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Abstract - Our aim in this article is to study the following nonlinear elliptic

Dirichlet problem:

—div[a(z,w) - Vu] + b(z,u,Vu) = f, in
u =0, on 09

where € is a bounded open subset of RY, with N > 2, f € L™(£}). Under wide
conditions on functions e and b, we prove that there exists a type of solution for
this problem; this is a bounded weak solution for m > N/2, and an unbounded
entropy solution for N/2 > m > 2N/(N + 2). Moreover, we show when this
entropy solution is a weak one and when can be taken as test function in the weak

formulation. We also study the summability of the solutions.

Typeset by ApS5-TEX



0.- INTRODUCTION AND ASSUMPTIONS

This paper is devoted to study existence and regularity of solutions of an elliptic
problem whose model example is the following:
{ —div{a{u)Vu) = Bw)|Vul* + f, in &

0.1
u =0, on J€; (0:1)

where Q is a bounded open subset of RY, with N > 2, fe L™Q), m
being bigger than 2N/(NV +2), and « and S are two positive continuous
functions satisfying o ¢ L([0,4oof) U L*(] — 0,0}]) and f/a € L'(R). For
instance, a(s) = 1/V1+s2 and B(s) = 1// (1 +s2)3, or afs) = el and
B(s) = ell/(1+ %),

In some recent papers problems similar to (0.1) have been considered. Without
lower order terms and «f(s) = (1-+]s])=%, with 0 <8 <1, a priori estimates can
be found in {1, 5, and 6], existence and regularity results in {5 and 6] and in a limit
case in [24], and uniqueness is shown in {19] . On the other hand, problem (0.1}
may be seen as the Euler equation of a real functional when o = —f; from this
point of view has been studied in [12].

The existence of weak solutions of quasilinear elliptic equations with lower order
terms having quadratic growth with respect to the gradient has been studied in
some papers in the last years. We point out that, in those papers, the L™ estimates
on the solutions are proved thanks to the presence of a zero order term ([10 and
11}) or thanks to a sign condition (easy situation). Also the previous existence
results of unbounded solutions depends on a sign condition on the quadrati'c term
(I3, 4, 7 and 9]). In [14] a limit case is studied. In [25] the existence of bounded
solutions is obtained when the datum f is “small” and the assumptions on o and
3 are different. In this paper we no dot use the presence of a zero order term nor
a sign condition in order to show the existence of bounded or unbounded solutions
(it depends on the summability of the data). On the other hand, we shall use the
assumptions (H4) and (H5) below.

Finally, when the function « is bounded but the equation has the same lower
order term, this problem is dealt in [20], where existence and uniqueness for L*-data
are studied. Moreover the L®-estimate of section 2 below is applied in that paper
to obtain a kind of unigueness.

Two remarks concerning the difficulties in dealing with this problem are in order.
First of all, observe that no bounds are assumed on function «, and so classical
methods do not apply. Indeed, the operator defined by —div(e(u)Vu) does not
satisfy the Leray-Lions conditions (see [18] ) since, on the one hand, we suppose
no growth limitation on function « so that it can happen ~div(e(u)Vu) ¢
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H-YQ) for all w € HYS) and, on the other hand, it is not coercive; see [19]
for an explicit example. To deal with that equation we will obtain the solution by
approximation, getting a sequence of approximated solutions (u,)n which converge
to the solution u. To avoid some troubles in this convergence process, we will
consider the convergence of another sequence (A(un))n, function A being the
primitive of « such that A(0) = 0. The other remark is about the lower order
term: it does not satisfy the "right” sign condition, since [ is positive. Thus, it
appears the problem of getting the a priori estimates. This hindrance is overcome
by considering test functions of exponential type as in [20]; see lemma 2.2 bellow.

We next state our assumptions more precisely. We shall study the following

nonlinear elliptic problem:

{ —div{a(z,u) - Vo] +b(z,u, Vu) = f, in (0.2)

u =0, on .

Here  is a bounded open subset of RY, with N >2, and a: QxR — RV?
and b: QxR xRY — R are Carathéodory functions satisfying the following

hipotheses
SupISESk Ia(:v, S)| 1= LOO(Q), forall &> 0, (Hl)

la(z, 5) - €] - & > )&%, (H2)
bz, 5,6)| < B(s)lEI%, (H3)
a and £ being positive continuous functions such that
o ¢ IM([0, +o0) U L} (] = 00,0], (H4)
and .
g e LY(R). (H5)
So that, defining -
_ [" B
7(3) = o alr dr

and

Als) = f: a(r) dr,

we have that the function ~ is bounded, while
lim_|A(s)] = +oo.

On the other hand, f € L™(f2), with m > 2N/(N + 2); however, we will not
deal with the limit case m = N/2. Recall that in the classical case, that is, when
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the function a(‘a:, s)- & satisfies the Leray-Lions conditions; if f & LN/2(Q), then
the solution belongs to an exponencial Orlicz space.

The plan of this article is as follows. The next section is on notations. In section
9, problem (0.2) is studied when f € L™(Q), with m > N/2. We define
weak solution for (0.2) and get an L°°-estimate which allows us to obtain a weak
solution of (0.2). Section 3 is devoted to prove existence of an entropy solution of
(0.2) when f & L™(Q), with 2N/(N +2) <m < N/2. In this section we also see
some conditions to guarantee that that entropy solution is actually a weak solution,
and to obtain an energy type equality. Moreover, we end this section studying the
summability of a solution. Finally, in Section 4, we will present an alternative
approach in finding a priori estimates for solutions of problem (0.2}, based on the

symmetrization techniques.

