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Abstract. In the present paper we study the Dirichlet problem for two related equations

involving the 1–Laplacian and a total variation term as reaction, namely:

(1) g(u)− div
( Du

|Du|

)
= |Du|+ f(x) ,

(2) −div
( Du

|Du|

)
= |Du|+ f(x) ,

with homogeneous Dirichlet boundary conditions on ∂Ω, where Ω is a regular, bounded

domain in RN . Here f is a measurable function belonging to some suitable Lebesgue space,
while g(u) is a continuous function having the same sign as u and such that g(±∞) = ±∞.

As far as equation (1) is concerned, we show that a bounded solution exists if the datum f(x)

belongs to LN (Ω). When the absorption term g(u) is missing, i.e. in the case of equation
(2), we show that if f(x) ∈ LN (Ω), and its norm is small, then the only solution of (2) is

u ≡ 0. In the case where the norm of f is not small, several things may happen. Depending

on Ω and f , we show examples where no solution of (2) exists, other examples where u ≡ 0 is
still a solution, and finally examples with nontrivial solutions. Some of these results can be

viewed as a translation to the 1–Laplacian operator of known results by Ferone and Murat

(see [14], [15] and [16]).

Contents

1. Introduction and Statement of Main Results 2
2. Preliminaries 3
3. Existence of solution to (3) 5
4. Existence of solution to (4) 9
Acknowledgement 14
References 14

Date: August 9, 2018.
Key words and phrases. Nonlinear elliptic problems, 1–Laplacian, problems with critical growth in the gra-

dient, total variation
Mathematics Subject Classification:MSC 2010: 35J60, 35J75, 35B33, 35J92.

1



2

1. Introduction and Statement of Main Results

In this paper we study two related Dirichlet problems involving the 1-laplacian and a total
variation term. The first one is

(3)

 g(u)− div

(
Du

|Du|

)
= |Du|+ f(x) , in Ω ;

u = 0 , on ∂Ω .

Here Ω is an open, bounded, regular subset of RN , f(x) is a function which belongs to LN (Ω),
while g(s) : R → R is a continuous function such that g(s) s ≥ 0 and g(±∞) = ±∞. The
second problem is similar, but without the zero-order term g(u):

(4)

 −div

(
Du

|Du|

)
= |Du|+ f(x) , in Ω ;

u = 0 , on ∂Ω .

We are interested in existence, regularity and nonexistence results for a solution to these two
problems.

The concept of solution to equations involving the 1–Laplacian was developed by Andreu,
Ballester, Caselles and Mazón (see [3] and the book [4]). The natural energy space for this oper-
ator is the space BV (Ω) of functions having bounded variation. Using the theory by Anzellotti
[6], they introduce a bounded vector field z which plays the role of the ratio Du

|Du| . The boundary

condition must not be understood in terms of the trace of BV –functions, but in a weaker sense
involving the vector field z (see Section 3).

In the case where g(u) = u, problem (3) was studied by Andreu, Dall’Aglio and Segura de
León in [5]. In that paper, they proved that there exists a bounded solution u when f ∈ Lm(Ω),
with m > N . Moreover, that solution is unique under the stronger assumption 0 ≤ f(x) ≤ α <
2.

Later on, in [1], Abdellaoui, Dall’Aglio and Segura de León studied the existence of infin-
itely many unbounded solutions of problems (3) and (4). This solutions may have prescribed
singularities and are related to some elliptic problems involving singular Radon measures.

In the present paper, we prove that problem (3) admits a bounded solution even in the
limit case f ∈ LN (Ω). This result is somewhat surprising, because, for the similar problems for
the p-laplacian, with p > 1, i.e.

(5)

{
g(u)− div

(
|∇u|p−2∇u

)
= |∇u|p + f(x) , in Ω ;

u = 0 , on ∂Ω ,

one can prove the existence of bounded solutions for f ∈ Lm(Ω), m > N/p, but solutions are
usually unbounded in the limit case f ∈ LN/p(Ω) (see Boccardo, Murat and Puel [8], Ferone
and Murat [14], [15] and [16], Ferone, Posteraro and Rakotoson [17], Dall’Aglio, Giachetti and
Puel [12]). Therefore, while boundedness should be expected (see [5]) for problem (3) when
f ∈ Lm(Ω) and m > N , it is unexpected in the limit case f ∈ LN (Ω).

