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Abstract.-

In this article we deal with a Cauchy-Dirichlet quasilinear parabolic problem con-
taining a gradient term with quadratic growth and source; namely,

up — Au + |u|? " 2u|Vu|? = [ulfP~2u in Q := Qx]0, 400
u(z,t) =0 on S := 90x]0, +o0[;
u(z,0) = up(x) in Q;

with € a bounded open set of IRY. We prove that if p > 1, v > 1/2 and
p < 27+ 2, then there exists a global weak solution for all ug € L'(2). We also
see that there exists a nonnegative solution if uy > 0.

1 Introduction and assumptions.

Consider the following quasilinear parabolic problem

w — Au+ P HVu|? = uP! in @ := Q2x]0, +ool;
u=0 on S := 00x]0, +o0]; (1)
u(z,0) = ug(x) >0 in Q;



where  is a bounded open set in IR, whose boundary is denoted by 0%,
p,qg>1 and v>1/2.

For the concrete case v = 1/2, problem (1) was introduced by M. Chipot and
F.B. Weissler in [4] in order to investigate the effect of a damping term on existence
or nonexistence of classical solutions. Several authors have studied the existence of
non global positive classical solutions, giving conditions for blow-up under certains
assumptions on p, ¢, N and §2; see [1] and the references therein. Global existence
for nonnegative initial data has been proved in the case ¢ > p > 1.

On the other hand, it is remarked in [12] that problem (1) does not admit global
classical solutions in the case p >2, v>1/2 and 2y+2 <p.

A related problem has been studied in [1], where a degenerate case is considered.
More concretely, if the term Aw is replaced by A(u™) in problem (1), the
existence of global weak solutions for nonnegative initial data in L™"(Q) is proved
in [1] under the following assumptions: € a smooth bounded domain, m >
I, 2v+q—1)/g>m/2, 1<g<2 and 2<p<2y+q.

We point out that in [11] and [1] a model in population dynamics is described by
this type of equations. The model is as follows: Consider a population of a biological
species living on a territory 2 C IRY and denote by u(.,t) the space density of the
population at time t > 0. The evolution of this density is the result of three types
of mechanisms: displacements, births and deaths. Displacements are measured by
—div ¢, where ¢ is the flow of individuals; we will take ¢ = —c;Vu. On the other
hand, the contributions by accidental deaths should be of the form —cyD(|Vu?®|),
where D is an increasing function; we will suppose that D(z) = 2. Finally, the
contribution of births is assumed to be proportional to the number of cuples (or,
more generally, of r-tuples), so the population supply due to births will be given by
csu”. Therefore, summing up the different contributions one obtains the equation

uy = el Au — | Vub|? + cau’”.

Consequently, under the hipotheses that every death is accidental and that there is
a non-viable environment in the boundary zone (we have homogeneous Dirichlet’s
boundary condition), the solution of our equation (1) describes the evolution of the
population density.

The aim of this paper is to prove the existence of global weak solutions of problem
(1) for nonnegative initial data uy € L*(Q2) in the limit case ¢ =2. To be more
precise, we deal with the following problem

uy — Au + uluP72|Vul? = ululP—2 in @ := 0x]0, +ool;
u(z,t) =0 on S := 00x]0, +o0l; (2)
u(z,0) = ug(x) in €

where € is a bounded open subset of IRY and under the hypotheses
p>1,v>1/2 and p<2y+2. (H)

We remark that no regularity assumption is required on the boundary of the open
set €.



The methods used here to prove the existence result are different from those of [1],
which do not work for the limit case ¢ = 2. Our starting point is to solve problem
(2) for bounded initial data. To obtain the existence of weak solutions for integrable
initial data, we apply the time-regularizing convolution operator introduced in [6]
(and in [9] for nonzero initial data).

This article is organized as follows. In Section 2 we define the concept of weak
solution we use and prove the existence of global weak solutions for wuy € L>®(Q).
Section 3 is devoted to an initial datum wy € L'(Q): we define weak solution in
this context and prove the existence of a global weak solution.

2 Bounded data

In this section we are going to see that if the initial datum wg is bounded, there
exists a global weak solution of problem (2) in the following sense.