1.- NOTATIONS

Some notations are used throughout this paper. £} C RN will denote an open
bounded set, |A| Lebesgue measure of A C{} and ¢; positive constants which
only depend on the parameters of our problem.

For k>0 we define the truncature at level +k as Ti(s) = (—k)V [k As]; we
also consider Gy(s) = s — Tk(s) = (|s| — k) Fsign(s).

Following [2], we introduce 75°P(Q) as the set of all measurable functions
w: Q — R such that Tyu € WyP(Q) for all k& > 0. We point out that
TP () N L2 () = W P(Q) N L(K).

For a measurable function u belonging to 751’?’(9), a gradient can be defined:
it is a measurable function which is also denoted by Vu and satisfies VIyu =
(VU)X (jujcy for all k>0 (see [2, lemma 2.1]).

2.- EXISTENCE OF BOUNDED SOLUTIONS

In this section we begin by defining weak solution of problem (0.2), then a new
type of L*-estimates is obtained in theorem (2.3) {we remark again that we do not
suppose the sign condition b(z,5,€)s >0 forall seR ). As a consequence we
have an existence result for (0.2).

The interest for getting L°°-estimates for a problem as (0.2} is well known. The
simplest examples deal with Euler’s equations of functionals defined on H}(SY) or
assume b(z,s,&)s > 0 for all s € R. A different approach (without that sign
condition) was introduced by [11] for studying problem (0.2) when, for instance,
b(z,s,&) = As — |€]?, with A >0,

Next, let us define weak solution for (0.2).
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Definition (2.1). We will say that a function u € T,7%(Q) is a weak solution of
(0.2) if alz,u)  Vu € L3(Q), b(z,u, Vu) € L) and

/Q[a(:c,u)-Vu]-Vgo+/ﬂb(m,u,Vu)cp:/thp (2.1)

holds for all ¢ € HE(Q) N L=(£).
We will also say that ¢ may be taken as test function in (2.1) if the functions
[a(z,u) - VU] - Vi, b{z,u, Vu)p and fo belong to L'(Q), and (2.1) holds true.

From now on in this section we assume
f € L™Q), with m > N/2.

Lemma (2.2). Let u be a weak solution of (0.2) and let v € H}(Q2) N L™=(Q).
(i) If v>0, then e¢"™u can be taken as test function in (2.1) and

f "W a(z,u) - Vu] - Vo < / e?W f+y,
Q 0
(ii) If v<0, then e 7y may be taken as test function in (2.1) and

e W) [q -Vul - Vv e~ £~ ().
[ e aten)- v Vo< [ e p=(0)

(i3) ' If ® s a locally Lipschitz continuous and increasing real f?mctwn such
that &(0) =0 and ®(u) may be taken as test function in (2.1), then there exists
c1 > 0 satisfying

f o) @ (u)[Vul? < cl-/ \f @(u)l. (2.2)
Q Q

Proof. (i) Let v > 0. First observe that we have ¢?x%) e H{(Q)NL®(Q), for
every k> 0. Thus, ve H}Q)NL®(Q) implies "Wy e HHQYNL®() and
so it is an admissible test function in (2.1). Taking it so, it yields

gg":zg e"Te¥yla(z, u) - Vu] - VTiu + fQ 7Tk a(z,u) - V] - Vo+

+/ bz, u, Vu)e" Tty = / feV(Trwdy, (2.3)
Q Q
Now we are going to study these integrals. Note that

/B(Tku VT yfalz ) - . u = plu )e'“‘vaa:u (7
/“ A Tvlalw,u) - V- V1 —f{;u;<k}a(U) “fa(z,u) Vi Yy



6

so that, by the positivity of o and B, and by (H2), the integrand function is
nonnegative. Hence, applying the monotone convergence theorem, we have
lm Allw) T yla(e, u) - Vu) - VIu = / -‘B(—u)e']f(“)v[a(x, w) - Vul - Vu.
koo a(TAu) Q2 a(u)
On the other hand, the functions [a(z,w) - Vu]- Vv, b(z,u,Vu)v and fv are
summable, and the functions ¢"?%*) are bounded in L*®(f)); so Lebesgue’s
dominated convergence theorem may be applied in the remaining integrals. Thus,
letting %k tend to oo in (2.3), we obtain

18( )67(11,),0[ (z, ) . vu] Vi +/ v [a,(:z:,u) . Vu] -Vuv+
«Q

o)
—i—/b(:v,u,Vu)e’Y(“)vzf Fe?®y
Q Q

and so ¥y may be taken as test function in (2.1},
Finally, since
Blu )e“’(“)'u[a(a: u) - Vu} - Vu +f b(z, u, Vu)e' ™ > 0,
o afu) Q

by (H2) and (H3); it follows that
fe’Y(“){a(:c,u)-Vu]-V'u < f feT®y Sf Fre7y,
Q Q Q

(if) Let v < 0 and consider now e~ 7Tx¥y € HH(Q)NL™(Q) as a test function
in (2.1) and reason in the same way as above.

