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Abstract. This paper is concerned with the Dirichlet problem for an equation

involving the 1–Laplacian operator ∆1u := div
(

Du
|Du|

)
and having a singular

term of the type
f(x)
uγ

. Here f ∈ LN (Ω) is nonnegative, 0 < γ ≤ 1 and Ω is a
bounded domain with Lipschitz–continuous boundary. We prove an existence

result for a concept of solution conveniently defined. The solution is obtained

as limit of solutions of p–Laplacian type problems. Moreover, when f(x) > 0
a.e., the solution satisfies those features that might be expected as well as a

uniqueness result. We also give explicit 1–dimensional examples that show

that, in general, uniqueness does not hold. We remark that the Anzellotti
theory of L∞–divergence–measure vector fields must be extended to deal with

this equation.

1. Introduction

In the present paper we deal with the Dirichlet problem for equations involving
the 1–Laplacian and a singular lower order term. This equation, at least in the case
f > 0 a.e. in Ω, looks like

(1)

 −div
( Du
|Du|

)
=
f(x)

uγ
in Ω ,

u = 0 on ∂Ω ,

where Ω ⊂ RN is a bounded open set with Lipschitz boundary ∂Ω, 0 < γ ≤ 1 and
f is a function belonging to LN (Ω). Actually we are interested to the case of f ≥ 0.
The natural space to study problems where the 1–Laplacian appears is BV (Ω), the
space of functions u ∈ L1(Ω) whose distributional derivatives are Radon measures
with finite total variation.

We point out that problems involving a lower order singular term like that
appearing in problem (1) have already been studied in the Laplacian or the p–
Laplacian setting. There is a wide literature dealing with problem

(2)

−∆pu =
f(x)

uγ
in Ω,

u = 0 on ∂Ω

for p > 1 and f ≥ 0. The problem (2) for p = 2 was initially proposed in 1960
in the pioneering work [21] by Fulks and Maybee as a model for several physical
situations. This problem was then studied by many authors, among which we
will quote the works of Stuart [43], Crandall, Rabinowitz and Tartar [17], Lazer
and McKenna [30], Boccardo and Orsina [9], Coclite and Coclite [16], Arcoya and
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Moreno–Mérida [7], Oliva and Petitta [38], and Giachetti, Martinez–Aparicio and
Murat in [22], [23], [24] and [25].

In particular, in [9] the authors studied the problem in the framework of weak
solutions in the sense of distributions for f belonging to Lebesgue spaces, or to the
space of Radon measures, and they prove existence and regularity as well as non
existence results. On the other hand, in [22], [23] and [24] the authors deal with
fairly general singular problems and they find weak solutions belonging, for γ ≤ 1,
to the energy space.

For a variational approach to the problem (2) in the case p > 1, see for instance
Canino and Degiovanni [11].

Due to the methods we are going to use in our paper (approximation of our
problem with problems driven by the p–Laplacian), we quote now some papers
dealing with existence results for problem (2) in the case p > 1. We refer to
Giacomoni, Schindler and Takac [26], Perera and Silva [40], Mohammed [37], Loc
Hoang and Schmitt [31], De Cave [18], Canino, Sciunzi and Trombetta [10] and Mi
[36].

Early papers devoted to the Dirichlet problem for equations involving the 1–
Laplacian operator include [29, 27, 2, 8, 19, 15]. The interest in this setting comes
out from an optimal design problem in the theory of torsion and from the level
set formulation of the Inverse Mean Curvature Flow. On the other hand, it also
appears in the variational approach to image restoration. Indeed, total variation
minimizing models have become one of the most popular and successful method-
ology for image restoration since the introduction of the ROF model by Rudin,
Osher and Fatemi in [41]. In this paper a variational problem involving the total
variation operator is considered. It was designed with the explicit goal of preserving
sharp discontinuities (edges) in images while removing noise and other unwanted
fine scale detail. The 1–Laplacian operator emerges through the subdifferential of
the total variation. Since that paper, there has been a burst in the application
of the total variation regularization to many different image processing problems
which include inpainting, blind deconvolution or multichannel image segmentation
(for a review on this topic we refer to [13], see also [4]).

To deal with the 1–Laplacian, a first difficult occurs in defining the quotient
Du

|Du|
,

being Du a Radon measure. It was overcome by Andreu, Ballester, Caselles and
Mazón in [2] through the Anzellotti theory of pairings of L∞–divergence–measure
vector fields and the gradient of a BV–function (see [4]). In their definition appears
a vector field z ∈ L∞(Ω;RN ) such that ‖z‖∞ ≤ 1 and (z, Du) = |Du|, so that z
plays the role of the above rate.

Since the Dirichlet boundary condition does not hold in the usual trace form,
they also introduce in [2] a weak formulation: [z, ν] ∈ sign (−u), where [z, ν] stands
for the weak trace on ∂Ω of the normal component of z.

It is worth observing that the related problem having no singular lower order
term

(3)

 −div
( Du
|Du|

)
= f(x) in Ω ,

u = 0 on ∂Ω ,

with f ∈ LN (Ω), has particular features and there exists a BV–solution only if
‖f‖N is small enough (see [15, 34]).
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Our main results show that the term f(x)
uγ has a regularizing effect. Indeed, in

Theorem 4.5 below, we prove that there exists a bounded solution to problem (1),
in the sense of Definition 4.1, for every nonnegative datum f ∈ LN (Ω).