Subsequently, we study problem (4), where the term g(u) is absent. In the case 1 < p < N ,
that is, for problem (5) when g ≡ 0, it is proved in [14] and [15] that a solution might not exist,
unless an appropriate smallness assumption is made on the datum f . This smallness condition
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reads as follows: ( 1

p− 1

)p−1

‖f‖N/p < S−1
N,p ,

where SN,p denotes the best constant in Sobolev’s imbedding W 1,p
0 (Ω) ↪→ L

Np
N−p (Ω). This

condition is related to the regularity enjoyed by the solution, namely,

e
δ
p−1 |u| − 1 ∈W 1,p

0 (Ω)

for every δ > 0 satisfying ( δ

p− 1

)p−1

‖f‖N/p < S−1
N,p .

We analyze the limit problem (4) and prove that:

• if the datum f(x) is “small”, more precisely if f ∈ LN (Ω) and ‖f‖
N
< S−1

N (where

SN = SN,1 is the Sobolev constant appearing in the embedding of W 1,1(RN ) into

LN/(N−1)(RN )), then u ≡ 0 is the only bounded solution u ∈ BV (Ω) of problem (4).
More precisely, u ≡ 0 is the only solution such that eλu ∈ BV (Ω) for every λ > 0.

• if ‖f‖
N
> S−1

N , several situations may happen, depending on the actual form of f . We

show that if f is a multiple of the characteristic function of a ball Br ⊂ Ω, then problem
(4) admits no solutions as soon as ‖f‖

N
> S−1

N . On the other hand, we show that u ≡ 0

may well be a solution when f is a (large) multiple of a characteristic of a “thin” set,
like a strip or an annulus. We also show some cases where nonzero solutions appear.

• in the limit case ‖f‖
N

= S−1
N , we show that non trivial solutions exist if Ω is a ball and

f is constant.

The paper is organized as follows. In Section 2, we introduce our notation and state the
main features of functions of bounded variation and of L∞–divergence–measure vector fields.
Section 3 is devoted to study problem (3), while problem (4) is considered in Section 4.

2. Preliminaries

From now on, we fix an integer N ≥ 2. The symbol HN−1(E) stands for the (N − 1)–
dimensional Hausdorff measure of a set E ⊂ RN and |E| for its Lebesgue measure. We will
denote by ωN the measure of the unit ball in RN . Moreover, Ω will always denote an open,
bounded subset of RN with Lipschitz boundary. Thus, an outward normal unit vector ν(x) is
defined for HN−1–almost every x ∈ ∂Ω.

The truncation function will be used throughout this paper. Given k > 0, it is defined by

(6) Tk(s) = min{|s|, k} sign (s) ,

for all s ∈ R. Moreover we will denote by Gk(s) the function defined by

Gk(s) = s− Tk(s) .

The space of all C∞–functions having compact support in Ω is denoted by C∞0 (Ω). The
symbol Lq(Ω), with 1 ≤ q ≤ ∞, denotes the usual Lebesgue space with respect to Lebesgue

measure and q′ is the conjugate of q: q′ =
q

q − 1
. We will denote by W 1,q

0 (Ω) the usual Sobolev

space, of measurable functions having weak gradient in Lq(Ω;RN ) and zero trace on ∂Ω. Finally,
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if 1 ≤ p < N , we will denote by p∗ = Np/(N − p) its Sobolev conjugate exponent and by SN,p
the best constant in the embedding W 1,p

0 (Ω) ↪→ Lp
∗
(Ω), that is,(∫

Ω

|u|p
∗
)p/p∗

≤ SN,p
∫

Ω

|∇u|p .

We will also write SN instead of SN,1.
The natural energy space to study equations involving the 1–Laplacian is the space BV (Ω)

of functions of bounded variation. It is defined as the space of functions u ∈ L1(Ω) whose
distributional gradient Du is a vector-valued Radon measure on Ω with finite total variation.
This space is a Banach space with the norm defined by

‖u‖BV =

∫
Ω

|u| dx+ |Du|(Ω) .

We recall that the notion of trace can be extended to any u ∈ BV (Ω) and this fact allows
us to interpret it as the boundary values of u and to write u

∣∣
∂Ω

. Moreover, it holds that the trace

is a linear bounded operator BV (Ω) → L1(∂Ω) which is onto. Using the trace, an equivalent
norm in BV (Ω) can be defined by

‖u‖ =

∫
∂Ω

|u| dHN−1 + |Du|(Ω) .

The Sobolev embedding W 1,1
0 (Ω) ↪→ L

N
N−1 (Ω) extends to BV–Functions; it yields(∫

Ω

|u|
N
N−1

)(N−1)/N

≤ SN
[
|Du|(Ω) +

∫
∂Ω

|u| dHN−1

]
.