(iii) Let @ be a locally Lipschitz continuous and increasing real function such
that ®(0) = 0. Assume also that ®(u) can be taken as test function in (2.1) and let
k> 0. Observe first that @(Tku) = Tax{a(k),—a(—k)) 2{(Tku) € HHOQ) N L2 (Q).
Thus, taking v = ®(Tput) in (i) and v=—®(Thu™) in (ii), it yields

/ Y@ (w)a(z, u) - Vu] - Vu < / Y0 fHP(Tru™)
{0<u<k} Q

and

[ e Vel Tus [ o700,
(0> u>—k} It}

Having in mind (H2) and that e**(®) are bounded, we add up both formulae
obtaning c¢; > 0 such that

‘/{}ul<k} o) (u)|Vul? < Cljs;l.f O(Tru)| < e /ﬂ |f ®(w))

holds true for all &k > 0. Therefore, we get (2.2) from Fatou’s lemma. Observe
that, since ®(u) may be taken as test function in (2.1}, f @(u) € L'(8).
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Theorem (2.3). (i) Suppose that os) > A for some A > 0. If u is o weak
solution of (0.2) which may be taken as test function, then |ulc < cz, where
cz > 0 only depends on X\, on m, on the norm of f in L™(Q) and on
the parameters of (0.2): that is, on N, on Lebesgue measure of €1, and on the
function -y.

(i) If u is a weak solution of (0.2) such that A(u) may be taken as test function,
then |[A(u)]|eo < c3, where cg >0 only depends on m, on the norm of f in
L™(Q)) and on the parameters of (0.2); thus, [Julleo < max{A~(c3), —A™—c3)}.

Proof. (i) Taking ®(s) = Gi(s) in (2.2), it yields

2 2 G
YN /{ LI 16w

for some ¢4 > 0 and consequently

[ vep < [ il

By applying Stampacchia’s L*-regularity procedure {see [21]), it follows that there
exists &5 > 0 satisfying |ullec < 5.

(i) The proof is similar to (i), we only have to take ®(s} = Gx(A(s)) in (2.2)
and reason in the same way. The last assertion is a consequence of being A strictly
increasing and i, 0 |A(s)] = +00.

Theorem (2.4). There exists u € H}(Q) N L°(Q) which is a weak solution of
(0.2).

Proof. 'We obtain the solution © by approximation: consider the following sequence

of problems.

{ —div{an(z, un) - Vtin] + bn(@,%n, Vun) = f,  in (2.4)

up, =0, on 0§

where a,(z,s) = a(z,Tns), an(s) = a(Ths), Ba(s) = an(s) ggz; and

ba(z,5,€) = min [T (Ba ()JEP), max [ = T (Ba(2)IEI%), b, 5,0)) |

Let us see some simple properties of these functions. Note that, by (H1), the
function |a,| is bounded from above; thus there exists A, > 0 such thaf
lan(z, s)] < A,. Moreover, since « is continuous, there exists A, > 0 such
that a,(s) > A, andso an ¢ L1({0,+oo[) U L(] — 00,0]). Then

Ml€)? < an(9)l6)? < lan(z, 5) - €] € < A%
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On the other hand, the function b, is bounded and
b (3,5, )| < Tn (Bu()I€]7) < Buls)lel.
We also observe that B,/on = B/a € L}{(Q) and
fn < maxa(s) : Is] <},

so that B, € LY(€). Furthermore, consider An(s) = [; an(7) dr, and note
that the functions defined by these formulae are continuous and strictly increasing.
We finally point out that if |s] < n, then an(z,s) = a(z,s), on(s) = afs),
Bn(s) = B(s) and A,(s) = A(s).

Applying the classical result by Leray-Lions {18], for each n € N, there exists
a weak solution u, € H}{(2), which is an admissible test functions in the weak
formulation of (2.4). Hence, lemma (2.2) and theorem (2.3) can be applied. By
theorem (2.3) (i), we have wu, € L®(Q) and so An(u,) € Hg(Q) N L=(Q)
for all n € N. Applying now theorem (2.3} (ii), there is c¢g > 0 such that
ltnlloo < max{A;1(cs), —A; (—cs)} and, since the sequences (& A, (tes)),
converge to +A"'(%cg), it follows that (u,), is bounded in L*°(£). An easy
consequence is that an(u,) = a(u,) for n big enough, so that the sequence
(an (un))n is bounded from below by a positive number, say p. Likewise, the
sequence {a,(®,un)), is bounded from above, by (H1); we also point out that

I < an(un)lél” < lan(@,un) - €]+ €

for all & e RY.
Taking ®(s) = s in lemma (2.2) (iil), there is ¢y > 0 such that

fan(un)lvuniz SC'rf {fun]
0 Q

and so

b [ 190l < [ o) Funl? <o [ifi=e

This estimate proves that (u,), is bounded in HE(€2). Hence, up to subsequences,
(un)n converges weakly; moreover, Rellich-Kondrachov’s theorem implies that we
may also assume that converges almost everywhere in €. Let u be that limit;
then w € H{Q) N L>(),

Uy —>u weakly in Hj(S) (2.5)



and
U, — u almost everywhere in {1 (2.6)

Next, we will see that

un, — u in Hy{Q). 2.7)
To prove this, take v = (u, — w)* in lemma (2.2) (i) and v = —(u, —u)~ in
lemma, (2.2) (ii) to get
f e"}’(”n)[an(m,un) : V’Un] : V(un - ?1.)+ < / eq(un)[fl(un - u)+ (28)
Q Q

and

- / 1 g (1) - Vita] - Vttn — 1)~ < / =) Flluy —w) =, (2.9)
0 0
If we denote & = pe~ "M then