Moreover, in Theorem 5.1, we see the improved features satisfied by the solution
when f is strictly positive, which lead to uniqueness (Theorem 5.3). In summary,
the bigger the data, better features has the solution.

Being the source term singular on the set {u = 0}, this set is crucial. If p = 1,
we are able to prove (as in the p > 1 case) that

{x ∈ Ω : u(x) = 0} ⊂ {x ∈ Ω : f(x) = 0} ,

except for a set of zero Lebesgue measure and we will prove that this set has locally
finite perimeter. The conditions satisfied by solutions for non strictly positive data
include

(a)
f

uγ
∈ L1

loc(Ω),

(b) −(div z)χ∗{u>0} =
f

uγ
in D′(Ω),

where z is the vector field defined above and χ∗{u>0} is the precise representative

(in the sense of the BV –function) of the characteristic function χ{u>0} of the set
{u > 0}. We will prove that {u > 0} is a set of locally finite perimeter and so
χ{u>0} is a locally BV –function. Note that, by using that

div
(
zχ{u>0}

)
=
(
div z

)
χ∗{u>0} + (z, Dχ{u>0}),

the equation (b) can be written as

−div
(
zχ{u>0}

)
+ |Dχ{u>0}| =

f(x)

uγ
,

where the left hand side is a sum of an operator in divergence form and an additional
term |Dχ{u>0}|, which is a measure concentrated on the reduced boundary ∂∗{u >
0} (or equivalently on the reduced boundary ∂∗{u = 0}).

Since we do not know that the measure div z has finite total variation, we cannot
directly apply Anzellotti’s theory. As a consequence, one of our tasks in analyzing
problem (1) will be slightly extend it.

The proof of our results is obtained passing to the limit in singular problems with
principal part the p–Laplacian, p > 1 as p tends to 1. To this aim, we need pre-
liminarly to prove that the corresponding singular approximating problems admit
a weak solution (see Theorem 3.3).

Next we will show that the family (up)p>1 is bounded in the BV norm, hence
there exists a function u ∈ BV (Ω) such that, up to a subsequence,

up → u in L1(Ω)

and

∇up ⇀ Du weakly∗ as measures.

Similarly, for the vector field z, we have that (|∇up|p−2∇up)p is bounded in Lq(Ω;RN )
for any 1 ≤ q <∞. Hence there exists a vector field z satisfying

|∇up|p−2∇up ⇀ z , weakly in Lq(Ω;RN ) , ∀1 ≤ q <∞ .

Such functions u and z are those satisfying (a) and (b) as well as the other conditions
of Definition 4.1.
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Let us remark that if f ≡ 0 the solutions are 1–harmonic functions; if the
boundary datum is continuous and the domain satisfies some additional geometrical
assumptions, the solution is unique (see Sternberg, Williams and Ziemer in [42])
and it is the limit of p–harmonic functions (see Juutinen in [28]). If f is not
strictly positive and f not identically zero there are 1–dimensional examples of non
uniqueness (see Section 6).

The plan of this paper is the following. Section 2 is dedicated to preliminaries,
we introduce our notation, some properties of the space BV (Ω) and an extension
of the Anzellotti theory, including a Green formula. The starting point of our main
result is studied in Section 3, which is concerned with solutions to problem (2).
Section 4 is devoted to the study of existence for general nonnegative data, while
Section 5 deals with strictly positive data. Finally, Section 6 provides some explicit
1–dimensional solutions that show that, in general, uniqueness does not hold.
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2. Preliminaries

In this Section we will introduce some notation and auxiliary results which will
be used throughout this paper. In what follows, we will consider N ≥ 2, and
HN−1(E) will denote the (N − 1)–dimensional Hausdorff measure of a set E and
|E| its Lebesgue measure.

In this paper, Ω will always denote an open bounded subset of RN with Lipschitz
boundary. Thus, an outward normal unit vector ν(x) is defined for HN−1–almost
every x ∈ ∂Ω. We will make use of the usual Lebesgue and Sobolev spaces, denoted
by Lq(Ω) and W 1,p

0 (Ω), respectively. On the other hand, Lebesgue spaces with
respect to a Radon measure µ are denoted by Lq(Ω, µ).

We recall that for a Radon measure µ in Ω and a Borel set A ⊆ Ω the measure
µ A is defined by (µ A)(B) = µ(A ∩ B) for any Borel set B ⊆ Ω. If a measure
µ is such that µ = µ A for a certain Borel set A, the measure µ is said to be
concentrated on A.

The truncation function will be use throughout this paper. Given k > 0, it is
defined by

Tk(s) = min{|s|, k} sign (s) ,

for all s ∈ R. Moreover we will denote by Gk(s) the function defined by

Gk(s) = s− Tk(s)

for all s ∈ R.

