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Abstract.-

In this article we study the following quasilinear parabolic problem
uy — Au + |u)P2u| Vul? = Ju|*2u|VulP in Q := Qx]0,T];
u(z,t) =0 on S :=00x]0,T7;
u(z,0) = up(x) in Q;

Q0 being a bounded open set of IR and T > 0. We prove that if «,3 > 1,
0<p<gq 1<q<2 and a+p<[+q, then there exists a generalized solution
for all wy € L*(©2). We also see that there exists a nonnegative solution when
Ug Z 0.

1 Introduction.

Given T > 0, consider the following quasilinear parabolic problem

wp — Au+ |u)P2u|Vul? = Ju|*2u|VulP in Q := Qx]0,T];
u(z,t) =0 on S :=00x]0,T7; (1)
u(z,0) = up(x) in Q;

where  is a bounded open set in IRY™, whose boundary is denoted by 0,
1<¢<2 0<p<gq and a,8>1. (Wedenote |Vu|’=1.)

For the concrete case p =0 and (=1, and for positive initial data, problem
(1) was introduced by M. Chipot and F.B. Weissler in [9] in order to investigate the
effect of a damping term on existence or nonexistence of classical solutions. Several
authors have studied the existence of non global positive classical solutions, giving
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conditions for blow-up under certains assumptions on «, ¢, N and §2; see [3]
and the references there in. Global existence for nonnegative initial data has been
proved in the case ¢+ 1> a > 2 (see [11, 18] ). On the other hand, it is observed
in [21] that problem (1), with ¢ =2 and p = 0, does not admit global classical
solution in the case a > 2, §>1 and g+ 2 < a.

For positive initial data and p = 0, the degenerate case (the term Awu is replaced
by Au™ in problem (1)) has been studied in [3], where the existence of global weak
solutions for nonnegative initial data in L™%(Q) is proved under the following
assumptions:  asmooth bounded domain, m > 1, (8+q—1)/¢ >m/2, 1 < g <2
and 2 < a < (4 ¢q. We remark that the methods used in our paper are different
of that of [3] which does not work in the limit case ¢ = 2; moreover, we obtain an
existence result for, not necessarily positive, initial data in L'(£2).

We point out that in [20] and [3] a model in population dynamics is described
by this type of equations.

Problem (1), with p =0 and ¢ = 2, has been dealt with in [1] to obtain
existence for L!-initial data. We point out that the technique we use here is different
from that employed in [1], which, moreover, does not work when ¢ < 2.

Related problems are also studied in [4] in the degenerate case with measure
initial data. In contrast with the above references, in [4] it is considered an equation
with right hand side depending on the gradient.

The aim of this paper is to prove the existence of a generalized solution of problem
(1) for initial data uy € L'(©2) under the following hypotheses on the parameters:
a,>1, p>0, 1<qg<2 and a+p < [f+q. Cases p >0 and p =0 correspond
to equations with different behaviour; for instance, when wy € L™, |juglle is a
bound in the case p > 0 but it is not so if p = 0. Nevertheless, the existence
result lies on a stability theorem with respect to the initial datum (Theorem 3.1),
which deal with both cases in a similar way. No regularity assumption is required
on the open set ().

This article is organized as follows. In section 2 we define the concept of gen-
eralized solution we use and prove that these solutions are solutions in the sense of
distributions. Section 3 is devoted to prove the existence of generalized solutions
of problem (1) for initial datum wuy € L'(2) by proving our stability result. In
Section 4 we give an example which shows that the hypothesis a+p < 3+ ¢ in
our stability result cannot be avoided.

2 Generalized solutions

In this section we define and analyze our concept of solution of problem (1). Since
our solution does not belong to the “right” space L2 (O,T; H&(Q)), we cannot
apply the classical framework of [14] with its weak formulation. Instead, we will use
another concept which was introduced in [6] for stationary problems, and in [2] and
[17] for evolution ones. (In these papers it is called “entropy” solution, we prefer
an alternative denomination in order to not be confused with entropy solutions
of conservation laws.) Closely related with entropy solutions is the question of
uniqueness. In our situation, it is not clear under which conditions it is possible to
obtain uniqueness of solutions; this other interesting question will not be treated
here.



In order to introduce this kind of solution, some notation is needed: for each
k > 0, denote Ti(r) = (r ANk)V (—k) and J, the primitive of T} such that
Jx(0) = 0.

Definition 2.1 Let uy € L'(Q). By a generalized solution of problem (1) in the
set Qr = Qx]0,T[ we mean a function u € C([0,T]; L'(2)), such that Tj(u) €
L2(0,T; Hy(Q)) forall k>0, wulul*7?|VulP € L'(Qr), ulul’~2|Vu|? € L'(Qr)

and

/ﬂjk(u(t)—cb(t))+/0t/QvU.ka(u—¢)+/Ot/ﬂ|u|ﬂ—zu|vu,qu(u_¢):

=—/Ot<Tk(u— 6). 62) / /|u|0‘ 2u|Vu|”Tk(u—¢)+/QJk(Uo—¢<0))

for all k>0, all ¢€[0,7] and all test function ¢ € L*(0,T; Hj(Q2)) N L>(Qr)
such that its derivative in time in the sense of distributions, ¢;, belongs to
L*(0, 75 H7H(2)) + LY (Qr).

Remark 2.1 (1) If ¢ belongs to L?(0,T; Hj(Q)) NL>®(Qr) and its distributional
derivative in time is such that ¢, € L*(0,7; H*()) + LY(Qr), it is well known
that ¢ € C([0,T];L*(Q)). As a consequence, the functions ¢(0) and ¢(T) in
the above definition have sense.

(2) Since Ti(u) € L*(0,T; Hy(Q)) and ¢ € L*(0,T;Hi(Q)) N L>(Qr), it
follows that Tj(u — ¢) € L2(0,T; H3(Q)) N L>®(Qr) (see [6]).

(3) It follows from VTi(u—¢) =0 when |u— ¢| >k, that VIi(u—¢) =0
when |u| > M := k+||@]|oo. Thus, Vu-VTi(u—¢) = VTyu-VIi(u—¢) € LY(Qr)
and the second term is well defined.

(4) Since ¢, € L*(0,T; H () + L*(Qr), we have ¢, = (i + (» where
By € L2(0,T; H1(Q)) and B> € L'(Qr). We use the notation

/Ot<Tk(U —$),¢s) = /0t<Tk(u — &), 1) 3 +/ Ti(u— ¢)fo

t

in the above definition.
(5) Taking ¢ =0 and k=1 in the generalized formulation, it yields

/ V()P < / T ()] [Vl < oo,
T T

Moreover, we also have

[ we=ni@) < [ e < s

Hence, these estimates imply fQT |IVul? < 0o and so u € L4 (O, T: Wolq(Q)).