5 [ 19— )P =

:5/ IV (un — w)|? + 6 IV (- w)|? <
{un—uZO}

{un—u<0}
< f g (2, 1n) - V(1 — )] - V(e — )T —
Q
—f e~ o, (2, 10) - Vg — )] - V(g —u)” =
)
= / Y g, (2, un) - Vatg] - Vi, —u)t — / e o (2, 1,) - V) - V(un —u) T —
Q Q
m/ e [ (@, un) - Vi) - V(tty — 1)~ +f e~ ") [a (2, un) - V- Vu, —u) ™.
Q 0
Applying (2.8) and (2.9), it yields
[ 19— <
Q

< lf V0| fl (g —u) T — lf ") g (2, u,) - V) - Vg —w)F—
0 Ja d Ja

"% fQ eV Fl(un — w) ™ + %Leﬂ{u")[‘ln(ﬂ%“n) -V V{un — )

Now, taking into account that wu,, a.(z,u,) and et7(un)  define bounded se-
quences, it follows from {2.5), (2.6) and Lebesgue’s convergence theorem that the
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right hand side converges to 0. Therefore, (2.7) is proved and, as a consequence,
there exists a subsequence (still denoted by (un)n ) such that

Vu, —+ Vu almost everywhere in (. (2.10)
In order to take limits in the weak formulation of (2.4), we next show that
b (%, iy Vi) — b{z, 1, V) in LY(Q). (2.11)

Since, by (2.6) and (2.10), we already know that bn(2,un, Vun) — bz, 2, Vu)
almost everywhere in 2, it is enough to see the equi-integrability of this sequence
and then apply Vitali’s convergence theorem. Observe that B, (u.) = Bluy,) for
n big enough, so that the sequence (Ba(un)), is bounded, that is, there is
cio > 0 such that [|Bn(unlllec < cro. Thus, B (unIVun]? < c10]Vua]* and so
by (3, n, Vin)| < c10|Vun?. . Finally, the equi-integrability of (IVual?),, which
follows from (2.7), implies that of (bn(z,un, Vur)), . Hence, (2.11) is proved.
Let @ € HH{Q)NL*(Q), then

/Q[a,n(:v,un)»Vun]-Vgo-f-/ﬂbn(:n,un,Vun)c,o:/thp (2.12)

for all n € N, by the weak formulation of (2.4). Having in mind that the sequence
(an(z,us)), is bounded in L°(Q), it follows from (2.5), (2.6) and (2.11) that we
may pass to the limit in (2.12) obtaining that w is a weak solution of (0.2).

3.- EXISTENCE OF UNBOUNDED SOLUTIONS

In this section, we assume f € L™(Q), with 2N/(N+2) <m < N/2. We first
define entropy solution and then prove that there is an entropy solution of problem
(0.2) through a convergence process which involves the sequence (A, (un))n. Fur-
thermore, we will see when this entropy solution is a weak solution and when we
may take w as a test function in the weak formulation of the Dirichlet problem
(0.2).

Definition (3.1). We will say that a function u € T.2(2) is an entropy solution
of (0.2) if b(z,u, Vu) € L* () and

/Q fa(m, ) - Va - VT — ] + /Q (s, u, Vi) Tl — ] = /Q Tl — o]

holds for all ¢ € HE(2) N L=().



11

Theorem (3.2). There ezists u € T2 (Q) such that A(u) € HY(Q)N L™ (Q),
b(z,u, Vu) € LHQ) and it is an entropy solution of (0.2).

Proof. Consider, for instance, the following approximating problems
~div[a(®z, un) - Vtn] + (2, Un, Vun) = Tnf, n O
{ ' Uy = 0, on Ofl
We know, by theorem (2.4), that there exists wu, € Hg(§3) N L>°(£2), which is a
weak solution of (3.1). We shall see that this sequence {(u), converges, in some
- sense, to the entropy solution. The proof will be based on four lemmata.

(3.1)

Lemma (3.3). There exists c; >0 such that
N2

N
f IV AQua)* < e ( f lfif‘@%) (3.2)
{1A(ua)i>k} {1 A(un)|>k}

forall >0 andall neN.
In particular, taking k=0, the sequence (A(uy)), is bounded in HE(Q).

Proof of lemma (3.8). Taking ®(s) = Gx(A(s)) in lemma (2.2) (iii), one deduces
| IVG A < 0 [ (T} GilAlun))
o) Q

It follows from this, and Holder’s and Sobolev's inequalities, that

| IVGAwn)P < e [ (Tuf]- 1Gk(Alun))] <
0 ]

i

2N

2N
so that lemma (3.3} is proved.

As a consequence of (3.2), we can extract a subsequence (still denoted by (up)n),
such that Afu,) — w weakly in H}(Q). Moreover, by Rellich-Kondrachov’s
theorem, we may assume that A(u,) — w almost everywhere in {1, Since A is
strictly increasing, defining v = A~'(w) we get a measurable function u such

that
un, — u almost everywhere in 2 (3.3)

and
Aup) — A(u) weakly in Hj(Q). (3.4)

Using the results of [8], from inequality (3.2), it follows that A(u) € L™ (Q).