2.1. The energy space. The space of all functions of finite variation, that is the
space of those u ∈ L1(Ω) whose distributional gradient is a Radon measure with
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finite total variation, is denoted by BV (Ω). This is the natural energy space to
study the problems we are interested in. It is endowed with the norm defined by

‖u‖ =

∫
Ω

|u| dx+

∫
Ω

|Du| ,

for any u ∈ BV (Ω). We recall that the notion of trace can be extended to any
u ∈ BV (Ω) and this fact allows us to interpret it as the boundary values of u and
to write u

∣∣
∂Ω

. Moreover, the trace defines a linear bounded operator BV (Ω) →
L1(∂Ω) which is onto. Using the trace, we have available an equivalent norm, which
we will use in the sequel. It is given by

‖u‖BV (Ω) =

∫
∂Ω

|u| dHN−1 +

∫
Ω

|Du| .

For every u ∈ BV (Ω), the Radon measure Du is decomposed into its absolutely
continuous and singular parts with respect to the Lebesgue measure: Du = Dau+
Dsu. We denote by Su the set of all x ∈ Ω such that x is not a Lebesgue point of
u, that is, x ∈ Ω\Su if there exists ũ(x) such that

lim
ρ↓0

1

|Bρ(x)|

∫
Bρ(x)

|u(y)− ũ(x)| dy = 0 .

We say that x ∈ Ω is an approximate jump point of u if there exist two real numbers
u+(x) > u−(x) and νu(x) ∈ SN−1 such that

lim
ρ↓0

1

|B+
ρ (x, νu(x))|

∫
B+
ρ (x,νu(x))

|u(y)− u+(x)| dy = 0 ,

lim
ρ↓0

1

|B−ρ (x, νu(x))|

∫
B−ρ (x,νu(x))

|u(y)− u−(x)| dy = 0 ,

where

B+
ρ (x, νu(x)) = {y ∈ Bρ(x) : 〈y − x, νu(x)〉 > 0}

and

B−ρ (x, νu(x)) = {y ∈ Bρ(x) : 〈y − x, νu(x)〉 < 0} .
We denote by Ju the set of all approximate jump points of u. By the Federer–
Vol’pert Theorem [1, Theorem 3.78], we know that Su is countablyHN−1–rectifiable
and HN−1(Su\Ju) = 0.

The precise representative u∗ : Ω\(Su\Ju) → R of u is defined as equal to ũ on

Ω\Su and equal to u−+u+

2 on Ju. It is well known (see for instance [1, Corollary
3.80]) that if ρ is a symmetric mollifier, then the mollified functions u?ρε pointwise
converges to u∗ in its domain.

A compactness result in BV (Ω) will be used in what follows. It states that every
sequence that is bounded in BV (Ω) has a subsequence which strongly converges in
L1(Ω) to a certain u ∈ BV (Ω) and the subsequence of gradients ∗–weakly converges
to Du in the sense of measures.

To pass to the limit we will often apply that some functionals defined on BV (Ω)
are lower semicontinuous with respect to the convergence in L1(Ω). The most
important are the functionals defined by

u 7→
∫

Ω

|Du|
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and

u 7→
∫

Ω

|Du|+
∫
∂Ω

|u| dHN−1 .

In the same way, it yields that each ϕ ∈ C1
0 (Ω) with ϕ ≥ 0 defines a functional

u 7→
∫

Ω

ϕ |Du| ,

which is lower semicontinuous in L1(Ω).
For further information on functions of bounded variation, we refer to [1, 20, 44].

2.2. A generalized Green formula. The theory of L∞–divergence–measure vec-
tor fields is due to Anzellotti [5] and to Chen and Frid [14]. In spite of their different
points of view, both approaches introduce, under some hypotheses, the “dot prod-
uct” of a bounded vector field z, whose divergence is a Radon measure, and the
gradient Dv of v ∈ BV (Ω) through a pairing (z, Dv) which defines a Radon mea-
sure. However, they differ in handling this concept. They also define the normal
trace of a vector field through the boundary and establish a generalized Gauss–
Green formula.

From now on, we denote byDM∞(Ω) the space of all vector fields z ∈ L∞(Ω;RN )
whose divergence in the sense of distribution is a Radon measure with finite total
variation, i.e., z ∈ DM∞(Ω) if and only if div z is a finite Radon measure belonging
to W−1,∞(Ω). Moreover, DM∞loc(Ω) stands for those vector fields z ∈ L∞(Ω;RN )
which belong to DM∞(ω) for every open ω ⊂⊂ Ω.

To define (z, Dv) in Anzellotti’s theory, we need some compatibility conditions,
such as div z ∈ L1(Ω) and v ∈ BV (Ω) ∩ L∞(Ω), or div z a Radon measure with
finite total variation and v ∈ BV (Ω) ∩ L∞(Ω) ∩ C(Ω). Anzellotti’s definition of
(z, Dv) can be extended to the case which div z is a Radon measure with finite total
variation and v ∈ BV (Ω) ∩ L∞(Ω) (see [35, Appendix A] and [12, Section 5]). We
are following these papers for a slightly further extension to the spaces DM∞loc(Ω)
and BVloc(Ω). The starting point is also the following result proved in [14].

Proposition 2.1. For every z ∈ DM∞(Ω), the measure µ = div z is absolutely
continuous with respect to HN−1, that is, |µ| � HN−1.