Definition 2.1 Let uy € L*(2). By a weak solution of problem (2) in the set
Qr = 0x]0,T[ we mean a function u € L*(0,T; H}(Q)) N L>®(Qr), such that
uw € L*(0,T; HY(Q)) + LYQr), [uP~t e LYQr), |ul*|Vu|* € L}(Qr) and

/Q W(T)(T)— /0 b0+ /Q VuVor /Q Pl VP = /Q ulugt /Q wo(0)

for all ¢ € L?(0,T; H}(2)) N L>(Qr) such that ¢, € L*(0,T; H*(Q)) + LY (Qr).
By a global weak solution of (2), we mean a solution in @Qr for all 7' > 0.

Remark 2.1 (1) If v belongs to L*(0,T; H}(€2))NL>(Q7) and its distributional
derivative in time is such that v, € L*(0,T; H *(Q)) + L'(Qr), it is well known
that v € C([0,T]; L*(R2)). As a consequence, the functions ¢(0) and ¢(7T) in
the above definition have sense and the meaning of the initial condition u(0) = wg
is clear.

(2) Since ¢, € L*(0,T3H Q) + LYQr), ¢ = B + B2 where [ €
L*0,T; H () and B, € L'(Qr). We use the notation

/0T<U,¢t> — /0T<u,61>H57H_1 +/QT uBs

in the above definition.

As mentioned above, in this section we prove that there exists a weak solution
of problem (2) in each @Qr for wy bounded. To this end, we will use the main
result in [3] and then an L*-estimate procedure introduced by Aronson and Serrin
(see [2]). We remark that, since these results hold under more general hypotheses,
our results also apply not just to the Laplacian but also to operators satisfying the
hypotheses in [3] (see also [8]) and [2].



Lemma 2.1 Let T >0 andlet b € C(IR)N L>®(IR). For every uy € L>(9),
there exists u € L*(0,T; H}(Q)) N L>(Qr), weak solution of the problem

uy — Au+ u|u[* 72| Vul|? = b(u) in Qr :=0x]0,TY;
u=20 on St = 00x]0,T]; (3)
u(z,0) = ug(x) in €

such that u; € L*(0,T; H1(Q)) + LY (Q7).
Moreover, if b(0) > 0 and wug > 0, then the weak solution can also be taken
nonnegative.

Proof: Let M >0 be such that |b(s)] < M forall s € IR. For each k€ IN,

we consider the following approximating problem:

uy — Au + Ty (u)| Ty (w) |72 | Vul* = b(u) in Qp :=0x]0,T7Y;
u=0 on St := 00x]0,T]; (4)
u(z,0) = ug(x) in

where T}, is the function of a real variable defined by
Ti(s) = max(—k, min(k, s)).

Define two real functions by (t) = Mt + ||ugllce and ¢ = —1p. It is easy
to check that ¢ is a subsolution and 1 is a supersolution of problem (4). By
Theorem (1.1) in [3], there is a weak solution of (4) which satisfies ¢ < u <4 in
Qr. Taking k > ||¢)]|s, it follows that Tj(u) = u and consequently u is a weak
solution of (3).

When b(0) >0 and wug > 0, we only have to notice that ¢(t) =0 defines a
subsolution of problem (4); so that we may take a nonnegative weak solution.

Theorem 2.1 Let T > 0. For every ug € L>®(Q2), there exists u belonging to
L2(0,T; HY(Q)) N L>(Qr), such that us € L*(0,T; H(Q)) + LY (Qr), which is a
weak solution of problem (2).

Furthermore, this weak solution may be chosen nonnegative when wugy > 0.

Proof: Consider the following approximating problems:

uy — Au + u|u 72| Vul* = T, (JulP~u) in Qr := 0x]0,T;
u=0 on Sy := 00x]0,T7; (5)
u(z,0) = up(x) in .

By Lemma 2.1, there exists u, € L*(0,T; H}(Q)) N L®(Q7), such that (u,); €
L2(0,T; H1(Q)) + L*(Qr), which is a weak solution of problem (5).