We point out that the same constant can be taken.
For every u ∈ BV (Ω), the Radon measure Du can be decomposed into three parts:

Du = Dau + Dcu + Dju, where Dau is its absolutely continuous part (we mean absolutely
continuous with respect to Lebesgue measure), Dcu its Cantor part and Dju its jump part.
This decomposition is defined as follows. We denote by Su the set of all x ∈ Ω at which the
approximate limit of u does not exist: if x ∈ Ω\Su, we denote by ũ(x) the approximate limit
of u at x. On the other hand, we denote by Ju ⊂ Su the set of approximate jump points
of u, that is, those points where there exist “one side” limits of u: u+(x) and u−(x). Then
Dcu = Dsu (Ω\Su) and Dju = Dsu Ju, where Dsu = Dcu+Dju stands for the singular part
of Du with respect to the Lebesgue measure. The precise representative u∗ : Ω\(Su\Ju) → R
of u is defined as equal to ũ on Ω\Su and equal to u++u−

2 on Ju. Since HN−1(Su\Ju) = 0, due

to the Federer–Vol’pert Theorem, it follows that u∗ is defined HN−1–a.e. in Ω.
A compactness result in BV (Ω) will be used several times in what follows. It states that

every sequence that is bounded in BV (Ω) has a subsequence which converges strongly in L1(Ω)
to a certain u ∈ BV (Ω).

To pass to the limit we will often apply that some functionals defined on BV (Ω) are lower
semicontinuous with respect to the convergence in L1(Ω). We recall that the functional defined
by

(7) u 7→ |Du|(Ω) +

∫
∂Ω

|u| dHN−1
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is lower semicontinuous with respect to the convergence in L1(Ω). Similarly, if we fix ϕ ∈ C1
0 (Ω),

with ϕ ≥ 0, the functional defined by

u 7→
∫

Ω

ϕd|Du| ,

is lower semicontinuous in L1(Ω).
For further information concerning functions of bounded variation we refer to [2] or [22].
In our definition of solution we will need some features of L∞–divergence–measure vector

fields and functions of bounded variation (see [6] and [10]). Basically, a type of dot product of a
vector field and the gradient of a bounded variation function is used to give sense to z = Du

|Du| ,

namely, z ∈ L∞(Ω;RN ) satisfies ‖z‖∞ ≤ 1 and (z, Du) = |Du|.
From now on, we denote by DM∞(Ω) the space of all vector fields z ∈ L∞(Ω;RN ) whose

divergence in the sense of distributions is a Radon measure with finite total variation.
To define (z, Dv) in Anzellotti’s theory, we need some compatibility conditions, for instance

div z is a Radon measure with finite total variation and v ∈ BV (Ω) ∩ L∞(Ω) ∩ C(Ω). In this
case, we define the dot product as a distribution: for every ϕ ∈ C∞0 (Ω), we write

〈(z, Du), ϕ〉 = −
∫

Ω

u∗ ϕdµ−
∫

Ω

uz · ∇ϕ ,

where µ = div z. This distribution (z, Dv) is actually a Radon measure. Moreover, the following
basic inequality holds: |(z, Dv)| ≤ ‖z‖∞|Dv|. On the other hand, for every z ∈ DM∞(Ω), a
weak trace on ∂Ω of the normal component of z is defined in [6] and denoted by [z, ν]. Anzellotti’s
definition of (z, Dv) can be extended to the case where div z is a Radon measure with finite
total variation and v ∈ BV (Ω) ∩ L∞(Ω) (see [20, Appendix A] and [9, Section 5]). A further
extension can be found in [1, Section 3] for bounded vector fields satisfying −div z ≥ f ∈ LN (Ω)
and a general v ∈ BV (Ω). (We also refer to [11] for additional information.) These extensions
will be used throughout this paper.

Under these extended assumptions, a Green formula holds.

Proposition 2.1. (see [6, 20, 9, 1]). Let z ∈ L∞(Ω;RN ) be such that −div z = β + f , where β
is a nonnegative Radon measure on Ω, and f ∈ LN (Ω). Let u ∈ BV (Ω). Then, with the above
definitions, the following Green formula holds

(8)

∫
Ω

u∗ dµ+

∫
Ω

d(z, Du) =

∫
∂Ω

[z, ν]u dHN−1 ,

where µ = div z.