Consider now µ = div z with z ∈ DM∞loc(Ω) and let v ∈ BVloc(Ω). Since the
precise representative v∗ is equal HN−1–a.e. to the Borel function limε→0 v ? ρε,
then one deduces from Proposition 2.1, that v∗ is equal µ–a.e. to a Borel function
so that the precise representative of every BV–function is µ–measurable. Assume
that v∗ ∈ L1(Ω, µ) and define a distribution by the following expression

(4) 〈(z, Dv), ϕ〉 := −
∫

Ω

v∗ϕdµ−
∫

Ω

vz · ∇ϕdx, ϕ ∈ C∞0 (Ω) .

Every term is well defined since v ∈ BVloc(Ω) ∩ L1(Ω, µ) and z ∈ L∞(Ω,RN ). We
point out that the definition of (z, Dv) depends on the precise representative of v;
so that if we choose another representative, the distribution will become different.

We next see that this distribution is actually a Radon measure having locally
finite total variation. The proofs are similar to those in [35] or [12].

Proposition 2.2. Let v ∈ BVloc(Ω) ∩ L1(Ω, µ) and z ∈ DM∞loc(Ω). Then the
distribution (z, Dv) defined previously satisfies

(5) |〈(z, Dv), ϕ〉| ≤ ‖ϕ‖∞‖z‖L∞(U)

∫
U

|Dv|
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for all open set U ⊂⊂ Ω and for all ϕ ∈ C∞0 (U).

Proof. If U ⊂ Ω is an open set and ϕ ∈ C∞0 (U), then it was proved in [35] that

(6) |〈(z, DTk(v)), ϕ〉| ≤ ‖ϕ‖∞‖z‖L∞(U)

∫
U

|DTk(v)| ≤ ‖ϕ‖∞‖z‖L∞(U)

∫
U

|Dv|

holds for every k > 0. On the other hand,

〈(z, DTk(v)), ϕ〉 = −
∫

Ω

Tk(v)∗ϕdµ−
∫

Ω

Tk(v)z · ∇ϕdx .

We may let k →∞ in each term on the right hand side, due to v∗ ∈ L1(Ω, µ) and
v ∈ L1(Ω). Therefore,

lim
k→∞

〈(z, DTk(v)), ϕ〉 = 〈(z, Dv), ϕ〉 ,

and so (6) implies (5).

Corollary 2.3. The distribution (z, Dv) is a Radon measure. It and its total
variation |(z, Dv)| are absolutely continuous with respect to the measure |Dv| and∣∣∣∣∫

B

(z, Dv)

∣∣∣∣ ≤ ∫
B

|(z, Dv)| ≤ ‖z‖L∞(U)

∫
B

|Dv|

holds for all Borel sets B and for all open sets U such that B ⊂ U ⊂ Ω.
In particular, if v ∈ BV (Ω), then the measure (z, Dv) has finite total variation.

Moreover, going back to (4), we can conclude that the following proposition
holds.

Proposition 2.4. Let z ∈ DM∞loc(Ω) and let v ∈ BVloc(Ω) ∩ L∞(Ω). Then zv ∈
DM∞loc(Ω). Moreover the following formula holds in the sense of measures

(7) div (zv) = (div z)v∗ + (z, Dv).

On the other hand, for every z ∈ DM∞(Ω), a weak trace on ∂Ω of the normal
component of z is defined in [5] and denoted by [z, ν]. Moreover, it satisfies

(8) ‖[z, ν]‖L∞(∂Ω) ≤ ‖z‖L∞(Ω) .

We explicitly point out that if z ∈ DM∞(Ω) and v ∈ BV (Ω) ∩ L∞(Ω), then

(9) v[z, ν] = [vz, ν]

holds (see [12, Lemma 5.6] or [3, Proposition 2]). Having the “dot product” (z, Dv)
and the normal component [z, ν], we may already prove our first Green formula.

Proposition 2.5. Let z ∈ DM∞(Ω), v ∈ BV (Ω) and assume that v∗ ∈ L1(Ω, µ).
With the above definitions, the following Green formula holds

(10)

∫
Ω

v∗ dµ+

∫
Ω

(z, Dv) =

∫
∂Ω

[z, ν]v dHN−1 .

Proof. Applying the Green formula proved in [35, Theorem A.1] or in [12,
Theorem 5.3], we obtain

(11)

∫
Ω

Tk(v)∗ dµ+

∫
Ω

(z, DTk(v)) =

∫
∂Ω

[z, ν]Tk(v) dHN−1 ,



8 V. DE CICCO, D. GIACHETTI AND S. SEGURA DE LEÓN

for every k > 0. Note that the same argument appearing in the proof of Proposition
2.2 leads to

lim
k→∞

∫
Ω

(z, DTk(v)) =

∫
Ω

(z, Dv) .

We may take limits in the other terms since v∗ ∈ L1(Ω, µ) and v ∈ L1(∂Ω). Hence,
letting k go to ∞ in (11), we get (10).

Observe that we may apply (10) to a vector field z ∈ DM∞(Ω) and the constant
v ≡ 1. Since (z, Dv) = 0, we obtain

(12)

∫
Ω

div z =

∫
∂Ω

[z, ν] dHN−1 .

This fact and (7) are enough to prove the Green formula we will apply in what
follows.

Proposition 2.6. Let z ∈ DM∞loc(Ω) and set µ = div z. Let v ∈ BV (Ω) ∩ L∞(Ω)
be such that that v∗ ∈ L1(Ω, µ). Then vz ∈ DM∞(Ω) and the following Green
formula holds

(13)

∫
Ω

v∗ dµ+

∫
Ω

(z, Dv) =

∫
∂Ω

[vz, ν] dHN−1 .