(6) Actually, the condition wu|ul’~2|Vu|? € L'(Qr) in the above definition is
redundant since the hypotheses Tj(u) € L?(0,T;Hj(Q)) for all k& > 0 and
ulu|*72|VulP € LY(Qr) imply wu|ul~2|Vul|? € L*(Q7). Indeed, on the one hand,

/ Ju|? 7t [ Vul? < —/ = + q/ |Vul? < +o0;
{lul <k} |u\<k} 2 J{jui<ky
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on the other hand, taking ¢ =0 and ¢t =T in the generalized formulation and
disregarding non negative terms, it yields

/ |u|ﬂ—1\vu|qg/ |u|0‘_1|Vu|p+/ o < +00.
{lu|>k} Qr Q
Thus, |ul’~!Vul? € LY(Q).

Next, we are going to see that generalized solutions satisfy our equation in the
sense of distributions. We will first prove that every generalized solution is a kind
of “weak solution”. (We point out that this is possible since ¢ > 1; in another
case this formulation has no sense, althought the generalized formulation still has
it. Nevertheless our methods do not work to obtain existence of solutions when
0 < g < 1.) In order to see it, we have to regularize our initial datum and apply
the time-regularization procedure introduced in [12] (see also [13] and, for non-zero
initial datum, [15] and [16]): for a fixed v € IN and a given function w €
L*(0,T; H(9)), we set

w,(z,t) = u/tw(w, s)e’*ds (2)
0
for ¢t € [0,7]. This regularization function has the following properties
w, € C([0,T]; Hj(Q))
(w,); = v(w —w,) in the sense of distributions (3)
w, — W in L*(0,T; HY(Q)) as v — oo.

Moreover, [w,|leo < W]l if w € L®(Q7) and, when w € C([0,T]; L'()),
wy, (., t) = w(,t) in L'(Q) for 0 <t <T.

Proposition 2.1 Let T > 0. If u is a generalized solution of (1) and ¢ €
L (O,T; Wol’ql(Q)) N Whee (O,T; L"O(Q)), then the following equality holds:

/ w(T)o(T) + Vu-V¢o+ / |u|?~2u|Vul|lp =
Q

Qr QT

:/QT u¢t+/QT |u|°‘_2u|Vu|qu+/QU0¢(0)

Proof: Fix k > 0 such that & > ||¢||oc and let h > k. Consider a sequence
(1;)52, in D(Q) such that ¢; — ue in L'(Q).

Now define 7,;(u) = (Th(u)) +e " Th(¢;). By (3), m;(u) € L*(0,T; Hj(Q2))N
C([0,T); L*(2)) N L>(Q7) and, in a distributional sense, (n,;(u)); = v(T),(u) —
M (w) € L°(Qr). Thus, if ¢ € LY(0,T; Wy (Q)) N WL(0,T; L=(2)), then
n,;(u) — ¢ may be taken as test function in the generalized formulation of problem



(1) which yields
Jo T (0(T) = g (W)(T) + O(T)) + [y, V- Vi (1 — 1) + 0) +

+ Jo, ulul VUl Ty (u — 5 (w) + ¢) =
(4)
= - fQT (771/71 (u))tTk (u - 7714]’(“) + ¢) + fQT ¢tTk (u — Ty (U) + ¢)+

+ fo, ulul* P VulP T (u —n,5(u) + 6) + [o Tk (uo — Th(ey) + 6(0)).

We now analyze the following term:

) Tl s+ 0) = v | (T0) = 100 T = )+ ).

T T

Observe that the functions 7j,(u) — 1, ;(u) and w — 1, ;(u) have the same sign.
Indeed, when |u] < h both functions coincide and when |u| > h, taking into
account that |7, ;(u)| < h, we have that

sgn(Th(u) — M (u)) = sgn(u) = sgn(u — M (u))

On the other hand, since T} is an increasing function, sgn a = sgn @ implies
a(Ty(@+ b) — Ty(b)) > 0; that is, aTy(a+b) > aTj(b). Hence,

/ (Th(w) = 10 () T (w0 = () + 6) > / (Th(u) = 10 () T (6) =

T T

1

:/;@Mw_mAmmz—/FWWWM¢

v
so that

/ (77’/73' (u))tTk (u — Mug(u) + gb) >

T

> [ @) - [ 7)o - [ s

T

Thus, (4) becomes
Jo Je(@(T) = 0,5 (u)(T) + H(T)) + [o, V- Vi (u = n,5(u) + ¢)+
+ Jo, wlul 2 VUl Ty (u = (u) + 0) < = fomg (W) (T)S(T)+
+ Jo Tu()0(0) + [o, M (W)de + [o, Tk (1 — . 5(u) + @)+
+ Jo, wlul* [ VulPTy (u = my (w) + 6) + fo Tk (w0 — Th(¥;) + 6(0)).

In order to take limit as v goes to oo we have to study the term

/ Vu - VT (u—n,(u) + ¢) :/ Vu -V (u—1,;(u) + ¢),

T {u=my,;(u)+|<k}
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which can be split up as

/ VUVTk(U—’I]VJ(U)—f—Qb) :]1+]2+137

T

where Iy = [1, i gian Vi V(u—n(u +¢)X{|u Ty (u)+|>k}
I = f{\u_m,]-(u)+¢>\<k} V- V(T (1) = 1 (0)) X flu—13 (w)+oi<k) and
I = (e (w6l <k} Vu - V(u Th(u +¢)X{|u Th(u)+¢|<k}- Having in mind

lim, oo nyj(u) = Th(u), it is easy to see that lim, oo [1 = 0 = lim,_.o I and

lim, o I5 = f{|u_Th( Vrol<k) VU V(u—Ty(u) + ¢). So that

lim Vu - VT (u—n,(uw) + ¢) :/ Vu - VT (u— Th(u) + ¢).
Qr

V—00 QT

Thus, by this convergence and Lebesgue’s Theorem, we may take limit in (5)
first when v tends to oo and then when j goes to oo, and it follows that

Jo Je(u(T) = Th(u)(T) + &(T)) + [, Vu- VTi(u—Ti(u) + o)+
+ Jo, wlul 2 Vul Ty (u — Ty (u) + ¢) < — [o Ta(u)(T)(T)+
+ Jo Th(u0)9(0) + [o, Th(uw)ds + [o ¢:Ti(u— T(u) + ¢)+

+ fQT u|u]°‘_2|Vu|ka (U — Th(u) + ¢) + fQ Jk (UQ — Th(UO) + QZS(O))

Notice that

Vu‘VTk(u—Th(u) +¢) —
Qr

:/ Vu-V¢+/ Vu-V(u+¢) >
{lul<h}

{h<|ul<k+h+|¢lloc }N{lu—Th (u)+|<k}

- Q V- Vo (X(ul<hy + X{h<lul<ktht[[¢lloeIn{fu—Ti (u) +6|<k})
T

and the last term in the above inequality converges to |, Or Vu-V¢ when h tends
to oo. As a consequence, we obtain from (6) that

Jow(T)O(T) + [o i (&(T)) + [y, Vu- Vot
—l—fQT ulu|* 7 VuliTy (¢) < fQ u¢t+fQ ¢ T (0)+ (7)

+ Jo, ulul* VUl T (6) + [o Jk(6(0)) + fo uo(0)

Taking now into account that

¢tTk / Ji (¢ — /Q Ji(6(0))

we deduce from (7) that

/u(T)qS(T) + Vu-V¢+/ ulul? 2| Vul|lp <
0

Qr T
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S/QT uqbt+/QTu|u|°‘_2|Vu|p¢+/Quogb(O).