3. Existence of solution to (3)

This Section is devoted to obtain an existence result for problem (3), where f ∈ LN (Ω).
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Definition 3.1. A solution of problem (3) is a function u ∈ BV (Ω), with an associated vector
field z ∈ L∞(Ω;RN ) satisfying

‖z‖∞ ≤ 1 ;(9)

g(u)− div z = |Du|+ f(x) in the sense of distributions;(10)

(z, Du) = |Du| as measures;(11)

[z, ν] ∈ sign (−u) HN−1–a.e.(12)

Dju = 0.(13)

Theorem 3.2. For every f ∈ LN (Ω) there exists a bounded solution to problem (3).

Proof. The proof will be divided into several steps.
Step 1: Approximating problems: p > 1. Assume for the moment that f ∈ L∞(Ω). We

consider the following problems, for p > 1:

(14)

{
g(up)− div

(
|∇up|p−2∇up

)
= |∇up|p + f(x) in Ω ;

up ∈W 1,p
0 (Ω) .

By the results proved by Ferone and Murat in [16], for every p > 1 there exists a solution
up ∈ L∞(Ω) ∩W 1,p(Ω) of (14). We wish to show that the L∞-estimate does not depend on p.
Indeed, we can multiply the equation in (14) by

v =
(
eλ|Gk(up)| − 1

)
signup ,

for λ > 1 and for some positive k. Since g(s) has the same sign as s, we easily obtain

(15)

∫
Ω

|g(up)|
(
eλ|Gk(up)| − 1

)
+ λ

∫
Ω

|∇Gk(up)|p eλ|Gk(up)|

≤
∫

Ω

|∇Gk(up)|p
(
eλ|Gk(up)| − 1

)
+ ‖f‖

∞

∫
Ω

(
eλ|Gk(up)| − 1

)
.

By the assumptions on g, there exists k > 0 such that |g(s)| > ‖f‖
∞

for all s such that |s| > k.

With this choice of k, one has∫
Ω

|g(up)|
(
eλ|Gk(up)| − 1

)
≥ ‖f‖

∞

∫
Ω

(
eλ|Gk(up)| − 1

)
,

therefore the two integrals in (15) cancel out, and one can conclude that

(λ− 1)

∫
Ω

|∇Gk(up)|p
(
eλ|Gk(up)| − 1

)
≤ 0 ,

which gives

‖up‖∞ ≤ k = k(g, ‖f‖
∞

) .

We emphasize that this estimate is independent on p.
Once this estimate is proved, one can follow the same steps as in [5], and conclude that,

when f ∈ L∞(Ω), there exists a bounded solution of problem (3) .
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Step 2: L∞–estimate for unbounded f . Assume now that f ∈ LN (Ω). Then, for n ∈ N,
let un be a solution of problem

(16)

 g(un)− div

(
Dun
|Dun|

)
= |Dun|+ Tn(f(x)) , in Ω ;

un = 0 , on ∂Ω .

Such a solution exists by Step 1. Let zn be the associated vector field according to Definition
3.1. For every k > 0, by taking (e2|Gk(un)| − 1)signun as test function in (16) (see (10) for the
meaning), we get

(17)

∫
Ω

|g(un)|
(
e2|Gk(un)| − 1

)
+

∫
Ω

(
zn, D

[(
e2|Gk(un)| − 1

)
signun

])
−
∫
∂Ω

(
e2|Gk(un)| − 1

)
signun [zn, ν] dHN−1

≤
∫

Ω

(
e2|Gk(un)| − 1

)∗
|Dun|+

∫
Ω

|Tn(f)|
(
e2|Gk(un)| − 1

)
.

Taking into account Djun = 0, we may apply [18, Proposition 2.7] to the Lipschitz-

continuous function s 7→
(
e2|Gk(s)| − 1

)
sign s and deduce from (11) that(

zn, D
[(
e2|Gk(un)| − 1

)
signun

])
=
∣∣∣D[(e2|Gk(un)| − 1

)
signun

]∣∣∣ .
Now the chain rule (for a BV–function without jump part) yields

(
zn, D

[(
e2|Gk(un)| − 1

)
signun

])
= 2
(
e2|Gk(un)|

)∗
|DGk(un)| .

On the other hand, [zn, ν] ∈ sign (−un) on ∂Ω. Hence, inequality (17) becomes∫
Ω

|g(un)|
(
e2|Gk(un)| − 1

)
+ 2

∫
Ω

(
e2|Gk(un)|

)∗
|DGk(un)|+

∫
∂Ω

(
e2|Gk(un)| − 1

)
dHN−1

≤
∫

Ω

(
e2|Gk(un)| − 1

)∗
|Dun|+

∫
Ω

|Tn(f)|
(
e2|Gk(un)| − 1

)
.