Proof. Taking into account that v∗ ∈ L1(Ω, µ) implies that

div (vz) = v∗div z + (z, Dv)

is a Radon measure with finite variation, and so vz ∈ DM∞(Ω) (observe that we
assume v ∈ L∞(Ω)). It follows now from (12) that (13) holds.

We will deal with z ∈ DM∞loc(Ω) such that the product vz ∈ DM∞(Ω) for some
v ∈ BV (Ω) ∩ L∞(Ω). To infer the Dirichlet boundary condition, we will use the
following result.

Proposition 2.7. Let z ∈ DM∞loc(Ω) and v ∈ BV (Ω)∩L∞(Ω). If vz ∈ DM∞(Ω),
then

(14) |[vz, ν]| ≤ |v
∣∣
∂Ω
| ‖z‖L∞(Ω) HN−1–a.e. on ∂Ω .

Proof. We first claim that,

(15) ‖φ[vz, ν]‖L∞(∂Ω) ≤ ‖φv
∣∣
∂Ω
‖L∞(∂Ω) ‖z‖L∞(Ω)

holds for every nonnegative φ ∈ L∞(∂Ω).
To this end, let ϕ ∈ BV (Ω) ∩ L∞(Ω) satisfy ϕ ≥ 0 and ϕ

∣∣
∂Ω

= φ. Applying (8)

and (9), we may manipulate as follows

‖φ[vz, ν]‖L∞(∂Ω) = ‖[ϕvz, ν]‖L∞(∂Ω) ≤ ‖ϕvz‖L∞(Ω) ≤ ‖ϕv‖L∞(Ω)‖z‖L∞(Ω) .

By [5, Lemma 5.5], we find a sequence (ϕn)n in W 1,1(Ω)∩C(Ω)∩L∞(Ω) such that

(1) ϕn|∂Ω = φ .

(2) ‖ϕn‖L∞(Ω) = ‖φ‖L∞(∂Ω) .

(3) ϕn(x) = 0, if dist(x, ∂Ω) > 1
n ,

for all n ∈ N. It follows from ‖φ[vz, ν]‖L∞(∂Ω) ≤ ‖ϕnv‖L∞(Ω)‖z‖L∞(Ω) for all n ∈ N
that (15) holds true.
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To prove (14), assume to get a contradiction that there exist ε > 0 and a mea-
surable set E ⊂ ∂Ω such that HN−1(E) > 0 and

|[vz, ν]| ≥ |v
∣∣
∂Ω
| ‖z‖L∞(Ω) + ε , on E .

Letting φ = χE , we deduce

‖φ[vz, ν]‖L∞(∂Ω) ≥ ‖φv
∣∣
∂Ω
‖L∞(∂Ω)‖z‖L∞(Ω) + ε ,

which contradicts (15).

3. Weak solution for p–Laplacian type problems

For every p > 1 let us consider the following problem

(16)

 −∆p (u) =
f(x)

uγ
in Ω ,

u = 0 on ∂Ω .

Remark 3.1. Let us note that the definition of the function f(x)
uγ on the right hand

side of (16) needs to be precised. In all the paper, we will intend that the function

F (x, s) = f(x)
uγ , defined in Ω × [0,+∞[ with values in [0,+∞], is F (x, 0) := 0 on

the set {x ∈ Ω : f(x) = 0}.

In this Section we will prove that for every p > 1 the problem (16) admits a
weak solution in the following sense.

Definition 3.2. A function u ∈W 1,p
0 (Ω) is a weak solution of problem (16) if for

every open set ω ⊂⊂ Ω there exists cω > 0 such that u ≥ cω a.e. in ω and∫
Ω

|∇u|p−2∇u · ∇v dx =

∫
Ω

f

uγ
v dx

for every v ∈W 1,p
0 (Ω).

Theorem 3.3. For any fixed p > 1 and 0 < γ ≤ 1, and for any f ∈ LN (Ω), with
f ≥ 0, there exists a bounded unique weak solution of problem (16) in the sense of
Definition 3.2.

Proof. By Theorems 4.1 and 4.4 of [18] there exists u ∈ W 1,p
0 (Ω) ∩ L∞(Ω)

distributional solution to problem (16), i.e. a function u such that u ≥ cω a.e. in ω
for every open set ω ⊂⊂ Ω and

(17)

∫
Ω

|∇u|p−2∇u · ∇ϕdx =

∫
Ω

f

uγ
ϕdx

for every ϕ ∈ C∞0 (Ω). Given v ∈W 1,p
0 (Ω), we will prove that

(18)

∫
Ω

|∇u|p−2∇u · ∇v dx =

∫
Ω

f

uγ
v dx .

Observe that we may assume v ≥ 0 without loss of generality.
Consider a sequence ϕn ∈ C∞0 (Ω) such that ϕn ≥ 0 and

(19) ϕn → v strongly in W 1,p
0 (Ω).

We take for every η > 0 the function

ρη ∗ (v ∧ ϕn),
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where ρη is a standard convolution kernel and v ∧ ϕn := inf{v, ϕn}. By taking it
as test function in (17), we get

(20)

∫
Ω

|∇u|p−2∇u · ∇(ρη ∗ (v ∧ ϕn)) dx =

∫
Ω

f

uγ
(ρη ∗ (v ∧ ϕn)) dx .