Finally, the desired equality follows by considering +¢.

Corollary 2.1 FEwvery generalized solution of (1) in Qr satisfies the equation in
the sense of distributions.

Both type of solutions are different, in general; nevertheless they coincides for
bounded solutions.

Proposition 2.2 Let u belong to L*(0,T; H(Q)) N L>(Qr) and be such that
u € L*(0,T; HH(Q)) + LY (Qr)

and
|ul "V ul?, [u* 7 [Vul? € LYQr).

Then u satisfies (1) in the sense of distributions if and only if w is a generalized
solution.

Proof: On account of Corollary (2.1), we only have to see that distributional
solution implies generalized one. Fix ¢ € L*(0,T;Hg()) N L>=(Qr) such that
¢r € L*(0,T; H () + LY(Qr), and consider a sequence (¢,)52; in D(Qr) such
that ¢, —u—¢ in L*(0,T; H}(2)) and a.e.

Now, let S : IR — IR be a bounded C*-function satisfying S(0) =0, 0 < 5" <
1, S’(s) =0 for all s bigenough, S(—s)=—S(s) forall se€ R, and S"(s) <0
for all s > 0. Taking S(¢,) as test function in the distributional formulation and
passing to the limit when n goes to infinity, it yields

/Ot(S(u—qb),uS}—|—/Ot/QVu~VS(u—¢)—i—/ot/9|u|’8_2u|Vu|qS(u—gb):

t
= [ [ uvapsta - o)
0 Q
for all t e [0,T].

Next denote Jg(s) = [; S(r) dr and integrate to get

/Q Js(u(t) = 6(1) + /O t /ﬂ Vi VS(u— )+ /0 t /Q a2l VuliS(u — 6) =

:_/Ot<5(u_¢),¢s>—I—/Ot/9|u|a_2u|Vu|pS(u—gb)—1—/QJS(U(O)_¢(0))

for all t e [0,T].

Finally, approximate the truncature 7, by an increasing sequence of functions
(Sm)>®_, asin [6, Lemma 3.2] and let m tend to infinity; then w satisfies the
generalized formulation.



3 Existence of generalized solutions

This section is devoted to prove a stability result from which the existence of gen-
eralized solutions follows.

Theorem 3.1 Assume that u, s a bounded generalized solution of
(Un) — Aty + U [t |72 Vn|? = |un|*?u, | Vu, P in Qr := Qx]0,T7;
U, =0 on St = 00x]0,T7;

un('r?O) = u0n<x) in Q;

(8)
where o,f>1, 1<q¢<2, 0<p<gq, p+ra<q+p(, and ug, € L>®(Q) for all
n € IN.

If
Ugn — Ug in LY(S), 9)

then there exists a subsequence (still denoted by w, ) and a function u:Qr — IR
satisfying

u, —u in L90,T; Wy9(Q)), (10)

Te(u,) — Ti(w)  in L*0,T;Hy(Q))  forall k>0 (11)
a7 V| — [ul* VUl i LY(Qr), (12)

| |* Vg P — [u* T Vul” i LNQr), (13)

Up — U in C([0,T); L*(Q)). (14)

As a consequence, this function w is a generalized solution of problem (1).

Proof: In this proof C' will denote a positive constant that only depends on §2,
T, abound of ||ug,||; and on the parameters «, 3, p and ¢g. The value of C
may vary from line to line.

The following equality will be used several times in what follows,

Jo Ji(ua(t)) + th VT (un) [P + th [t |72, T (1) [Vt |7 =
(15)
= th |t |* 20 Ty () [Vun [P + [ T (tion)-

To obtain it, fix ¢ € [0,7] and take ¢ = 0 as test function in the generalized
formulation of (8). Moreover, dividing by &, dropping a nonnegative term and
letting & — 0T, it follows that

Ja lun@1+ Jo, lunl*=HVun|® < fo, [unl* 7V unl? + [ [ton] (16)

1.- A priori estimates

We will prove that

Jo, [unl®HVu, [P <€ foralln € IV. (17)



Assume first that (o — 1)g > (8 — 1)p. Applying Young’s inequality it follows
that

aq ﬁp
VP <2 T 5L )
Qr qJQr q Qr
Taking ¢t =T in (16), the above inequality implies
q ﬁp 1
Jo, 1l N un |7 < [y funl o= T 4 [ Juon- (19)
Taking into account (9) and applying Poincaré’s inequality we get
p-1+ o - _
fQT }un‘ < C’fQT |Vunq |q = C’(% +1)? fQT |, [P 1‘Vun|q <
(20)

ag—PBp 1

< O fy a1 11),

Since p+a <q+f and p<q imply 2292 < ¢+ 3, it follows from (20) that

4—p
/ Ju, [P~ < C for all nelN, (21)
T
and so
/ up| "< ¢ forall  ne N (22)
Going back to (19), Wereduce that
/ [up |’ Vu,|? < C for all  n € N. (23)
T

Now, (18), (22) and (23) imply that (17) holds when (o —1)¢ > (8 — 1)p.

The case (a—1)qg = (8 — 1)p is proved in a similar way. Consider finally the
case (a—1)¢g < (8 —1)p. Then we deduce from (15), with ¢t =T and k =1,
that

Jor WThunl* + [ 1<iynoy [l 1V unl® + [, 1o oy [l [Vun|? =

— fQT |VTun|* + fQT | P20, T4 () |Vt |9 <
< fQ || 20 T1 (un) [Vug [P + [, [tion] =

- f{lun\<1}ﬂQT [t |Vt | + f{lun|>1}nQT [n]*HVun|? + Jg [uon]

Thus,
Jor IVT1tl® + [y, oy [l Vun]* <

= fQT VThun|? + f{lun|>1}nQT [n|*H V[P + fQ [won].

Since p < 2, using Young’s inequality, the first member on the right hand side can
be cancelled with the first one on the left. Now, applying again Young’s inequality,
it yields
a—1
Stumis13n@p [0l VU [P <
(25)

1 aq ﬂp —1,
—q f{lun|>1}ﬂQT ‘“"‘B | Vun|? + 4 f{|un\>1}mQT |tn] ’
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so that,

/ [ [PV, | < / =t u/ luon| + C.
{lun[>13NQr {lun|>1}NQ7 q Q

Note that we have O‘Z%gp — 1 < 0 and so the right hand side in the above inequality

is bounded, that is,
/ || P Vi, |1 < C.
{lun|>1}nQr

Hence, the above inequality and (25) imply

f{\un|>1}ﬁQT |t |V, [P < C. (26)

On the other hand, dropping non negative terms in inequality (24) we obtain
/ VT2 < / VTl + C,
T T
so that it follows from Young’s inequality that
/ VTl < C.
T

Therefore, from this and (26), we get that (17) holds true in every case. As a
consequence, the right-hand side in the equality (16) is bounded. This fact implies
two important estimates:

/ |1 |P 7 [ Vu,|? < C for all n € IN. (27)
Qr
and
sup / lun(t)| < C for all  ne€ N. (28)
te(0, 7] JQ