Since e2|Gk(un)| − 1 vanishes on {|un| > k}, simplifying and dropping nonnegative terms, it
yields∫

Ω

|g(un)|
(
e2|Gk(un)| − 1

)
+

∫
Ω

(
e2|Gk(un)|

)∗
|DGk(un)|+

∫
∂Ω

(
e2|Gk(un)| − 1

)
dHN−1

≤
∫

Ω

|Tn(f)|
(
e2|Gk(un)| − 1

)
≤ h

∫
{|Tn(f)|≤h}

(
e2|Gk(un)| − 1

)
+

∫
{|Tn(f)|>h}

|Tn(f)|
(
e2|Gk(un)| − 1

)
,
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for some h > 0 to be chosen hereafter. As before, we can take k = k(h) such that |g(s)| ≥ h for
|s| > k. With this choice of k, one has

h

∫
Ω

(
e2|Gk(un)| − 1

)
+

1

2

∫
Ω

∣∣∣D(e2|Gk(un)| − 1
)∣∣∣+

∫
∂Ω

(
e2|Gk(un)| − 1

)
dHN−1

≤ h
∫
{|Tn(f)|≤h}

(
e2|Gk(un)| − 1

)
+

∫
{|Tn(f)|>h}

|Tn(f)|
(
e2|Gk(un)| − 1

)
,

so that the first integral of each side cancels, and Hölder’s inequality implies∫
Ω

∣∣∣D(e2|Gk(un)| − 1
)∣∣∣+

∫
∂Ω

(
e2|Gk(un)| − 1

)
dHN−1

≤ 2

∫
{|Tn(f)|>h}

|Tn(f)|
(
e2|Gk(un)| − 1

)
≤ 2‖Tn(f)χ{|Tn(f)|>h}‖

N
‖e2|Gk(un)| − 1‖

N/(N−1)
.

Applying Sobolev’s inequality, we can write

‖e2|Gk(un)| − 1‖
N/(N−1)

≤ SN
[ ∫

Ω

∣∣∣D(e2|Gk(un)| − 1
)∣∣∣+

∫
∂Ω

(
e2|Gk(un)| − 1

)
dHN−1

]
≤ 2SN‖Tn(f)χ{|Tn(f)|>h}‖

N
‖e2|Gk(un)| − 1‖

N/(N−1)

≤ 2SN‖fχ{|f |>h}‖
N
‖e2|Gk(un)| − 1‖

N/(N−1)
,

wherewith the right hand side can be absorbed if ‖fχ{|f |>h}‖N is small enough, that is, if we

choose h large enough. Thus, for k = k(h), this leads to ‖e2|Gk(un)| − 1‖
N/(N−1)

= 0 for all

n ∈ N, and as a consequence ‖un‖∞ ≤ k = k(f, g) for all n ∈ N.

Step 3: BV –estimate. We take
(
e2|un| − 1

)
sign un as test function in (16), obtaining∫

Ω

|g(un)|
(
e2|un|−1

)
+

∫
Ω

(
zn , D

[(
e2|un|−1

)
sign un

])
−
∫
∂Ω

(
e2|un|−1

)
sign un [zn, ν] dHN−1

≤
∫

Ω

(
e2|un| − 1

)∗|Dun|+ ∫
Ω

|f |
(
e2|un| − 1

)
.

Having in mind (11) and (12), applying the chain rule and disregarding nonnegative terms, it
yields ∫

Ω

(
e2|un|

)∗|Dun|+ ∫
Ω

|Dun|+
∫
∂Ω

(
e2|un| − 1

)
dHN−1 ≤

∫
Ω

|f |
(
e2|un| − 1

)
.

Observe that the right hand side is bounded due to the L∞–estimate. Hence, in addition to be
bounded in L∞(Ω), we have that the sequence

(
e2|un| − 1

)
n

is bounded in BV (Ω), so that (up

to subsequences) there exists u ∈ BV (Ω) ∩ L∞(Ω) satisfying e2|u| − 1 ∈ BV (Ω) and

De2|un| ⇀ De2|u| *–weakly as measures

un → u pointwise a.e in Ω

un → u strongly in Lr(Ω) , 1 ≤ r <∞
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Step 4: Convergence of (zn)n. It follows from (9) that there exists z ∈ L∞(Ω;RN ) such
that (up subsequences) zn ⇀ z *–weakly in L∞(Ω;RN ). Obviously, ‖z‖∞ ≤ 1 holds.

Now, we may take eunϕ, where ϕ ∈ C∞0 (Ω), as test function in (16), simplify and pass
to the limit which leads to −div (euz) = eu (f − g(u)) in the sense of distributions. Thus,
div (euz) ∈ LN (Ω).