We want to pass to the limit as η → 0 and we get

ρη ∗ (v ∧ ϕn)→ v ∧ ϕn strongly in W 1,p
0 (Ω).

This implies for the left hand side of (17) that

(21)

∫
Ω

|∇u|p−2∇u · ∇(ρη ∗ (v ∧ ϕn)) dx→
∫

Ω

|∇u|p−2∇u · ∇(v ∧ ϕn) dx .

As far as the right hand side of (20), let us observe that for any η > 0

supp (ρη ∗ (v ∧ ϕn)) ⊆ Kn,

where Kn is a compact set contained in Ω, and that we have, choosing ϕ ≡ 1 on
Kn in (17),

f

uγ
∈ L1(Kn).

Moreover, for any η > 0

‖ρη ∗ (v ∧ ϕn)‖L∞ ≤ ‖v ∧ ϕn‖L∞

and, as η → 0,

ρη ∗ (v ∧ ϕn)→ v ∧ ϕn a.e.,

and so

ρη ∗ (v ∧ ϕn)→ v ∧ ϕn w∗ − L∞.
We conclude that, as η → 0,

(22)

∫
Ω

f

uγ
(ρη ∗ (v ∧ ϕn)) dx→

∫
Ω

f

uγ
(v ∧ ϕn) dx.

By (20), (21) and (22) we obtain

(23)

∫
Ω

|∇u|p−2∇u · ∇(v ∧ ϕn) dx =

∫
Ω

f

uγ
(v ∧ ϕn) dx.

Now, we are going to pass to the limit in (23), as n→ +∞. Since

v ∧ ϕn → v in W 1,p(Ω),

we have

(24)

∫
Ω

|∇u|p−2∇u · ∇(v ∧ ϕn) dx→
∫

Ω

|∇u|p−2∇u · ∇v dx.

We are going now to prove that∫
Ω

f

uγ
(v ∧ ϕn) dx→

∫
Ω

f

uγ
v dx ,

as n→ +∞. Indeed
f

uγ
(v ∧ ϕn)→ f

uγ
v a.e.

and

0 ≤ f

uγ
(v ∧ ϕn) ≤ f

uγ
v.
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Then by Lebesgue dominated convergence theorem, it is sufficient to prove that

(25)
f

uγ
v ∈ L1(Ω) .

We will prove that there exists a constant C > 0, independent of n, satisfying for
every n ∈ N

(26)

∫
Ω

f

uγ
|ϕn| dx ≤ C .

Indeed, by (17) we have∫
Ω

f

uγ
ϕn dx =

∫
Ω

|∇u|p−2∇u · ∇ϕn dx ≤
∫

Ω

|∇u|p−1|∇ϕn| dx

≤
∫

Ω

|∇u|p dx+

∫
Ω

|∇ϕn|p dx ≤ C ,

where the last inequality is due to (19) and to the fact that u ∈ W 1,p
0 (Ω). This

prove (26). By (19), (26) and Fatou′s Lemma, (25) follows. Therefore formula (18)
holds.

Let us now prove the uniqueness of the solution. Assuming that there exist two
solutions u1, u2, the uniqueness follows taking u1 − u2 as test function in the two
equations satisfied by u1 and u2 and observing that the term f

uγ is nonincreasing
in the u variable.

4. Main result

This section is devoted to solve problem

(27)

 −div

(
Du

|Du|

)
=
f(x)

uγ
in Ω ,

u = 0 on ∂Ω ,

for nonnegative data f ∈ LN (Ω) and 0 < γ ≤ 1. We begin by introducing the
notion of solution to this problem.

Definition 4.1. Let f ∈ LN (Ω) with f ≥ 0 a.e.. We say that u ∈ BV (Ω)∩L∞(Ω),
u ≥ 0 a.e., is a weak solution of problem (27) if there exists z ∈ DM∞loc(Ω) with
‖z‖∞ ≤ 1 such that

(a)
f

uγ
∈ L1

loc(Ω) ,

(b) χ{u>0} ∈ BVloc(Ω) ,

(c) −(div z)χ∗{u>0} =
f

uγ
, in D′(Ω) ,

(d) (z, Du) = |Du| , (z, Dχ{u>0}) = |Dχ{u>0}| as measures in Ω ,

(e) u+ [uz, ν] = 0 HN−1–a.e. on ∂Ω .

Remark 4.2. Since

χ{u>0} ∈ BVloc(Ω),

it follows from Proposition 2.4 that zχ{u>0} ∈ DM∞loc(Ω) and the following equality
holds

(28) div
(
zχ{u>0}

)
=
(
div z

)
χ∗{u>0} + (z, Dχ{u>0}).
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Then, since (z, Dχ{u>0}) = |Dχ{u>0}|, the equation (c) is equivalent to

−div
(
zχ{u>0}

)
+ |Dχ{u>0}| =

f

uγ
.