Taking wu, as test function in the weak formulation of (5), we get

un(T)? — T(un, (un)e) + |Vu,|? + |t |27 |Vt |2 =
@ 0 Qr Qr

= T, unp’Qunun—i—/qu/ unp—l—/u2.
L TollenP s + [ < [ fual? 4 [

Since [f (un, (u)) = L[ foun(T)? = fqud], it follows that

1/ 2 2 2 2 1 2
— [ u,(T +/ Vu, +/ Uy |7V, S/ unp+—/u. 6

Applying Poincaré’s inequality and dropping nonnegative terms, we obtain

1
O A T e I T\ ey B T e
QT Qr Qr 2 Ja

Since p < 2v + 2, it follows from Young’s inequality that
/ |un|2fy+2 S 027
Qr

where Cy only depends on ||ug|loc and [€2].

Now, we prove that the sequence (uy), is bounded in any L*(Qr) with \ < oco.
To this end, we state the following claim:

If for some s > 0 the sequence (u,), Iis bounded in LPT*(Qr), by a con-
stant only depending on the parameters of our problem, then it is also bounded in
L20FV+s(Qr) by a similar constant.

Take |un|*u, as test function in the weak formulation of (5), then

1
s+2

Ll 4+ [ G Fulun) + [ a7V, <
Q Qr Qr

1
< np+s_,_ / s+2'
< [ bt g [ ol

Thus, by Poincaré’s inequality, it follows that

C
[ P <y [ v < 0 [ S [ ol
Qr Qr Qr s+2Ja

Thus, our claim is proved.

As a consequence, an iterative procedure gives us that (u,), is bounded in
LMNQr) for all X\ < co. Indeed, if we consider s; such that p+s; = 2y + 2,
taking into account that (u,), is bounded in L**2(Qr), then it is bounded in
L*+D=P(Qr). Now, consider s, such that p+sy = 4(y+1) —p and deduce that
(n)n is bounded in LSO+V=2P(Qr). Hence, it is straightforward that the sequence
(Un)n is bounded in L20FD+sx(Qr) for all k € IN, where s, = k(27 +2 —p).
Since s, — 0o, it follows that (uy), is bounded in any L*(Qr), as desired.

Next, take Gp(u,) as test function in the weak formulation of (5), where the
function Gy is defined by Gg(r) = r—Ti(r). Then, denoting by I; the primitive
of Gy such that I,(0) =0, we get

J 1) (@) [ VG )P+ [ P G =



— QTun|un|p_2Gk(un)+/ka(u0)

and so
/Q Lo(w)(T) + /Q VG, < /Q PG /Q L(u).  (7)

Observe also that (u,|u,|P72)52, is bounded in any L*Qr) for A > & + 1.
From this fact and (7), using the L*>-estimate procedure introduced by Aronson
and Serrin in [2], we deduce that (u,), is bounded in L*(Qr). Taking n large
enough, we get T, (|un|[P%u,) = |un|[P~%u,, so that we conclude that w, is a weak
solution of problem (2).

Finally, if the initial datum wg is nonnegative, then (by Lemma 2.1) each u,

can be taken nonnegative and so is the obtained weak solution.

3 L! data

In this section we use the following definition of weak solution:

Definition 3.1 Given wuy € L'(2), by a weak solution of problem (2) in Qr we
mean a function u € C([0,T]; L*(Q))NL*(0,T; H(Q)) satisfying |u|P~' € L' (Qr),
lu|> | Vul?* € LY(Qr) and

_/QT u¢t+/QT Vu-V¢+/QT ul*"2u|Vul*¢ = /QT ]u|p_2u¢—|—/ﬂu0¢(0)

for all ¢ € L*(0,T; H}(Q)) N L=®(Qr) NW1>(0,T; L>=(Q)) such that ¢(T) =0 in
Q.

As above, a global weak solution of (2) is a solution in Qr for all 7' > 0.

Theorem 3.1 For every ug € L*(Q2), there exists a weak solution of problem (2).
This weak solution can be nonnegative if ug is so.

Proof: Let T >0 be fixed and let (ug,)%; be a sequence in H}(Q) N L>(Q)
such that
Uon, — Ug in Ll (Q) (8)

and ||uon|l1 < ||uo|ly forall n € IN. Consider the following approximating problems

in QT:

(tn)t — Aty + Un|un |72 Vu,|? = |un|P%u, in Qr = 0x]0,T;
Up = 0 on St := 00x]0,T]; 9)
un(x,0) = ugy () in Q.