In a similar way, choosing ϕ ∈ C∞0 (Ω) with ϕ ≥ 0 as test function in (10), the lower–
semicontinuity of the total variation implies that∫

Ω

g(u)ϕ+

∫
Ω

z · ∇ϕ ≥
∫

Ω

ϕ|Du|+
∫

Ω

fϕ .

Therefore, the inequality g(u) − div z ≥ |Du| + f(x) holds in the sense of distributions. As a
consequence, div z is a Radon measure. Furthermore, it follows from (10) that the sequence of
measures (div zn)n is bounded, and so (up to subsequences) it converges *–weakly in the sense
of measures. Since its limit must be div z, it follows that div z is a Radon measure with finite
total variation.

It remains to prove the points:

Dju = 0 ;

g(u)− div z = |Du|+ f(x) in the sense of distributions;

(z, Du) = |Du| as measures;

[z, ν] ∈ sign (−u) HN−1–a.e.

To see them, we may follow the steps 7–10 of the proof of [5, Theorem 1].

Remark 3.3. It is worth observing that the same proof works for any increasing real function
g such that g(±∞) = ±∞. We just have to replace g(s) with g(s)− g(0) and the datum f(x)
with f(x)− g(0).

Remark 3.4. We point out that a similar argument to that used in the proof of Theorem 3.2
leads to the boundedness of the solutions to the Dirichlet problem for

g(u)− div
( Du
|Du|

)
= f(x) ,

with f ∈ LN (Ω).

4. Existence of solution to (4)

In this Section we will study existence and non existence for the following Dirichlet problem

(18)

 −div

(
Du

|Du|

)
= |Du|+ f(x) , in Ω ;

u = 0 , on ∂Ω .

Theorem 4.1. If f ∈ LN (Ω) satisfies ‖f‖N < S−1
N , then u ≡ 0 is the only solution to problem

(18) satisfying eλu ∈ BV (Ω) for all λ > 1.
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Proof. Step 1: Existence. Since a solution of (18) is actually the pair (u, z), we still have
to get the vector field z. To this end, apply a duality argument to obtain the embedding
LN (Ω) ↪→ W−1,∞(Ω). Thus, given f ∈ LN (Ω), we find z ∈ L∞(Ω;RN ) satisfying f = −div z
and ‖z‖∞ = ‖div z‖W−1,∞(Ω). Moreover,

‖div z‖W−1,∞(Ω) = sup

{∫
Ω

z · ∇u : u ∈W 1,1
0 (Ω) ,

∫
Ω

|∇u| ≤ 1

}
= sup

{∫
Ω

fu : u ∈W 1,1
0 (Ω) ,

∫
Ω

|∇u| ≤ 1

}
≤ sup

{∫
Ω

fu : u ∈ L
N
N−1 (Ω) , ‖u‖ N

N−1
≤ SN

}
≤ ‖f‖NSN < 1 .

Hence, ‖z‖∞ < 1.
Finally, taking u ≡ 0, we have seen that

−div z = |Du|+ f , in D′(Ω)

(z, Du) = |Du| , as measures

u
∣∣
∂Ω

= 0 in the sense of traces, which imply condition (12).

Therefore, u ≡ 0 is a solution to problem (18).

Step 2: Uniqueness. Assume that u ∈ BV (Ω) is a solution to problem (18) satisfying
eλu ∈ BV (Ω) for all λ > 1.Then Dju = 0 and there exists z ∈ DM∞(Ω) such that

i) −div z = |Du|+ f in D′(Ω)
ii) (z, Du) = |Du| as measures

iii) [z, ν] ∈ sign (−u) HN−1–a.e. on ∂Ω

Fix λ such that λ−1
λ > ‖f‖NSN and apply Green’s formula to get

(19)

∫
Ω

(z, D(eλu − 1))−
∫
∂Ω

(eλu − 1)[z, ν] dHN−1 =

∫
Ω

(eλu − 1)∗|Du|+
∫

Ω

f(eλu − 1) .

We now consider each term appearing in (19). To begin with the first term, we set w = eλu−1,
which satisfies w ∈ BV (Ω) and Djw = 0. Since u = 1

λ log(1+w) and this function is Lipschitz–
continuous, applying [18, Proposition 2.7], we deduce that the Radon–Nikodým derivative of
(z, Dw) with respect to |Dw| coincides with the Radon–Nikodým derivative of (z, Du) with
respect to |Du|, so that (z, Du) = |Du| implies (z, Dw) = |Dw|. Hence,

(20)

∫
Ω

(z, D(eλu − 1)) =

∫
Ω

∣∣D(eλu − 1)
∣∣ .