We recall that the term |Dχ{u>0}| is a measure concentrated on the reduced bound-
ary ∂∗{u > 0} (or equivalently the reduced boundary ∂∗{u = 0}). Moreover
|Dχ{u>0}| coincides locally with the perimeter of the HN−1-rectifiable set {u = 0},
i.e. for every open set ω ⊂⊂ Ω we have that |Dχ{u>0}|(ω) coincides with the
perimeter of {u = 0} ∩ ω.

Remark 4.3. Let us point out that, by∫
Ω

f

uγ
|ϕ| dx < +∞ , ∀ϕ ∈ C∞0 (Ω) ,

any solution to (27) satisfies

|{x ∈ Ω : u(x) = 0, f(x) > 0}| = 0 ,

which means that

(29) {x ∈ Ω : u(x) = 0} ⊆ {x ∈ Ω : f(x) = 0} ,
except for a set of zero Lebesgue measure. Note that this implies that if f > 0 a.e.
in Ω, then u > 0 a.e. in Ω. Moreover, if f 6≡ 0, then for every solution u we have
u 6≡ 0 and if f ≡ 0, then u ≡ 0 is a solution.

A further remark is in order. It follows from (29) and by the fact that (x, s) 7→
f(x)
sγ is a Carathéodory function on Ω× [0,+∞[ with values in [0,+∞] (see Remark

3.1), that

(30)
f

uγ
=

f

uγ
χ{u>0} a.e.

Remark 4.4. We explicitly observe that there is a variational formulation of so-
lution to (27), see (31) below. This formulation looks like that of renormalized
solution.

Theorem 4.5. For every nonnegative f ∈ LN (Ω) with f ≥ 0 there is a weak
solution to problem (27).

Furthermore, for every nondecreasing and Lipschitz–continuous function h :
[0,+∞[→ [0,+∞[ such that h(0) = 0 and for every ϕ ∈ C∞0 (Ω),

(31)

∫
Ω

ϕ|Dh(u)|+
∫

Ω

h(u)z · ∇ϕdx =

∫
Ω

f

uγ
h(u)ϕdx .

Moreover

(32) h(u) + [h(u)z, ν] = 0

holds HN−1–a.e. on ∂Ω.

Proof. The proof will be divided in several steps.
Step 1. Approximating problems.
For every p > 1 let us consider the following problem

(33)

 −∆p (up) =
f(x)

uγp
in Ω ,

up = 0 on ∂Ω .
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By Theorem 3.3 there exists up ∈ W 1,p
0 (Ω) ∩ L∞(Ω) weak solution to problem

(33), i.e. it satisfies

(34)

∫
Ω

|∇up|p−2∇up · ∇v dx =

∫
Ω

f

uγp
v dx

for every v ∈ W 1,p
0 (Ω). Moreover for every open set ω ⊂⊂ Ω there exists cω > 0

such that up ≥ cω a.e. in ω.
Step 2. BV –estimate.
Taking the test function up in problem (34), and by using the Hölder inequality

we get

(35)

∫
Ω

|∇up|pdx =

∫
Ω

fu1−γ
p dx ≤ ‖f‖N |Ω|γ

N−1
N ‖up‖1−γN

N−1

.

Thus, applying the Sobolev and the Young inequalities we have

(36) ‖up‖ N
N−1
≤ S

∫
Ω

|∇up|dx ≤
S

p

∫
Ω

|∇up|pdx+
S(p− 1)

p
|Ω|

≤ S‖f‖N |Ω|γ
N−1
N ‖up‖1−γN

N−1

+ S|Ω|.

Since 1 − γ < 1, it follows that (up) is bounded in L
N
N−1 (Ω). Therefore, by (35)

and (36), we have

(37)

∫
Ω

|∇up|pdx ≤M,

for certain constant which does not depend on p. Thanks to Young’s inequality, it
implies that ∫

Ω

|∇up|dx ≤
1

p

∫
Ω

|∇up|pdx+
p− 1

p
|Ω| ≤M + |Ω| .

Having in mind that up
∣∣
∂Ω

= 0, we obtain that (up) is bounded in BV (Ω). Hence,
there exists a function u such that,

(38) u ∈ BV (Ω),

and, up to a subsequence,

(39) up → u in Lq(Ω) for every 1 ≤ q < N

N − 1
,

(40) up ⇀ u in L
N
N−1 (Ω)

and up → u pointwise a.e. in Ω . Moreover

(41) u ≥ 0 a.e. ,

and ∇up ⇀ Du weakly as measures.
Step 3. L∞–estimate.
Taking the test function Gk(up) = (up− k)+, with k ∈]0,+∞[ , in problem (34),

and by using the Hölder inequality we get∫
Ω

|∇Gk(up)|p dx =

∫
Ω

f

uγp
Gk(up) dx

≤ 1

kγ

∫
Ω

fGk(up)dx ≤
‖f‖N
kγ
‖Gk(up)‖ N

N−1
.
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Thus, the Sobolev and the Young inequalities imply

‖Gk(up)‖ N
N−1
≤ S

∫
Ω

|∇Gk(up)| dx ≤
S

p

∫
Ω

|∇Gk(up)|p dx+
S(p− 1)

p
|Ω|

≤ S ‖f‖N
kγ
‖Gk(up)‖ N

N−1
+ S(p− 1)|Ω|.