By Theorem 2.1, there exists wu,, which is a weak solution of problem (9); observe
that if wy >0, then we may pick wu, > 0. Taking Ti(un)X(0,s) as test function in
the weak formulation of (9), it follows that

S ) 4 19T )P TG Vo =
(10)

- T nnnp_2 /J m /s
o 1 (U ) U [un [P + o 1(uon)



where we denote Jy(r) = [y T1(s)ds.

1.- A priori estimates

Since

[ Tl unlun [V = a7 Vg

Qr {lun|>1}NQr

having in mind (10) for ¢ =T, it follows that

/ |un|27_1|vun|2 S/ Tl(un)un|un|p_2 +/ Jl(“On) S
{lun>1}NQr Qr Q

< Pl < — 1P
< |Qr| + un ™+ [ el < O+ C [ (fa] — 1)

{|un\>1}ﬂQT |un|>1}ﬁQT

Consequently, denoting G1(r) = r — T1(r), we get the inequality

[ uPrivwPgotC Galun)l ™,
{lun|>1}NQ7 {|un|>1}NQr

which yields

) 2
o+ /2) " [ [wie )2 = a7 [V <

[un|>1}NQT
gc+cé\@@mWP

Now Poincaré’s inequality implies

|Gyt e e [ 16wl
Qr Qr
and from here, using Young’s inequality, we deduce
| leiw) <c
Qr
for all n € IN; consequently

/ a7 < ¢ forall  me IV, (11)
T

where C' only depends on the parameters v, p, |[@Qr| and |ugl;. Obviously,
since p < 27+ 2, we also have

/ Wwl<C forall  melN. (12)

T

Moreover, since the sequence (up,)>>, is bounded in L'(2) by a constant only
depending on ||upl[1, we obtain that the right-hand side in the equality (10) is
bounded. Hence, the following estimates hold:

sup [ |u,(t)] <C  forall neN, (13)



/Q VTi(u)? <C  forall ne N, (14)
T

and
/ Ty () tn|un 2|V 2 < € forall  ne IN. (15)
Qr

This last estimate implies
/ VG (un)|? < / T ()t n P2V ()2 < C forall  ne N,
Qr Qr
So that, it follows from this fact and (14) that
/ |Vu,|><C  forall nelN. (16)
Qr
Furthermore, (15) and (16) imply
/ U7 Va2 < ¢ forall  ne N (17)
Qr

for all n € IN.

Going back again to the equation (9), we get the boundedness of the sequence
((un)¢)%, in the space L%*(0,T; H () + LY(Qr). Using this fact and (16),
we obtain from [10], Corollary 4, that (u,)22; is relatively compact in L*(Qr).
Summing up, there exists a function u € L?(0,T; Hy(2)) and a subsequence, still
denoted by (u,)%,, such that

u, —u  weakly in L*(0,T; Hy(S2)) (18)

and
u, —»u in  L*Qr) and a.e. in Q. (19)

Thus, in particular, u can be taken nonnegative if wug > 0.
We also deduce that

"™t = JulP™tin LY(Qr) (20)

Indeed, because of (12), we just have to show that the sequence (|u,[P71)%2, is

equi-integrable, but it is straighforward taking (11) and Hélder’s inequality into
account.

2.- Convergence of gradients
Our aim is to prove that

VTi(un) — VTi(u) in L*(Qr) for all ke IV, (21)
where 0 < e <7T. From this fact we also deduce that
Vu,, — Vu a.e. in Qr. (22)

To prove (21), we have to regularize our approximating sequence. We begin by
decomposing (u,); = Bin + fon Where By, € L2(0,T; H () and B, € L' (Qr).
Now applying [3] Lemma 2.2 to each wu, — ug, and then adding wug, to the



obtained sequence, we can consider a sequence (z,,)°%; in L*([0,T7; H}(2)) such
that 2,s(0) = Uen, and (Zng): = Bine + Pone, Where Brn, € L*(0,T; H1(Q)),
Bone € LI(QT), and satisfying the following convergences as ¢ goes to infinity:

Zne — Un  in L*(0,T; Hy(Q))
Blna - ﬂln il’l L2(07 T7 H_l (Q>> (23)

ﬁ?na - ﬁQn in Ll (QT)

On the other hand, we regularize the initial datum by taking vy, € HJ(2) such
that

0<vy <k for all velN

Vo — Tkuo in Ll (Q) (24)
1 2

7/ Vv, | =0  as v — oo

v Ja

for which is enough to consider the solution of the following problem

_%A/UOI/ + Vo, = Tk(u(J) n Q

vo, =0 on 012.