Furthermore, from the equality (15) the following estimates also hold,

/ IVTi(un)? < Ck  for all  n€ N, (29)
T
and, for k=1,
/ Ty (U )|t |P 72|V, |2 < C for all  n e IN. (30)

Qr

Denoting G (r) = r — Ty(r), this last estimate implies

/ VG (u)|” < / Ty () n|un 2|V ()| < C for all  ne IV.
T T

From this fact and (29) we obtain

/ Vu,|?<C  for all  nelN. (31)
T
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Moreover, for ¢ close to 1 a better estimate can be obtained; indeed, multiplying
problem (8) by T} (un — Th(un)), h > 0, and integrating, we have:

/Q 7 07) = Thfan) (1) + [ - 9 o = Ti)+

+/ un|un\ﬁ_2|Vun|qT1(un —Th(un)) <
T

< [ il 9Ty (= i) + | i~ Tiuon):
T Q

Thus dropping nonegative terms it yields

/ |wn\2§/ |un|°‘1|Vun|p+/|u0n—Th(u0n)|
{h<|un|<h+1} T 0

and, as a consequence of (9) and (17),

/ |Vu,|* < C
{h<|un|<h+1}

for all A > 0. From this inequality we may follow the procedure introduced by
Boccardo and Gallouét in [7] and deduce that, for 1 <r < (N +2)/(N + 1),

/ V| < C (32)

for all n € IN.

Going back again to (8), we get that the sequence ((uy):)5; is bounded in
the spaces L(0,T;W~19(Q)) + L'(Qr) and L"(0,T;W~-1"(Q)) + LY (Qr) for
1 <r < (N+2)/(N+1). Using this fact, (31) and (32), we obtain from [19,
Corollary 4] that (u,)5, is relatively compact in L9(Qr).

Summing up, there exists a function u € L9(0,T; W, %(2)) and a subsequence,
still denoted by (u,)22,, such that

n=1
u, —u  weaklyin L0, T; W, Q) (33)

and
Uy — U in LY(Qr) and a.e. in Qr. (34)

Moreover, by (29), we may assume that
Te(uy) — Ti(u)  weakly in  L*(0,T; H}(Q)). (35)

Finally, assuming (o —1)g > (8 — 1)p, we also deduce that

aq—PBp _

|un|ﬁ L, ’u‘ag%gp_l n Ll(QT) (36)
Indeed, because of (34), we just have to show that the sequence (|un|a3:§p_1)$l°:1

is equi-integrable, but it is straightforward taking (21) and Holder’s inequality into
account.
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2.- Convergence of truncations in L*(0,T; Hj(€2))
Our aim is to prove that (11) holds; that is,

VTi(u,) — VT (u) in  L*Qr) for all ke INV. (37)
From this fact, by applying a diagonal procedure, it yields
Vu, — Vu a.e. in Qr. (38)

To prove (37), we have to regularize the initial datum uy and to use the time-
regularization function given in (2). Let 1; € D(£2) be such that

Y, — up in Ll(Q),

and let
Mo (uh) = (Ti(u®)), + e Tu(¥)),
which has the following properties (see (3)):

(Mg (u™))e = v(Ti(u™) = myy(u’)),
M (u")(0) = Ti(¥),
|77Vj(u+)| <k,

nyi(ut) — Tp(ut) in L*(0,T; Hy(2)) as v — oo.
By denoting w(n,v,j,h) any quantity such that

lim lim lim lim w(n,v,j,h) =0,

h—00 j—00 V—00 N—00
all we have to prove is that

/ IV (T (1tn) — 03 () < (0, . ), (39)

T

where h is a parameter that we will consider later. The proof of this fact will be
splitted into several stages. We begin by showing that

Claim 1:

Proof: Consider
wy = Do (uf = Th(wh) + (Telun) — 1y (w®)) ")

with h > k, and observe that w,w, > 0. Multiplying problem (8) by w, and
integrating, we obtain

Jo (was ()e) + Jo, Vit - Ve + [o [n] " Vg |2fw,| =
(40)
- fQT [ [T Vg [Py

12



Let us prove that
T
Jo (Wns (un)e) + fo, Vn - Vw, < w(n, v, h). (41)

We have to consider three cases; assume first (o —1)¢ > (8 — 1)p. Then using
Young’s inequality in the right hand side of (40) we obtain

S o) + fo, Vetn - Ty + fo, 1]Vt 70| <

aqﬂ@p_l

<2 Jop lunl TV un | + T2 [ fun| e

and consequently, there exists a constant C' > 0 such that

ag—PBp _
Vu, - Vw, < c/ ] S -
Qr T

[t

Having in mind (36), the properties of 7,;(u") and Lebesgue’s Theorem, it is easy

to see that
lim lim lim |un|a3:gp_1|wn| = 0;

h— 00 V—00 N—00

T

thus, (41) is proved in this case. The case (o —1)qg = (8 —1)p is similar. Consider
next (a—1)g < (6 —1)p, then

fQT || [Vt [P | =

= Juni<tings [nl V@GPl + fyy, 121300, [al* 1V unllwal.

The first integral can be manipulated as follows

f{lun|<1}ﬁQT |un\°"1|Vun]p|wn| < f{|un\<1}mQT [V, [Plw,| <

/2 NG
< (o, 19T) (o, fwalz) "

With respect to the second integral, we use Young’s inequality to get

Sz 1300y 1l Vg Plun| <

aq—pBp

_ - —1
S §I{|un|21}ﬁQT |u”|ﬁ 1|vun|q|w'fl| + % f{\un|21}ﬂQT ‘unl a-r |wn| S

< %fQT || V|| + % fQT Wyl
On account of (40), we have

f()T<wn> (un)t> + fQT Vun . V’wn <

/2 2 @2
< <fQT |VT1un|2> (fQT |wn|27p) + % fQT |wy| <
< w(n,v,h).

13



Therefore, (41) is proved.
Let us now analyze the term

[

in (41). Note that w, = wpX{u,>0y and, if u, >0, then
Wa = Thw(tn — 1 ()" = Thoi(uy — Tiouy)
and so

I s (wa)e) = 3 (Then (= 0 (W), (wa)e) — fo (Taoi(uh — Ti(u))), <un>@>1 g
On the one hand,

Jo (Tienatn = s (1)), (wn)e) =

= Jop (i ()T (wn — 105 ()T + Jo T (wn — 705 ()" (T) -

— Jo Tnsn(uon — Te() )" =

=V Jou (Te(w) = 0 () T (i = 10 (u)) ™+ fo Tner (i — (™)) (1) =

— Jo Tnrr(uon — Te(p;) T >

> Jo Ink(tn =00 (D) (T) = [o Tnsn(von — Th(]))*,
having in mind |n,;(u*)| <k and (Tx(w) — 1y (u)Thir(uw — 1,5 (w)) T > 0.