On the other hand, the chain rule leads to

(21)

∫
Ω

(eλu − 1)∗|Du| = 1

λ

∫
Ω

|D(eλu − 1)| −
∫

Ω

|Du| .

Finally, it follows from condition iii) that

(22)

∫
∂Ω

(eλu − 1)[z, ν] dHN−1 = −
∫
∂Ω

∣∣eλu − 1
∣∣ dHN−1 .
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Having in mind (20), (21) and (22), equation (19) becomes

λ− 1

λ

∫
Ω

∣∣D(eλu − 1)
∣∣+

∫
∂Ω

∣∣eλu − 1
∣∣ dHN−1 +

∫
Ω

|Du| =
∫

Ω

f(eλu − 1) .

Applying Hölder’s and Sobolev’s inequalities on the right hand side, it yields∫
Ω

f(eλu − 1) ≤ ‖f‖NSN
[∫

Ω

∣∣D(eλu − 1)
∣∣+

∫
∂Ω

∣∣eλu − 1
∣∣ dHN−1

]
,

wherewith (λ− 1

λ
− ‖f‖NSN

)[∫
Ω

∣∣D(eλu − 1)
∣∣+

∫
∂Ω

∣∣eλu − 1
∣∣ dHN−1

]
≤ 0 .

Since λ−1
λ − ‖f‖NSN is positive, it follows that∫

Ω

∣∣D(eλu − 1)
∣∣+

∫
∂Ω

∣∣eλu − 1
∣∣ dHN−1 = 0 ,

and so eλu − 1 ≡ 0. Therefore, u ≡ 0.

Remark 4.2. As far as existence of trivial solutions is concerned, we point out that the same
proof leads to the following result:

If f ∈ LN (Ω) satisfies ‖f‖N ≤ S−1
N , then u ≡ 0 is a solution to problem (18).

Moreover, we may found examples of trivial solutions with large data.

Example 4.3. Let Ω be a bounded domain with Lipschitz boundary. We will see that for every
t > S−1

N there exists f such that ‖f‖N = t and problem (18) admits the trivial solution. There
is no loss of generality in assuming 0 ∈ Ω.

Fix R > 0 such that BR(0) ⊂ Ω, choose ε such that 0 < ε < 1 and take ρ > 0 satisfying
ρN = (1− ε)RN . Consider λ = N

Rε and the datum f = λχBR(0)\Bρ(0). Then

‖f‖NN = λNωN (RN − ρN ) = λNωNR
Nε =

ωNN
N

εN−1

which is arbitrarily large choosing ε small enough.
Now it is easy to check that u ≡ 0 is a solution with a vector field given by

z(x) =


0 , if |x| ≤ ρ ;

−xξ(|x|) , if ρ < |x| < R ;

−RNξ(R) x
|x|N , if |x| ≥ R ;

where ξ(r) =
λ

N

(
1−
(ρ
r

)N)
. Indeed, ‖z‖∞ ≤ 1 since Rξ(R) = 1 as a consequence of our choice

of λ. On the other hand, ξ(ρ) = 0 and

−div z(x) =


0 , if |x| ≤ ρ ;

Nξ(|x|) + |x|ξ′(|x|) , if ρ < |x| < R ;

0 , if |x| ≥ R .
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The result follows from the identity Nξ(r) + rξ′(r) = λ, for ρ < r < R.

Example 4.4. Now consider a two dimensional example, though it can easily be generalized
to a higher dimension. Let Ω ⊂ R2 be a bounded domain with Lipschitz boundary and choose
` > 0. Denote by

Ω` = Ω ∩ {(x, y) ∈ R2 : |y| ≤ 1/`} .
For the sake of simplicity, assume that Ω` is a rectangle of sides 2/` and L. Taking f = `χΩ` ,
its L2-norm is

‖f‖2 = `
√
|Ω`| = `

√
2L

`
=
√

2L` ,

which can be made as large as we wish, by choosing ` large enough.
Now, considering f as a datum, it is easy to check that u ≡ 0 is a solution to problem (18)

with vector field defined by

z(x) =


(0,−1) , if y > 1/` ;

(0,−y`) , if |y| < 1/` ;

(0, 1) , if y < −1/` .

We now remark that the threshold S−1
N is sharp since we may find data f ∈ LN (Ω)

satisfying ‖f‖N > S−1
N and such that there exists no solution to problem (18).

