 + cosω t 
iii) bn 

 
2) If  

absbas
sG

+++
=

)(
1)( 2  

show that 
( )

( )( )bTaT

bTaT

ezez
eez
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zG −−
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−−
−

−
=

)(
1)(  

 
3) Write down the Z-Transform of the sequence 

{ lyrespectiveTTTkatku    6,...2,,00,0,2,1,1,0,0)( ==  
 
4) Write down the Z-Transform of the decaying exponential function , sampled at a 

frequency of 10Hz. 

tetf −=)(

 
5) Find the Z-Transform of the following sampled signals 

(i) a ramp of slope 2, sampled every second 
(ii) a decaying exponential with a time constant of 0.1 seconds and an initial 

value of 5, sampled at 50Hz. 

(iii) The sampled step response of the system whose transfer function is 
s21

1
+

 

sampled at 3Hz.  
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