In order to handle with the last term in (42), we have to approximate the func-
tions w,. We begin by splitting up (u,); = Bin+032, where (i, € L2(0,T; H(2))
and (s, € L'(Qr). Applying [8, Lemma 2.2] to each u, —ug, and then adding g,
to the obtained sequence, we may consider a sequence (2,,)5, in L*([0,T]; Hi(Q))
such that z,,(0) = ug,, and z,, — u, in L*(0,T; H}()) when o tends to

infinity. Moreover, (zn.)¢ = Bine + Bons, Where i, € L*(0,T; H1(Q)) and
Bone € LY(Qr) satisfy the following convergences as o goes to infinity:

51710 - 6171 n L2(07 Ta Hil(Q))
(43)
52710' - 6271 in Ll(QT)7

in other words, 1im, (2o ) = (w,)e in L2(0, T3 H-Y(Q)) + LY(Qr).
Jo (Top(ud = Tlwh)), (un)e) = limg oo fo, Tk = Te(25))s (Zao)s =
= lim, o [, Tioi(Gil(2)) Gz ) =
= limyoo o, Jn-(Gi(205(T) = Jo Tn-(Gi(25,(0)) =
= Jo Ihr(Gu(uf (T)) = [o Tn-r(Gi(ug,).

14



Therefore, (42) becomes
Jo Was (un)e) > Joy T (i — 70y (W) HT) = Jo T (tion — Tr(3)) " —
— Jo Tn-r(Gr(uf(T)) + [ In—k(Gr(ug,)-
As |n,;(ut)] <k it follows that
Tk (U = 10 (W) T = Tpi(wn(T) = B)X ()58 > 05
S0

T
fO <wn7 (un)t> Z - fQ Jh+k(u0n — Tk(wj))+ + f{UOnZk} thk:(uOn - k) -
= — Jo Iner(uon — Th(¥])) " + f{uOnzk} Jh—r(ton — k).
Taking limits as n goes to infinity, it follows that
Jo (s (un)e) = w(n) = fo Jnw(uo = Te(w))+
 Jtuozy (o = h).
Taking now limits as v and j tend to infinity,
Jo {wn (un)e) = w(n,v,5) = fo Tnon(u = Tiuo)) T+
 Jpugzy Tn-itto = k) =

= w(n, v, 5) + [rugsry (Jo-n(to — k) — Jnyi(uo — k)*) .
Since
—2]{/’/ Ug S / (Jh_k(uo - ]{7) - Jh+k(U0 - k))+) S 0,
{uo>h} {uo>k}
it yields
T
/ (Wn, (un)e) > w(n,v,j, h).
0

Then, by (41) and the above inequality,

Vu, - Vw, <w(n,v,j,h). (44)
Qr

Now, since Vw, =0 when wu, > h+4k and w, = wpX{u,>0}, it follows that

fQT Vu,, - Vw, = fQT VTiia(uwh) - Vw, =
(45)
= Jo, VTk(u) - V(Ti(wf) = ()" + [, 2y Vsar () - Vi,

15



where

f{u >k} VTan(uyy) - Vwy =

- f{unzk}m{un_n(un)_%gk} VTiaw(uy) - V(un = Th(un) + k= nys(u™)) =

v

- f{unzk}m{uwn(unmwSk} VT hpar(uyy) - Vi (u™) =

> = [ty |V Thrar () [ Vi (u™)] =
> = Jrwnomy VTt (WOIIN T (W) = [r sy [VThrar (W) V T (@) — Vi (u)] =

> = Stz VTt (W) IV T (@) = Jo, IV T (w) VT (wh) = Vi (u™)],

with
lim |V T ar ()| [ VT (u™)] = 0,

and
lim lim IV Ty (w))| VT (u®) — Vi, (u™)] =0,

V—00 Nn—00 QT

so that (44) and (45) imply

o VTi(uy) - V(Ti(uy) = muj(u™)) " < w(n, v, j, ).

On the other hand, it is easy to see that

lim lim Vnyj(u+) . V(Tk(U:) - qu(“+)>+ = 0.

V—00 N—00 QT
Therefore,
| 19 @tad) = mstat )P < ol b
Qr
and claim 1 is proved.

Claim 2:
/ VT () Py () < ol v, 5. 1)

Proof: We multiply problem (8) by
O = Tie ( =ty + T () = Tz ) (u)),

integrate and work as in the above claim to deduce that

/T<0n, (un)e) + Vu, -V, <w(n,v,h). (46)
0 QT

Let us next study the term fo by (un)e).  Recall the notation used in the
above Claim, there exists a sequence (z,w)f’:1 in L*([0,7]; H}(Q2)) such that

16



200 (0) = Uop, limg oo 2ne — u, in L2(0,T; HY(Q)) and limg oo (200 )e
in L*(0,T; HY(Q)) + L'(Qr). Now, denote

Ono = T ( — 2y + Tilz) — Ti(z )i (uF)),

which belongs to L2*(0,T; H}(€2)) N L>®(Qr). Then we have

T
/ <0n7 (un)t> = lim <2n0>t9na = lim (Ana + Bn0)7
0

g—00 QT ag—00

where A,, = f{7h<zm,<0}(zm7>t9”‘7 and B,, = f{zm<fh}(zm)t9m'
On the one hand, note that

= Jo, (T DT~z g () =

= Jou (Jk<—Th<z;g>>)tmj () = = Jou He(=Tilzu)) (msu) ) +

t

+ Jo Te(=Th(26 (7)) (wNT) = Jo Tr(=Th (g, ) T (45),

and so we deduce that

hmn—>oo 1imo—>oo Ana = — fQT Jk(_Th(u_>) (qu(lﬁ))t‘f‘

+ fﬂ Jk(—Th(U_<T)))77uj(u+)<T> - fﬂ Jk(_Thwa))Tk(%ﬂ'

Since
| AT () =v [ I-Ta ) (= mah)) <o
it follows that

i Jim A, > [ ST ()T ~ [ I(Tala )T

n—oo o—00 9]

On the other hand,

Buo = Jo, (= Gu(2,)) Tz (= Gulzp,) — kwy(u™)) =

= (Un)t

(48)

= Jo Ji2 (= Gi(200(T)7) = ks (w)(T)) = [, Tz (— Gulug,) — kTi(v])) +

+k [, (i), Tia (= Gulzn,) — ki (u™)).
Thus,

lim,, oo lim, oo Bpy =
= Jo Tz (= Gu(w(T)7) = k(W )(T)) = Jo Jr2 (= Grlug) — KTi(9))+

+k fQT (nyj(u+)))tTkz( —Gp(u™) — kn,,j(u+)).