Proposition 4.5. Assume that Ω is a bounded domain with Lipschitz boundary. Then, for
every t > S−1

N , there exists f ∈ LN (Ω) such that ‖f‖N = t and problem (18) has no solution.

Proof. Fix x0 ∈ Ω and let R > 0 satisfy BR(x0) ⊂ Ω. Consider f = λχBR(x0), where

λ = t
|BR(x0)|1/N is chosen such that ‖f‖N = t.

Assume, by contradiction, that there exists a solution u ∈ BV (Ω) to problem (18). Hence,
we can find a vector field z ∈ L∞(Ω;RN ) satisfying ‖z‖∞ ≤ 1 and −div z = |Du| + f in the
sense of distributions. Integrating in the ball BR(x0) and applying the Green formula, we get

−
∫
∂BR(x0)

[z, ν] dHN−1 =

∫
BR(x0)

|Du|+
∫
BR(x0)

f(x) dx .

Observe that the left-hand side is smaller than HN−1(∂BR(x0)), while the right hand side is
larger than ∫

BR(x0)

f(x) dx = λ|BR(x0)| .

Then HN−1(∂BR(x0)) ≥ λ|BR(x0)| and therefore

t = λ|BR(x0)|1/N ≤ H
N−1(∂BR(x0))

|BR(x0)|(N−1)/N
= S−1

N ,

which is a contradiction. Here we have used the well-known fact that the Sobolev constant SN
is indeed the isoperimetric constant, that is,

SN =
|BR(x0)|(N−1)/N

HN−1(∂BR(x0))
=

1

N ω
1/N
N

.
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The previous examples show that, in the case where f is constant on some set, the isoperi-
metric inequality plays an important role for existence and nonexistence of solutions. For in-
stance, in the Examples 4.3 and 4.4, f is different from zero on some very “thin” sets, for which
the isoperimetric ratio is far from optimal. On the contrary, in the example given in Proposition
4.5 f is a multiple of a characteristic function of a ball.

One can wonder if there exist nontrivial solutions to problem (18). This is indeed the case,
as we will show in the following examples.

Example 4.6. Three cases must be considered, according to the size of the datum.

(1) f small and regular enough More precisely, f ∈ Lm(Ω) with m > N and

‖f‖m <
( m−N
N(m− 1)

)m−1
m |Ω| 1m− 1

N

SN
.

In [1] non regular solutions to problem (18) have been studied. The main result states,
under the above smallness condition on the datum, the existence of unbounded solutions
to (18). These solutions u ∈ BV (Ω) are not regular enough to fall under Theorem 4.1,
since eλu /∈ BV (Ω) for λ ≥ 1.

(2) ‖f‖N = S−1
N , Ω is a ball, say BR, and f is a constant datum. Let f(x) = λ, it follows

from ‖f‖N = S−1
N that

λ = S−1
N |BR|

−1/N =
HN−1(∂BR)

|BR|
=
N

R
.

Then any positive constant is a solution to (18) with vector field given by z(x) = − x
R

,

since ‖z‖∞ = 1, −div z = λ = |Du|+ λ and [z(x), ν(x)] = − x
R ·

x
|x| = −1 on ∂BR.

(3) ‖f‖N > S−1
N Let Ω be a bounded domain with Lipschitz boundary; for t > S−1

N we
will find a nonnegative datum f such that ‖f‖N = t and problem (18) has a nontrivial
solution. As above, there is no loss of generality in assuming 0 ∈ Ω. Fix R > 0 such
that BR(0) ⊂ Ω and take ρ ∈ (0, R), to be determined later.

We define

f(x) =
N

ρ
χBρ(0) +

µ

|x|
χBR(0)\Bρ(0)

for some 0 < µ < N − 1. It is straightforward that

‖f‖NN = NNωN + µNNωN log
(R
ρ

)
= S−NN + µNNωN log

(R
ρ

)
,

which (by suitably choosing ρ) can take any value larger than S−NN .
Now consider the real function given by

g(r) = (N − 1− µ) log
(R
r

)
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and define

u(x) =


g(ρ) , if |x| ≤ ρ ;

g(|x|) , if ρ < |x| < R ;

0 , if |x| ≥ R .
Then it is easy to check that u is a solution to problem (18) with an auxiliary vector
field defined by

z(x) =


−xρ , if |x| ≤ ρ ;

− x
|x| , if ρ < |x| < R ;

−RN−1 x
|x|N , if |x| ≥ R .

Finally, we point out that, when Ω = BR(0), then v(x) = u(x) + C, where C > 0, is
also a solution to this problem, with the same choice of z.
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