Furthermore, we consider the time-regularization function introduced in [6] (see
also [9]): for a fixed v € IN and a given function w € L*(0,T; H}(Q)), we set

t
w,(t) = 1// w(z, )’ Vds 4+ ey,
0

for t € [0,T]. Applying this regularization to the truncatures Ty(u,,) and having
in mind (24), we have that

| (T ()| < K

((Tk(um))u>t = —(Ti(um))v + VT (um) (25)

(T (tum))y — Th(tm) in L*(0,T; H}(Q)) as v — oo.

Given a number €, 0 < e < T, we consider the following two real functions
and . On the one hand, 1 is a nonnegative and decreasing function such that
v e CYH[0,T]), ¥(T)=0 and ¥(t) =1 forall t € [0,7 —¢. On the other hand,
¢ is a Lipschitz continuous function on IR satisfying ¢(0) =0 and ¢(s)s >0
for all s € IR. Moreover, from now on, we denote by o(m,n,v) any quantity I
satisfying

sy (Jm i 1) =0

likewise o(n,r) denotes a quantity such that lim, . (lim, . I) = 0.
Our next step is to prove that

((un)i, ¥ p(Th(un) = (Ti(um))v)) = o(m, n,v). (26)



For the sake of brevity, we set w = 1 o(Ty(un) — (T (um)),) and wy = ¥ p(Tr(2ns)—
(Tk(tm)),). Then

(e 0} = Jim ((zuo)es ws) = Jim (I + o+ I),

o—00

where

L= (Tiee) = (Ti(un)))aes
L= | (Ti(un))s
L= (Gulzo)r

We are going to handle the above integrals separately.
Let ¢ be the primitive of ¢ such that ¢(0) = 0; since ¢ is nondecreasing, ¢
a nonnegative function. Moreover, taking into account that ' <0, we have that

L [ 6 (60~ B -

= = [ ¥ 6(Tizn0) — (Teluwn))y) = [ O(Ti(uon) = Tivon))
> — [ 6(Tk(uon) = Tiwn))
From here, by (25), it follows that
L > o(m,n,v). (27)
On the other hand, it is not difficult to see that
Jim Jim (Jim 1)) > 0. (28)

We next decompose I3 integrating by parts as follows:

I = — /Q Gz ) o(Tilzne) = (Tilun))) -

| Gt @ (Tien) = (Tiwm))e) (Ti(zue) = (Tl ))u),

_ /Q Crltton) 9 (Ti(ton) — Ti(vor)) = Ji + Jo + Js.
Then,

Jim (i (lim ) = = [ Gulu)d! @(Ti(w) — (Ti(w),) =
= oy (1 st o(Ti(w) = (Tu(w))).

Now, since |(T)(u)),| <k, the last integral is nonnegative and so it yields

lim ( lim ( lim Jy)) > 0. (29)

n—oo ( m—0oo S 0—0Q



Proceeding in a similar way, it is easy to see

1mwm(mmﬁmwmﬁmbnzo
(30)

lim, o (lim, . J3) = 0.
From (27), (28), (29) and (30), it follows that (26) is proved.

Taking w as test function in the weak formulation of (9); by (26), we have

on,m,v)+ [ Vu, Vw +/ |t |22 | Vi, [P0 <
Qr Qr
(31)
< / |t P 2w
Qr

We prove (21) by taking limits in the above inequality and for doing so we now
study each integral in (31) separately.