17
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We point out that the last term in the above expression is equal to

[ (= st ) T (= Gaa) = o)
Qr

and so Ty (— Gup(u™) — knyj(u™)) < —kn,;(u™) implies
k2
b ), Tia (= Galw) = k() = =5 [ (s(?),
T Qr
Hence, by (49),
limy, o0 imyog Bro > [o, Sz (— Gr(u(T)™) — kny;(u®)(T)) —
= Jo (= Ga(ug) = KTe(W]) = 5 Jomos(wh)(T) + %5 Jo Thlw)*,
Having in mind (48) and (50), it follows from (47) that

fo s ( ) > w(n)+
+ Jo Te(=Th(w™ () (W NT) = Jo Tu(=Th(ug )T () +
+ Jo D2 (= Gr(u(T) ™) = knuj (W) (T)) — [o, Je2 (= Glug) — kTR (¥)))—

B (WD) + [ T(w )2,

Taking now v — oo and then j — oo, we deduce that
fo ) = w(n,v,j)+
- Joy (=G (1)) = KTL()(T)) = foy T (—Gin(uig) — KT ))—
— Jo Te(w™ (7)) + 5 [ Ti(ug).
Letting h go to infinity, we have that
fo Y > w(n,v,j,h)+

+ Jo S (kT (w*)(T)) = Jo Jio (kT (ug )~

B Tt (1) + & [ Tu(ud)? = win, v, j, h),

because Jy2(—kTi(ut)(T)) = %sz(u+(T))2 and  Jy2(—kTy(ugd)) = ’“2—2Tk(uar)2.
Hence, from (46), we conclude that

Vu, -V, <w(n,v,j,h). (51)
Qr

We next turn to study this term. It is straightforward that
fQT Vuy, - Vb, = f{—k<un<0} ’vun|2771/j (u+)+

+ f{—k<un<0} Un Vi = V1)yj (UJJF) —k f{—h<un<—k} Vay, - Van(u+)_ (52)
- f{Un<_h} Vu, - VT2 (= uy + h — kny;(u™)).

18



Observing that the first term in the right hand side is equal to [, [VTj(uy, )[*m;(u®),
to prove our claim all we have to see is that the other terms in (52) tend (in a suitable
way) to 0.

We begin with the second and the third terms. Since Tj(u,)” — Tr(u)~ weakly
in L? (O, T, HS(Q)), we have that

/ w, Vi, - Vi, (ut) = / Ti(un)” VTi(un)™ - Vi (u®)
{—k<un<0} Qr
tends to [, Ti(u)”VTi(u)™ - VIT(u)* = 0. Similarly,

B /{h<un<k} YV, - Vi,(u’) = / <VTh(UZ) - VTk(U;)> - Vy;(u’)

T

tends to fQT (VTh(u)_ — VTk(u)_> - VT (u)™ = 0. Consequently,
/ UV, - Vi, (ut) — k/ Vg, - Vn,;(u’) =wln,v).  (53)
{—k<un<0} {—h<un<—k}

Next, in order to analyze the last term in (52), we use the following notation;
we set M = k% + h,

Ef={-M+kn,;(u") <u, < —=h}N{u>0}

n

and
E, ={-M+kn,;(u") <wu, < —h}N{u<0}.

Then
f{un<—h} Vu, - VT ( —u, +h—kn,(ut)) =

- f{—kz—h+k77uj(u+)<un<—h} Vu, (— Vu, —kVn,, (U+)> <

=k J e bty <un<ny Vn - Vil (uh) =

=~k Jo, X5: VI (un)™ - Vnui(u®) = & [, Xpz VT (un)™ - Vi (u®).

Since X p+(7,t) — 0 ae. and Ty (u,)” — Ty (u)” weakly in L2(0,T; Hy(Q)), it
follows that
lim Xt VT ()™ - Vi (u®) = 0.

n—0o0 QT

With respect to the last term in (54), we apply Cauchy-Schwarz’ inequality to get

) Jor Xz VT (un)™ - Vi (u+)‘ <

= (fQT |VTM(Un)|2>1/2' (fE; IVan(zﬁ)IZ)l/Qv

19



which is equal to w(n,r) just noting the integrals fQT |V T (u,)~|? are bounded
by a constant only depending on M and

lim lim IV, (u®)|? =

/ [VT(u®)* = 0.
v—00n—00 [p- {—M+kn,j(ut)<u<—h}

Going back to (54), it yields
/ Vu, - V(= u, +h—kn,;j(u")) <w(n,v).
{un<—h}
From that last inequality, taking into account (52) and (53), we obtain
Vu, -V, > / VT (u;)|* 00 (u™) + w(n, v).

QT T

Therefore, claim 2 follows from (51).

Claim 3:
[ 9000 e T < it
T

Proof: Let ¢ : IR — IR be an increasing locally Lipschitz-continuous function
such that ¢(0) =0 and consider the following functions: ®(s) = [ (1)~ dr and
S(s) =+ [, (k—77)" dr; note that

s, if s>0;
S(s) = s—i—%, if —k<s<0;
—_k if s<—k.

9
Observe that we may multiply problem (8) by the function

& = () = ms ()™ = (S(un))” |5 (un)
and integrate to get

foT<fn> (Un)e) + fQT Vuy, - V&, + fQT ]unfﬁ_gun|Vun|q£n =

- fQT || 21| Vg [Py

20



Performing obvious manipulations, from the above equality and the following com-
putations

Joy Vi - Ve = [, V- V(S (un) — 1 (w")) "' (S (un) — 1y () S (un)
— Jy, Vit - VS ()¢ (S(un)) S () +

gy IVl (2 (S (un) = s (wh) ™ = (S(u)) ) 5" (1) =

= Jiocun<ny iy Viin Y (tn =m0 (w®)) @' (S (n) — i (u?)) S (un) +

+ f{_kgungo} Vi, - Vi(u®)e’ (S(un) = Nuj (UJF))iS/(Un)‘l'

+ f{—kSunso} Vi, - V(S(“n)) [W/(S(Un)) - SOl(S(Un) sz (U+))7] S (un)+

P S oy V2 (9 (S () = ms ()™ = 9(S(ua)) 7).
we deduce that
fQT |V(Tk<urt) - 77Vj(u+)>7’290/(u7t - 77,,]-(U+))7 =
=~ Jrozunznyrn ¥ (=1 (W) - V(w5 =05 (u®)) " (uf = my (™)) =

= - fQT Vun : vfn"‘

+ f{_kgungo} Vuy, - van(qu)SO/(S(Un) - 77!/]'(“+))7S/(un)+

oy Vitn - V(S () [0 (S ()™ = ¢/ (S(utn) = mg(u*)) ] S (wa) +

1 S oy [V (9 (S () = ()™ = 9(S(ua) ) +

+ Jop Vi (u®) - V(Ti(wl) = muy(u®)) @' (uh = myy(ut)) <
Sh+ I+ I3+ 14+ Is + Is + I,
(55)

where

T
. / (s (1)),

0
I = / P T 116,
I = / | |Vt P,

I = / Vit - Vit ()@ (S (1) — g (u™)) ™" ().
{_kgunfo}
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I = / Vi, - V() [ (S ()
{—k<un <0}
=g [ TP (S ~ ) = e(Sw) ),

I; = / Vi (u®) - V(Ti(wg) = nui(u)) ¢ (wh — nui(u®)).
Qr

We are going to study each of these terms; let us begin with the first one,

= Jo (&u ()i} = Jo (0 (S (un) = my(w)) ™ = (S(wn)) ", (S(un)),) =
=k@@wa ) = s (D)) = Jo @ (SCuon) = Telw)) +
+ S Os), (9(S(un) = ms (@)™ = o (S(un) ")
~ Jo @ (S(ua(@)) + f @ (S(u0n))-

Taking limits when n goes to infinity, we get

lim oo fi (€ (un)e) =
= Jo ®(S@(T) = ms (D)) = o @(S(u(T)))+

— @' (S(un) = s ()] S (un),

(56)

FJa@(S(0)) = Jy ®( ) T )+
+ fQT (nvj(u+))t <<P(S(U) - 77uj(U+))_ — @(S(u))_>.