12

Lemma (3.4).
Alug) — Alw) in HHQ). (3.5)

In other words,
o)V, — o(uw)Vu in LHQ). (3.6)

Proof of lemma (3.4}, To begin with we have to see two facts. The first one is to

prove that .
fﬂ (VT4 (Atn) — ThA@)P < wnp + (s ), (37)

where limy, 0o Pnlh, k) =0 for any h,k >0 and limap_,eo im0 wn,n = 0.
To see it, we apply lemma (2.2) (i) with v = Ty (A(u,) — T (A(un)))+ to obtain

f " M a(e, un) - Vug) - VT (A{un) — Th,A('u.))+ <
2

< / YN, ] T (Alun) — ThA(w)) + (3.8)
Q
and lemma (2.2) (i) with v = Tp(A(un) — Th(A(un)))  to get
= [ e ) V- VT (A) - ThAG)” <

< / eI £ T (Aun) — Th A1) (3.9)
0

Now, let § = e~ *"*17l and observe that (H2) implies |¢]% < ags) [a(z, s) - &1~ &, so
that
¢ [ 1VT(Alun) ~ ThA@) P <
S, 5/ ' [M . VTk (A(un) - ThA(u))] . VTk (A(un) - ThA(u))-}—
{ A{un)—Tr A(w)>0} afun)
a{z, U, )

+6 f
A (1) —Th A(w) <0} [ (n)

) [T Un)
< ./s;e ( )[_C;é—(-’l_t—)_- + VTk (A(un) — T;LA(U))} . VTk (A(un) — ThA(U))+—

n

VT (A(un) — ThA(u))] - VT (A(un) - ThA(u)) =

aluy,

_ f e—¥(un) {.‘M VT (Atn) — ThA(u))] VT (Aun) — TrhA(u))
Q (tn)

Then
L lVTk(A(’Un) — ThA(u))]2 <

<

S| =

/Qe"(“")[a(a:,un) FVug) - VT (Alun) — ThA(U))+_
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Un

1 u,) [0, un)
—g /g; G’Y( )[W‘ . VCF}LA(U):’ . VTk (A(un) et ThA(U))+—

L f ™7 a2, un) - Vtn] - VT3 (Alun) — ThA(w)) +

aun

e [ e [85) or, 40)] vy (Au) - Thd)

Thus, taking into account (3.8) and (3.9), there exists c4 > 0 such that

/QlVTk(A(un) — ThA@)P? <

<es [ (T f| - 1T (Alun) — ThA®w)) 1+
f la(z, tn l]v:r A@W)] - VT (Aun) - TaAw))] <

<o [ 171 1An) ~ThA@)]ex 9@, un )|\ G 4w (VT (A )~ Ta A@))] =
Y] o ( n)

- (JJn)h + nn(h, k).

We next go on estimating these integrals. On the one hand, it follows from (3.4)
and the Sobolev imbedding that A(w,) = Au) weakly in L¥5 () and from
(3.3) that A(un) — A(u) almost everywhere in 1. Thus,

lA(un) — T (A(u))[ — lA(u) — T (A(u))l weakly in L% (Q).
Since we also have f € L%(Q), it yields

Jim [ 1£1- (4wn) ~ Ta(AG@) = [ 111400 - Tu(4@)),

80 that limp oo limp oo fo |F] - [A(UR) — Th(A(u))] =
On the other hand, note that

= 1808 )17 A 19T (Aun) — ThA(w)| =
r.f MIVT A(w)| - VT (Alun) — ThA(w))| =
(AGun)-TrhAG)| <k} ©(Un)

= / latz, ““)'WT A()] - VTR (Aun) ~ ThAW))],
{lun|<A—t(k+h)} ce(uy)
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and, in this integration set, the function Eﬁ?&—’fjﬂ is bounded, by (H1). Hence, we
also deduce from (3.4) that

i, f MC(:E Z’;)IIVTM(U)I VT (Aun) — ThA(w))] =

_ / 12,9 G, Aw)] - VIR (AG) - ThA(w)] = 0.
o oy
Therefore, (3.7) is proved.

The second claim is easier. We will see that, for each h > 0,
[ 196w (AGun) = TA@)P 5 sl (3.10)

where limg_c0 €x{h) = 0.
To do this, fix A > 0 and observe that

|A(un) — Th(A(w))}| > & implies |A(un)| > & = h.
Then

[ w6 (aun) ~ TP = | 1V (Awn) ~ D) <
o {

JA{un}—Th(A(u}) >k}

< / IV (A(un) — ThA@)? <
A Cun) >k}

<2 / IV Aun)? +2 f IV A(w)[2.
{lAfun)|>k—h} {1A(un)i>k—h}

Hence, by (3.2), we obtain

/Q IV (Alun) — ThAw))]? <

N42

N
g%(f uﬁ%) +2/ IV A(u)f?
{1A(un)>k—h} {|Alua)i>k—h}

and so it converges to 0 when k& goes o infinity, uniformly on n.

Now, having in mind (3.2), (3.7) and (3.10); we will proceed to prove (3.5). Let
¢ >0 be fixed. Consider & >0 satisfying

2

- (3.11)

[VA@)]? <
(| Au)|>h} 16

IVAGw) - VI (A@)IE = |
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and 1M, co Wnp < €2/8, wny being that of (3.7). Since A have already been

choosen, claim (3.10) implies that there is & > 0 such that

2

IVGs(AGun) - ThA@) I = [ IVGL(AGun) ~ThA@)P < 5 (312)

for all n € N. Recall that lma_co Wa,n < €2/8 and , also by claim (3.7), we
have limy, .o Ma(h, k) = 0; so ng € N can be found such that if n > ng, then

wnp < €2/8 and n,(h, k) < €2/8. Hence,

&2 |
VT (Afwr) ~ TA@)IE = [ [V (AG) ~TuA@)P < S (13)
)

for all n > ng. Finally, since
A(un) — A(U) = Tk (A(un) - ThA(u)) + G}c (A(un) — ThA(u)) - (A(u) - ThA(u)),
it follows from (3.11), (3.12} and (3.13) that

€ € €
[VA(un) = VA@)lz <5+ 5+ 5 =¢

for all n > ng. Therefore, A(u,) — A(u) strongly in H}(Q) and lemma (3.4)

is completely proved.