First of all, we deal with the right hand side of (31). Since (Ty(u,)), — (Tk(w)),
ae. in Qr, and |u,[P"Hw| < |u,|P7 p(2k) € LY (Qr), by Lebesgue’s dominated
convergence theorem,

lim (Jim ( Tim [ fun P ) =0. (32)
T

vV—00 n—oo R m—oo Q

We next turn to consider the last term in the left hand side of (31). Note that

m—00

lim 1|27 2 | Vi, [P0 =
Qr

= /{lu”<k} [T (1) |7 T (un )00 (T () — (T (), [V Tk () P+

* /{M [ [Pt o (Ti(tn) — (Te(w)),) |V |,

where the last term in the above formula is nonnegative; moreover,

[y )P Tiletn b o(Tilot) = (T V()] <

< [ F LT — (TL(w),)] VT <
< 2 /QT K o(Th(un) — (Th(w)))] VT (un) — VT () >+

+2 /Q R Nl(T () — (Tu(w),)| |V Ti(w)

Since
lim ( lim 2 |, B le(Thlwn) = (Te(w),) VTi(u)?) =0,

V—00

it follows that

lim [ Jua* 2wt @(Tiun) = (Ti(um))o) | Vua|* >

M= JQr
(33)
= /QT K)o (Th(un) = (Ti(w))] [V Tk (un) = VTi(u)|” + o(n, v).



We finally take limits in the term fo Vu, - Vw of (31). Having in mind that
V(Ti(um))y — V(Tk(u)), weakly in L*(Qr) as m — oo,

we get that

fin, f, Vi Vo= | OVun - V(Ti(un) = (Te(w)y) ¢ (Te(un) = (Ti(w))o).

= JQr

By denoting
H, = /QT OV Ty (un) - V(T (un) = (Ti(w))w) @' (Te(un) — (Ti(u))y)

and

Hy = /QT UV G (un) - V(Ti(un) = (Te(w)),) @' (Th(un) — (Th(w)).),

it yields lim,,_ fQT Vu,, - Vw = H + Hs.
Obviously,

n—oo

lim Hy = | 4G (u) - V(Ti(w) = (Tu(u)).) ¢ (Tu(u) - (Tu(w).) =

= —/QT YVGE(u) - V((Ti(u)),) ¢ (Ti(u) — (Ti(u)).).
Thus,
lim ( lim Hy) = / DV Gi(u) - VTi(u) ¢(0) = 0.

V—00 " n—0oo

With respect to H;, we obtain that

Hy = /QT OV T(un) - V(Ti(un) = (Ti(w))) ' (Th(un) = (Tr(w))v)+
(34)
+/QT UV Tk(un) - V(Ti(u) = (Te(w))y) @' (Ti(un) = (Ti(w))y)-

On the one hand, we have

o, YV Tk(un) -V (Ti(un) = (Ti(w))) ' (T (un) — (Ti(u))y) =

= /Q IV (L) = (D) @' (Tilan) — (Ti())+
* /QT OV T(u) - V(Ti(un) — (Te(w)) @ (Tilun) — (T(w)),)

and it is straightforward that

fin (i [ VL) - V() = (Tw) @ (D) = (Tw),) = 0.

V—00 'I’L—>OO

On the other hand,

tiy (Jim, [ 0VTk{un) - D (0(w) = (Ti(w),) ¢ (Telu) = (Telu)).)) =0

V—00 ’ﬂ—’OO



Hence, it follows from (34) that
H, :/Q DIV (Ti(un) = (Te(w)))* &' (Ti(un) = (Tr(w)),) + o(n, v).
T
As a consequence, we get

lim Vun~Vw:H1+H2=
m—o0 QT

(35)
= /QT VIV (Ti(wn) = (Ti())* @' (Te(wn) = (Ti(w))) + o(n, v).

Taking into account (32), (33) and (35), we may take limits in (31) obtaining
/Q UV (Ti(wn) = (Ti(w))|*® < o(m, n,v), (36)
T

where ® = ¢'(Tj,(un) = (Ti(u))v) = 26*7Ho(Thi(un) — (Tie(u),)|. - Choosing p(s) =
se’ with X\ satisfying ¢(s) — 2k27!|e(s)| > 1/2, it follows from (36) that

[ 19w = )P < [ V@) ~ @@ < ofmn,)

and so
VTi(u,) — VT (u) in L*(Qr_).

Observe that we may always extend our problem considering ()7,. instead of
Qr (asin [7] or in [5]); therefore, working as before we have that (21) holds true.