Since @ is increasing and 7,;(u™) >0, it yields

D(S(u(T)) = s (w")(T)) = B(S(u(T)) < 0.
On the other hand,

lim;_, fQCD( ) fQ ( Tk(¢+)) =
Ja (@(S(uo)) — ®(S(uo) — Tk(u(ﬂ)) =
= f{quO} <(I)(S(u0)) - (D(S(Uo) a Tk(u(—;)))—i—

ey (B(5(0)) = (S(ua) — Ti0d)) = 0.

Finally, since S(u) <mn,;(u™) implies Tp(u™) <n,;(u™), we get

fQT (nuj(?ﬁ))t(,@(S(u) - nuj(?ﬁ))i =

v Jop (Te(u™) = m(uh)) (S () = ny;(u*)) < 0.
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Hence, we deduce
[1 Sw(nal/uj)' (57)

Let us turn to analyze Is.

I, <14 fQT ’vunPW(Un —1i(u)) ™+

<4 o, Vua-V M () ( Nwj(w)) ™+
+1 Jo, V- Vni(w)o(un — ()~ +
+22_q 2=q fQT 771/]( ))_ <

which implies

< [ 19— g 00) Pl = g 00)” ), (59
Similarly,
< |90 )l = )+ o, 0), (59)

The study of the term I, is very easy since

lim lim Iy = — [ VTi(u) - VTi(u")e' (S(u) — Tp(u®)) ' (u) = 0. (60)

V—00 Nn—00 QT

With respect to the following term, on account of
¢ (S(un)) < @' (S(un) = my(u’))
on the set {—k < u, <0}, we have

= [ V[ (S) @ (S(m) ~ma) ]S ) <0, (61
{—k<un<0}

We now pass to handle with Is. Having in mind that the function ¢ is
Lipschitz-continuous on [—k, 0], we get that

(S (un) = ()™ = o (S(un) | < Miny(u).
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Thus,

I = %f{—kgungo} |Vun|2<90(s(un> - an(qu))i - @(S(Un))i> <

(62)
S % fQT |VT]€(U”)|27’]V](U+))7 S w(n, V:ja h);
by claim 2.
Finally, it is straightforward that
lim lim I; = VTi(u®) - V(T (uh) = Ti(u®)) ¢ (ut = Tp(u)) = 0. (63)

V—00 N—00 QT

Therefore, having in mind (55), the estimates (57), (58), (59), (60), (61), (62)
and (63) imply

Jou 19 (Tilush) = mg ()R (= mug(u)) ™ = L2 (w5 = ms(u?)) | <
< w(n,v,j,h).

Choosing ¢(s) = se*” with \ large such that ¢/(s) — L2y (s) > 3, it follows that
| 19(@) = Fns) P < wlnvdn)
T

and so claim 3 is proved.
Now, it follows from claim 1 and claim 3 that

/ 1V (T =m0y () [F < w(n, v, g, ),

T
so that, by the convergence n,;(u™) — Ty(u%) in L*(0,T; H}(Q2)), we obtain

lim VT, (ul) = VT (v") in L*(Qr). (64)

n—oo

The corresponding result for the negative part of truncations may be obtained
by similar arguments, or by using the fact that —u,, is a solution of

vy — Av +ou|P~H Vol = |v|*20|VolP in Qr;
v=20 on St;

v(z,0) = —ug,(x) in Q
and so we deduce from

lim VT (—u,)" = VTi(—u)" in L*(Qr)

n—oo

that
lim VT (u,) = VTi(u™) in L*(Qr). (65)

n—oo

Therefore, from (64) and (65), we conclude that (37) holds true.
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3.- Convergence of gradient terms in L'(Qr)

Our aim in this step is to show (12) and (13); as a consequence, we also prove
(10).

We begin with the proof of (12); since almost everywhere convergence is guar-
anteed by (34) and (38), on account of Vitali’s convergence theorem, we only need

to show that the sequence (\un\ﬂ_IIVunP) is equi-integrable. This fact is a
1

consequence of

lim || P Vi, |1 = 0 uniformly on n € IN. (66)
h=00 J{unl=h}nQr

To see (66), we take T (u, — Th(uy)) as test function obtaining

/ Tllua(T) =)+ | o
{lun (T)|>R}NQ {h<|un|<k+h}NQT

+/ |t |P 2, T (19, — T (1)) |V |4 <
T

§/ |2 |2 T (1, — T (1)) |Vt |P +/ Ji(|won] — h).
T {

|ton |>h}NQ

Disregarding non negative terms, dividing by k and letting & goes to 0, it yields

/‘ |%Wﬂv%ws/' |MP*WMV+/' (luon] — ) <
{|un|>h}INQT {lun|>h}INQT {Juon|>h}NO2

S/ ]un’a1]Vun\p+/ [ton|-
{lun|=h}NQT {luon|>h}INQ

Applying Young’s inequality we get

aq—PBp _
/ MM*WMWS/ wa?f1+o/ )
{lun|>h}NQr {lun|>R}NQr {luon|=h}N%2

When (a—1)¢g > (86— 1)p, it follows from (9) and (36) that (66) holds. In the
other cases, when (a—1)g < (5 —1)p, we also obtain it in a straightforward way.

o0

Now we are ready to see that the sequence (|un|5*1 |Vun|q>
n

is equi-integrable.

Indeed, if E is a measurable subset of )7, then

Jio lunl = IV unl® = g cny el IVl 5 Jip g, o nl”H Vi <
(67)
<K [ VT (un)| + Junzi3n02 [t |7 [V |

Let € > 0. By (66), we may choose k > 0 such that

/ | V| < =
{un|>k}NQr 2

for all n € IN. Fixed k >0, as a consequence of (37), we have that the sequence
(\VTkunP) is equi-integrable. So we may find 0 > 0 such that |F| < ¢ implies

€

/E|VTk(un)|q < 2%B-1
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forall n € IN. Hence, it follows from (67) that |E| < ¢ implies [, [un|?Vu,|? <
e forall n e IN.
In order to see (13), apply Young’s inequality to obtain

ag—0Bp

_ p — q—0p
|Un|* Vg [P < ’VTlun’p+a|un| P X fun |51}

|un|ﬁillvun|qa

distinguish the cases (a—1)¢ > (8 —1)p and (o —1)¢ < (8 —1)p, and then use
the convergences (34), (36), (37), (38) and (12).
Finally, we prove (10) by showing that

Vu,| — |Vul in  LYQr).

To do that we only need to apply Vitali’s theorem again. The pointwise convergence
follows from (38), while the equi-integrability is a consequence of (11), (12) and the
following inequality

fE |vu"|q = fE |VT1(UH>|q + fE |V(un - Tl(“ﬂ)) ‘q <

q/2
< B0 ([ 9Ta(a) ) + [y lual IV ().