Lemma (3.5). The sequence (un)n has the following properties:
(i) Vu, — Vu in measure in 0 so that, up to a subsequence,

Vi, — Vu almost everywhere in Q. (3.14)
(i) For every k >0, _
' Titn — Thu in HL(S). (3.15)
As a consequence, Tyu € H3(QY) forall k>0 and so u€ T30,
Proof of lemma (8.5). (i) It follows from (3.6) that o{un)Vu, — o(u)Vu in

measure in . Since (3.3) implies 1/afu,) — 1/a(u) in measure in 2, we
conclude that Vu, — Vu in measure.

(ii) Let k& > 0 and, taking into account the continuity of «, denote a; =
min{a(s) : |s} < k}. Note that (3.6) may be written as

%—Lfa)-Vun - %::)Vu in L2(Q).
From this observation and the inequalities
2 2
[VTkun|® < O‘—%%‘-)—Nnun[? < 5‘%1%&

we deduce that the sequence (|VTkun|?). is equi-integrable. Hence, it follows
from (3.14) and Vitali’s convergence theorem that (3.15) holds true.



16

Lemma (3.6).

B(un) | Va2 — B)|Vul? in L) (3.16)
and it follows from (H3), (3.8) and (3.4), that '
(@, Un, Vitn) = b(w,u, Vu) in L) (3.17)

Proof of lemma, (3.6). Observe that, by (3.3) and (3.14), Blun)|Vunl? — Bu)|Vul?
almost everywhere in . Thus, to get (3.16) we only have to check the equi-
integrahility of the sequence and apply Vitali’s convergence theorem.

To proof the equi-integrability, consider the function ®(s) = Y{(Gr(s)+k) —y(k)
and observe that, if |s] >k, then Gi(s)+k =s andso «(s)®'(s) = f(s). Thus,
taking ® in lemma (2.1) (iii), there is cg > 0 such that

/ Blaun) | Vun]? < ¢ f il
{{uniz=k} {lunl2k}

Let e> 0 and fix k> 0 satisfying

/ Bl [ Vatnf? < <
(funl 2k} 2

for all n e N. Letting fp > max{B(s) : |s| < k}, by (3.15), there exists 6 > 0
such that if n€ N and |A] <§, then [,|VTiua|® < g5 Therefore,

] Blun)[Veun? = f Blun) |Vl + f Blun) Vi ? <
A An{|unt<k} An{;unpk}
< [ VTP [ B Vel < Begpe g =o
A (unl>k} Bk

as required.

End of the proof of theorem (3.2). We only have to show that « is an en-
tropy solution of (0.2). Note first that u € T%(Q), by lemma (3.5), and that
b(z,u, Vu) € L1(Q), by lemma (3.6).

Let € HYHS)NL®(Q) and consider v = Tik{un — ] as test function in the
weak formulation of (3.1). Then

/ ({2, 1) - Vitn] - V[t — 0] + f (2, iy V) Tl — ] = f (T f) Tolun — .
Q Q Q

We point out that, in the first integral, we may consider the integration set as
{Jun] < l@lloo + k} without loss of generality; observe that, in this infegration
set, the functions |a(z,u,)| are bounded in L*°(2), by (HL). Now, it follows
from (3.3), (3.14), (3.15) and (3.17) that we may take limit as n tends to oo

obtaining
f[a(s;,u) - V)« VT[u — ] -+ / b(z, u, Vu)Tplu — @] = f FTelu — )
Q Q Q

and proving that u is an entropy solution of (0.2).
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Proposition (3.7). Let u be an entropy solution of (0.2). If a(z,u)-Vu € L*(Q),
then w is @ weak solution.
As a consequence, u is a weak solution if |a{z,s)| < Aa(s) for some A>0.

Proof. Let v € HMQ) N L*®°(Q) and take ¢ = Thu — v in the formulation of

entropy solution of (0.2). Then

/[a(:ﬂ,u)-Vu]-VTk[u—Thu+v]+f b(z, u, Vu) Ty [u—Thu+v) =/ka[u—~Thu+v].
o Q o)

Now, as h goes to oo, Lebesgue’s dominated convergence theorem implies

t/h@m)Vﬂ~Vﬁv+fb@mﬁhﬂhni/fﬂu
2 Q Q

Finally, it is enough to take k > |lv[l to obtain

L[a(m,u)-Vu]-Vv—l—Lb(:c,u, Vu)vzfgfv.

Hence, u is a weak solution. The second part follows from VA(u) = a{u)Vu €
L3(52).

Proposition (3.8). Suppose that B(s)ls| < Aals) for some A >0. Let u be an
entropy solution of (0.2). If fu e L*(Q), then u may be taken as test function
in the weak formulation of (0.2) obtaining the following energy type equality:

/Q[a(m;u)'vu]-Vu-l-fgb(:c,u,Vu)u:fou.