3.- u is a weak solution

In order to prove that u is a weak solution of problem (2) in Q7 several facts
are needed:

L [uP 1Vl € LY(Qy),
2- uweC(0,T); L'(Q)) and
3.- the weak formulation holds.

The first condition is a consequence of proving
a7V = [T Vul?in LYQr). (37)

By (19) and (22), we already know that this sequence converges a.e. in Qr so, on
account of Vitali’s theorem, only the proof of the equi-integrability is necessary. Let
E be a measurable subset of QQr, then

[l Vw2 = [ a7V P+ [ V| <
E En{|un|<k} En{|un|>k}

<k [ VT + [t [P Vg 2.
E {lun|>k}
(38)



We estimate the last integral by taking 71(Gx_1(u,)) in the weak formulation of
problem (9). Indeed, denoting O(r) = [5 T1(Gr-1(s)) ds, we obtain

/Q@(un(t» + J,, Vin- VT (Gr-1(un)) + /Q ) |t 20 T3 (Gt () [Vt | =

= | T Goa () + [ O(uon).
(39)
Now observe that

|un|27_1|vun 2 = / Unp, 27_2unT‘1 Gk—l Up, vUn 2 S
/{Un|>k} | {lun|>k} ] ( (n)) |

< |un]27’2unT1(Gk,1(un))|Vun|2.
{lun|>k}

From here, using (39), it yields

un2'y—1Vun2</ Un [P 2w, Ty (Gre i (U —|—/@un <
/{|un2k}| 7Vl < QT| | 1H(Gr-1(un)) ; (uon) <

<[l el
{Jun|>k—1} {Jun|>k—1}

So, it follows from (8) and (20) that

lim |un )P Vu,|* = 0.
k=00 J{Jun|>k}

On the other hand, since VT (u,) — VTi(u) in L*(Qr), we also have that

lim / IV T (u)|? = 0.
E

|E|—0

Hence, going back to (38), we can conclude that

lim / |2 Vg |2 = 0
E

|E|—0

and so this sequence is equi-integrable.
Since u, € C([0,T]; L3(2)), in order to see that u € C([0,T]; L'(2)), we only
have to prove that
Up — U in C([0,T); L*(Q)). (40)
To do this fix ¢ € [0,7], and take Tj(us, — tm)X (04 as test function in the weak
formulation of w, and —Tj(u,—uy,) X0, in that of u,,; adding up both identities
we deduce that

/Q Tolomn(0) = wn(0)) + [ V1t~ 1) - VTt = )+

+ /Q [t 200 [Vt | = [ttt | Vit [*| Ty (1, — 1) =
t

- / {|un|2p_2un - ‘um|2p_2um} Tk(un - um) +/ Jk(UOn - uOm)7
Qt Q



where Ji, is the primitive of T} such that Ji(0) = 0. From here, we obtain
a suitable inequality by taking into account that for every r € IR, Ji(r)/k T
Ir| as k | 0. Indeed, we first disregard a nonnegative term and perform easy
manipulations, getting

/QJ;C(un(t)—um(t)) gk:/Q 12200 Pt — 11|20 Vit +
T

—i—k/ “un]pfzun — \um\pdum‘ + k/ [tuon — Uom|-
Qr Q

Next, we divide this inequality by k& and let £ go to 0 by applying the monotone
convergence theorem, obtaining

Ry I [ 8 T A T
T

—l—/ ‘|un|p_2un - ]um|p_2um‘ +/ |Uon — Uom|-
Qr Q

Hence,

sup [ [un(t) — tp(t)] g/ a2 [Vt~ a2 11 [t 2|+
te[0,7] /€2 Qr

+/ ‘|un|p_2un - ’um|p_2um‘ +/ |u0n - u0m|'
Qr Q

Thus, it follows from (8), (20) and (37), that (u,)%2; is a Cauchy sequence in
C([0,T); L'(R2)) and consequently (40) holds true.

To finish the proof, we consider a test function in the weak formulation of the
approximating problem (9) and take limits as n tends to oo, having in mind
(8), (18), (19), (20) and (37). Therefore, we deduce that u is a weak solution of
problem (2) and so the proof of theorem (3.1) is concluded.
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