4.- Convergence in C([0,T]; L*(2))
In this step we prove (14). To do this fix t € [0,7], and m,n € IN. Take u,,
as test function in the generalized formulation of (8) corresponding to w,, and wu,
in that of w,,; adding up both identities we deduce that

/QJk (un(t) — un(t)) + g YV (ty — ) - VT (tn — um)+

+/ <]un|ﬁ_2un\Vun|q — |um|ﬁ_2um|Vum]q>Tk(un — Upy) =
t

= / <|un|a_2un|vun‘p _ |um|a—2um]Vum|Pm>Tk(un — Up) + / Ji (ton — o).
Q

t
From here, we obtain a suitable inequality by taking into account that for every
re R, Ji(r)/k 7T |r| as k| 0. Indeed, we get, disregarding the nonnegative
second term, that

[ (an® = @) < [ [l Tl =l
Q T

—l—k/ +k/ [ton — Uom|-
T Q

Next, dividing this inequality by k& and letting & go to 0 we obtain

[ Junt) = )] < /Q T
+/T

_|_

]un]a72un]Vun‘p - ’um’a72um|vum’pm

|un|’8’2un]Vun\q — |um|’8’2um\Vum|q +

-+ / ‘UOn — u0m|.
Q

|un|a72un|Vun|p - |um|a72um’vum|pm

26



Hence,

sup / |un(t) — um(t)] < / U |Vt |7 — |t |* 2y |Vt 9]+
te0,1] /o Qr

+/ +/\uOn—uOm|-
T Q

Thus, it follows from (9), (12) and (13), that (u,)?2, is a Cauchy sequence in
C([0,7]; L*(€2)) and consequently (14) holds.

|un‘a72

|un|a72un|Vun|p - |um|a72um’vum|pm

5.- w is a generalized solution

To finish the proof, we consider ¢ € L*(0,T;Hg(2)) N L>(Qr) such that
¢ € L? (O, T; H_I(Q)) + LY(Qr). Taking ¢ as test function in the approximating
problem (8) and letting n go to oo, having in mind (11), (12), (13) and (14), we
deduce the generalized formulation of problem (1) and so the proof of Theorem 3.1
is concluded.

Theorem 3.2 Assume that o,3>1, 1<q<2, pra<q+3, 0<p<q. Then,
for every ug € L'(Q), there exists a generalized solution of problem (1). Moreover,
there exists a nonnegative generalized solution when wug > 0, and if uy € L®(Q),
then there exists a generalized solution such that w € L*(0,T; Hj(2)) N L>=(Qr).

Proof: We will prove this result using the previous Theorem. To this end, take
an approximating sequence ug, € L*®(2) which converges to uy in L'(Q) and
consider the corresponding problems with these initial data. Next, we will apply
[8] to solve these approximating problems; so that, we need supersolutions and
subsolutions of them. Since € is bounded, we have R > 0 such that |z;| < R—1
for all x € Q2. Thus, fixed n € IN, thereis K > 0 such that the function defined
by w*(z) = K(x1 + R) is a supersolution of our approximating problem; indeed,

(W) = Bu o Ju P D]t a2 |V =
= KP+o~1(z, + R) (K(q+ﬁ)f(p+a)(|xl| + R)P72 — (Jay| + R)a”) >0 in Q,

(u*)(z,t) > K >0 on S,
u*(z,0) > K > ||uon||oo in €,

for K big enough. Likewise, the function defined by w.(z) = —K(z; + R) is a
subsolution.

Hence, by [8], we get a bounded distributional solution u,, of each approximating
problem. Since w, € L*(0,T;Hi(Q)) N L>(Qr), (u,): € L*(0,T; H1(Q)) +
LYQr), and |u,|?~HVu,|? and |u,|* " Vu,|P belong to L'(Qr); by Proposition
2.2 they are generalized solutions. Moreover, these solutions are nonnegative if
g, > 0. Now, by Theorem 3.1, we obtain a generalized solution of our problem.
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4 Example

If our hypotesis a+p < 8+ ¢ is changed by a+p > G+ ¢q, when p =0, itis
known that the solution, with wy € L>(€2), blows up in finite time. Nevertheless,
this fact can not occur in the case p > 0 for initial datum uy € L>(f2), since then
u*(z,t) = ||uo|lo is a supersolution and w,(z,t) = —||ug|lo is a subsolution of our
problem, and consequently there is a global solution on account of the main result
in [8].

In this last section, we will show that our condition o+ p < B+ ¢ is not
arbitrary. In fact, we are going to construct an one dimensional example, for the
parameters p=q =1 and «a > [ > 2, where our stability result does not work.
So, in this case, we are not able to deduce an existence result.

Let us consider the following problem,

Uy — Uge + 0|7 2ulug| = |u|*2ulu,, in Q :=| —1,1[x]0,T;
u(zx,t) =0, on S; (68)
u(x,0) = |z|77 — 1, in]—1,1[;

where 0 < v < 1. We are going to see that, for a suitable ~, there exists a
sequence of approximate solutions for which our stability result does not apply.
Let
L(u) = Uy — Upe + 0 g — u® " uy|

and let S
u(z,t) = e *"h(|z|)

where £ > 1, 0 > 0 and
ST 21 0<az <k

h(z) =
a7 — 1 if k7 <2 <.

We remark that h(|z|) belongs to C'in [—1,1].
Let us see that choosing ¢ > max{%, 6—1+ %} and k large enough, it yields

L(u) <0 pointwise in [—1,1] x [0, 7. (69)

Indeed, on the one hand, in |0, k_%] x [0,T7,

+2 y+2

L(u) < K¢ ™ h(z) + e ¥k + e * PR 2k 2 <0,

since —3SeFth(z) +eFiak ™ <0 and — e M h(a)+e MR @)k T <
0. On the other hand, in [k_%, 1] x [0, 77,

L(u) S —k?(se_k5th(x) + €_k5t’6hﬁ_1(w)vx_7_1 S 0.
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Finally, by a symmetric argument, we conclude that (69) holds true. Therefore, we
get that wu is a subsolution of problem

Uy — Uy + [P 2ulug| = Jul*2ulu,, in Q :=| —1,1[x]0,T;
u(z,t) =0, on S; (70)

A supersolution of this problem can be found in a straightforward way, only a con-
stant function equal to ||A(|z])|| is needed. By [8], then a bounded distributional
solution v of the above problem exists, with u < v < [|A(|2])]|co-

Since A(|z|) — |z|7" —1in L' as k — oo, if Theorem (3.1) holds for our
parameters, then there exists a solution w of (68) such that

T 1 T 1
/ / v o P — / / w* Hw, P as k — oo.
0 -1 0 -1

Now, it follows from 0 < wu <wv that

[ [etw=2 [ [zt [ ] -,
=L [0zt [eo=1 [ (o)’

1 (" 1 2 ¢
= / e R (0) = = (—“ k— 1) FO (1 — 7T,
0

Q a? 2
So that, if we may take 0 < «, then this last term goes to infinity as k£ goes to
infinity, which contradicts that the first term is bounded.
To get this 9, since a > 3 > 2, consider 0 <y <1 such that
2 1
max{—, -1+ -} <«
Y Y

and consequently take ¢ > 0 satisfying

2 1
max{—,ﬁ—1+—}<5<a.
Y Y
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