Proof. First of all, we will prove that [a(z,u)-Vu]-Vu € L (Q). Let h> k>3 >0,
Observe that it follows from 8(s)/a(s) < A/|s| and the continuity of B/a that
v = B/a € L*(Q); consequently the functions "Wt and 6‘7(”’)Tju"
belong to HE(Q) N L®(Q). Taking ¢ = Th(u) — "™ T;(ut) in the entropy
formulation of (0.2), we get

/ m@@yqunwmnm+/ (a(, 1) V] - V[ — T+ " Tyut |+
fu<0) (us0}

—1—[ b(z, u, V)T — Tht + 7O Tyut] = f FTeu — Thu + " Tut.
(9] AL

The first two integrals are nonnegative: so that we may drop the first one and apply
Fatou’s lemma to the other as h tend to infinity. In the others two integrals we



18

may apply Lebesgue’s dominated convergence theorem as h goes to infinity. Thus, |

it yields

f{ 0y la{z,u) - Vu] - VTk[e'Y(“)Tju+] + /Q b(z, u, Vu)Tk[e'Y(”)Tju+] <

< / FTe[e"™Tyut).
(9]

Since e’f(“)Tju“‘ is a bounded function, when % is big enough, we obtain

/ Y (w)Tjutfa(z, v) - Vul - Vu + f "oz, u) - Vu] - VIut+
) Q

+fgb(:n,u, Vu)e“f{“)Tju+S/Qfe7(“)fZ}u+.

Reasoning in the same way as lemma (2.2) (i), we deduce that there is ¢z > 0 such
that
/ la(z,u) - VIjut] VIju® < er f Tyt (3.18)
Q _ 0

On the other hand, taking ¢ = Th{u)+e 7Ty (u™) in the entropy formulation
of (0.2) and having now in mind lemma (2.2) (ii), arguments similar to that above

tmply that there exists cg > 0 such that
fn[a(m,u) VT~ VIju~ < csfﬂliju_l. (3.19)
Adding up (3.18) and (3.19), we conclude that there exists cg > 0 such that
/Q[a(a;,u) - VTu)» VTu < cg /Q |fTyul,

and so, letting j tend to infinity, by Fatou’s lemma in the left hand side and
Lebesgue’s theorem in the right one, we deduce that

fﬂ[a(m,u)-Vu}-Vug@/Q[fu[.

Hence, it follows from fu € L*(€) that [a{z,u)- Vu]- Vu € LY(Q).
Taking ¢ = 0 in the entropy formulation of (0.2}, it yields

f[a(:c,u) - VTu] - VIgu -%-/ b(z,u, Vu)Tru = / FTpu. (3.20)
Q 0 0
Now, observe that the following inequalities hold:

|/ Tiv| < |ful € 1),
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[a(z,u) VT - VIxu < [o(z,v) - Vu] - Vu € LHQ)
and
b(z, u, Vu)u| < Blu)|ul - [Vu? < da(@)|Vul? < Ma(z, w) - Vi - Vu € LHQ).

Therefore, by Lebesgue’s dominated convergence theorem, it follows from (3.20)
that

/Q (a(z, u) - Vi) - Vi + /Q b, u, Vi = fﬂ fu,

as desired.

Up to now, we have not really seen the summability of the solution u, but that
of A(u). In the last result, we study this regularity of the solution when o and

B are concrete functions.

Proposition (3.9). Let 8 > —1 and suppose that afs) = (1 +|s])? and p(s) =
(148}, with ¢> 0.

If w is an entropy solution of (0.2), then u € L"(Q) and |Vu| € L),
where v = Nm(1+6)/(N —2m) and ¢ =min [2, Nm(1+8)/(N —m(1 - 9))] ;
thus, u belongs to a Sobolev space if m > N/(N +1+6(N —1)).

Moreover, u can be taken as test function in the weak formulation of problem
(0.2) if m> N2+ 8)/(N(1+6)+2). |

Proof. Obviously, af(s) = (1+ |s|)? implies |A(s)| = 5(1 + Js)**?. Since
Au) € L™ (), by theorem (3.2), we have (1 + |u)*t? € LV™/(N-2m)(Q) and
then u ¢ LNV™+8)/(N=2m)(()
We now pass to see the regularity of the gradient Vu. On the one hand,
f > 0 implies a(s) >1 andso |Vu| < a(u)|Vu|. Moreover, since a(u)Vu| =
|V{A(u))] € L3(Q), by theorem (3.2), it follows that |[Vu| € L*(2). We point
out that then Nm(1+40)/(N—m(1—0)) <2. On the other hand, if -1 <6 <0,
then we may follow the arguments of [6, lemma 2.3] to obtain that
Nm(1+9)
"N —m(l —9)]'
Next, considering m > N(2+ 0)/(N(1 + 60) +2), we have
m_ Nm(1 + 8)
m—-1~ N-2m '’
so that u € L™ (Q) and fu € L'(Q). By proposition (3.8), we deduce that w
may be taken as test function. Observe also that when 8 > 0,
N(2+6) o 2N
N(1+8)+2~ N+2
and hence, in this case, u can always be taken as test function.

g = min [2
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4.- A PRIORI ESTIMATES BY SYMMETRIZATION.

An alternative approach in finding a priori estimates for solutions of problem
(0.2), like the ones obtained in Theorem 2.3 and in Lemma 3.3, is based on the so
called symmetrization techniques which go back to the papers by Talenti {[22], {23])
and which have been widely used in similar contexts (see for example [1], [15]).

In this section we show how it is possible to use such an approach pointing out
that in this way we can obtain estimates also when f belongs to intermediate spaces
(see Remarks 4.5 and 4.8). '

We first recall the definition of decreasing rearrangement of a function u. If u
is a measurable function in an open bounded set Q ¢ RV, we denote by p, the

distribution function of u:
pu(t) = {z € Q: ul > t}, t > 0.
The decreasing 1'earrangément u*(s) of u is defined by
u*(s) = sup{t > 0: pu(t) > s}, s € [0,]9]
and the spherically decreasing rearrangement u#(z) of u is defined by
u#(z) = u*(CulalV), = €0,

where (# is the ball centered at the origin having the same measure of Q, and Cy
denotes the measure of the unit ball of RV,
We recall also that for every 1 < p < 40 it results

Hel]
]Q ()Pl = fO (w*(s))Pds
and if u € L*®(£2)

ullpe = U}z = v*(0).
For an exhaustive treatment of rearrangements we refer for example to [17 or 23].

We recall Bliss inequalities, (see [22]), which are used to obtain estimates of

IP-norms of solutions in terms of LI-norms of the datum f.

Lemma (4.1). . If @(r) is positive for 0 <7 < 400 and 1 <p < g, then

f0+oo (% fo’" go(S)ds)qu1+q,’pdT < AN.p,q) (/O+00 go(r)f’dfr)(l/p

+o0 +o0 q 400 a/p
f (f go(s)ds) dr < B(N,p,q) (/ ¢(¢)PT*1+P+P/QC$T)
0 r 0

Now we prove an a priori estimate for a solution u of (0.2).
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Proposition (4.2). . Let u € L°°(£)) be a weak solution of (0.2) in the sense of
(2.1), then there exists a constant My > 0 such that:

1€
6 <3 [ e () o) an se@ia. @

Proof. Applying Lemma, (2.2)(iii) to the function ®(s) = Ty [A(s) — T3 (A(s))] we
get:

f o (u)|Vul? < le [fTh (A(s) - Tt(A(s)))l < Mih |1
{t<jA(u)|<t+h} 2 {|A(w)]>t}
where M; depends only on the data (M = €25 7],
Setting w = A(u) we have:
H CVul? < My f Ifl (4.2)
h Jge<twig+ny {fwl>2}

Schwartz inequality, Fleming-Rishel formula (see [16]) and the isoperimetric in-
equality give (see [13])

—fir, (2) /
1< M =
=1 Nzg?\}’N W (£)22/N fir

from which, using the properties of rearrangement (see {22]) we get inequality (4.1).

Remark (4.3) If we denote by v the solution of the problem

{ —Avp = f# in Q#,

4.3
=10 on OO, (43)

the function v is given by

1] 8
v(z) = N_2O§2/N / i §HN-2 (/ f*(o‘)do‘) ds. (4.4)
CNE:B{N 4}

From Lemma 4.2 we deduce that
[A(u)]"(s) < Myv*(s), s €(0,|Q]),

where v* is the decreasing rearrangment of the solution v of (4.3).

Clearly if f € L™(§2) with m > N/2 then v is bounded and its maximum value
is v(0).

The following two Corollaries give uniform estimates on the LP-norms of solutions
of (0.2).
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Corollary (4 4). . Let u € L°() be a solution of (0.2) in the sense of (2.1),
then if m > & 5 there exisls a constant My > 0 such that

lullzee < max{A™H(Ma),[A™H(—Ma)l},

Neiy
M is the constant defined in Proposition 4.2.

2N 1/ . , ,
where My = | 24 i 2m’f‘_N[|ﬂ|Lm), A~ is the inverse function of A and

Proof. Setting w = A(u), inequality (4.1) and Hélder inequality imply:

1 " |
* < .
N2 N r2-2/N ./o frloydo s (49

1]
Aoy < [A@)]*(0) < My /
1/m

M AL | et m \m?

ﬂ/f IQIZ/N 1/m m
NCHN  2m-N

Fllzm = Mo.

Remark (4.5). We observe that by inequality (4.5) the estimate on the L° norm
of A(u), and then on the L norm of u, holds true if

2]
/0 N202/N o 2/Nf fH(o)do < 4oo.

The above condition is satisfied if f belongs to the Loventz space L{N/2,1).

Corollary (4.6). . Letu e L%(82) be a solution of (0.2} in the sense of definition
(2.1) then, if 2N <m < 2 , there ezists o constant Mz > 0 such that:

N+
HA@|ze < Mal|fllzm,

where g = m**

Proof. From inequality 4.1 we have:
HA@|ze = [[[AW)]lze <

! jal [ plet g o gy !
< ll’leg—c'?v*/“N“ fo \/{; ([; f (O')dO') T dr ds

Using Bliss and Hardy inequality (see [22]) we get
A |ze < M| Fllzm-

i/q

The following result gives an estimate of A(u) in H§(€2).
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Proposition (4.7). . Let u € L*(Q) be a solution of (0.2) in the sense of def-
inition (2.1), then A(u) belongs to HE(Q) and there exists a constant My such
that

HAG | g < Mallflipensaven

Proof. Setting w = A(u), from estimate (4.2) we get :

d

#w(t}
- [Vwj? < IVIl/ f*(e)do
dt J{jwi>t} 0

Moreover it results that (see [22])

2
+oco [ t)--l-i'l/N d
vfwﬁg/ ol “/ Vwl? | (—duw(t)).
X 10_(‘Ww i 70T ) )

Setting f(t) = -tl- fg F*(s)ds V¥t > 0 using Bliss inequality we get:

too [ (1IN pra(®) 2
[ 1o <t | (””W / wa)HmWﬂ

NCY
2 1¢]} T 2
=~—~—j-\~/£52—ﬁf (TI/N_I/ f*(o*)da) dr =
N2CA{ 0 0
M}

el f o et < gy g
N2 szv/N A q = Yl oy (v12)

and the thesis follows.

Remark (4.8). We observe that the estimate on the Hj norm of A{u) holds if
Q
f @ e oo
o T

The above condition is satisfied if f belongs to the Lorentz space L(2N/{N +2),2).
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