Now, by choosing k satisfying S ‖f‖Nkγ < 1, we get

‖Gk(up)‖ N
N−1
≤ C(p− 1),

with C independent of p. By applying Fatou’s Lemma we deduce

‖Gk(u)‖ N
N−1
≤ lim inf

p→1
‖Gk(up)‖ N

N−1
≤ lim inf

p→1
C(p− 1) = 0.

We conclude that 0 ≤ u ≤ k a.e. in Ω and so

u ∈ L∞(Ω).

Step 4. L1
loc–estimate for the singular term.

We are going to prove in this step that there exists a constant C > 0, independent
of p, satisfying

(42)

∫
Ω

f

uγp
|ϕ| dx ≤ C , ∀ϕ ∈ C∞0 (Ω), ∀1 < p ≤ p0 .

Fixed ϕ ∈ C∞0 (Ω), with ϕ ≥ 0, by (37) we have∫
Ω

f

uγp
ϕdx =

∫
Ω

|∇up|p−2∇up · ∇ϕdx ≤
∫

Ω

|∇up|p−1|∇ϕ| dx

≤
∫

Ω

|∇up|p dx+

∫
Ω

|∇ϕ|p dx ≤M +

∫
Ω

(
|∇ϕ|p0 + 1

)
dx < +∞ .

This implies that (42) holds for every ϕ ∈ C∞0 (Ω), even if it changes sign. By this
estimate and Fatou’s Lemma we get

(43)

∫
Ω

f

uγ
|ϕ| dx < +∞ , ∀ϕ ∈ C∞0 (Ω) .

Step 5. Vector field z.
Now, we want to find a vector field z ∈ DM∞loc(Ω) with ‖z‖∞ ≤ 1, to play the

role of Du
|Du| . In this Step, we will follow the argument of [33].

Fix 1 ≤ q <∞ and consider 1 < p < q′. It follows from (37), that∫
Ω

∣∣∣|∇up|p−2∇up
∣∣∣qdx =

∫
Ω

|∇up|q(p−1) dx

≤
(∫

Ω

|∇up|p dx
) q
p′

|Ω|1−
q
p′ ≤M

q
p′ |Ω|1−

q
p′ .

Hence,

‖|∇up|p−2∇up‖q ≤M
1
p′ |Ω|

1
q−

1
p′ ≤ (1 +M)

1
q (1 + |Ω|)

1
q

and so the sequence (|∇up|p−2∇up)p is bounded in Lq(Ω;RN ). Then there exists
zq ∈ Lq(Ω;RN ) such that, up to subsequences,

|∇up|p−2∇up ⇀ zq , weakly in Lq(Ω;RN ) .
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A diagonal argument shows that there exists a vector field z (independent of q)
satisfying

(44) |∇up|p−2∇up ⇀ z , weakly in Lq(Ω;RN ) , ∀1 ≤ q <∞ .

Moreover, by applying the lower semicontinuity of the q–norm, the previous esti-

mate ‖|∇up|p−2∇up‖q ≤M
1
p′ |Ω|

1
q−

1
p′ implies

‖z‖q ≤ |Ω|
1
q , ∀q <∞ ,

so that, letting q go to ∞, we obtain z ∈ L∞(Ω;RN ) and ‖z‖∞ ≤ 1.
Using ϕ ∈ C∞0 (Ω), with ϕ ≥ 0, as a function test in (34), we arrive at

(45)

∫
Ω

|∇up|p−2∇up · ∇ϕdx =

∫
Ω

f

uγp
ϕdx ,

and when we take p→ 1, using (41), Fatou’s Lemma and (44) it becomes∫
Ω

z · ∇ϕdx ≥
∫

Ω

f

uγ
ϕdx .

Therefore,

(46) −div z ≥ f

uγ
in D′(Ω) ,

so −div z is a nonnegative Radon measure. By (42) and (45) we have that

0 ≤ −
∫

Ω

ϕdiv z =

∫
Ω

z · ∇ϕdx < +∞

holds for every ϕ ∈ C∞0 (Ω) satisfying ϕ ≥ 0. This implies that the total variation
of −div z is locally finite. Therefore z ∈ DM∞loc(Ω).

Let us note that the total variation of −div z is only locally bounded, since by
(42) the term f

uγp
is bounded only in L1

loc(Ω) (see also (45)).

Step 6. The following equation

(47) −u∗ div z = fu1−γ

holds in D′(Ω) and the function u∗ belongs to L1(Ω,div z).
Firstly, let us prove that by (46) we have

(48) −u∗ div z ≥ fu1−γ , in D′(Ω),

namely

(49) −
∫

Ω

u∗ϕdiv z ≥
∫

Ω

fu1−γϕ ∀ϕ ∈ C∞0 (Ω).

Indeed we can apply (46) using the test function (u∗ρε)ϕ, where ρε is a standard
mollifier and ϕ ∈ C∞0 (Ω). We get

(50) −
∫

Ω

(u ∗ ρε)ϕdiv z ≥
∫

Ω

f

uγ
(u ∗ ρε)ϕdx.

We recall that, since u ∈ L∞(Ω) then we have also that |u∗| ≤ ‖u‖∞ HN−1-a.e.
This implies that |u∗| ≤ ‖u‖∞ div z-a.e. since div z << HN−1 (this gives also that
u∗ ∈ L1

loc(Ω,div z) ). By Proposition 3.64 (b) and Proposition 3.69 (b) of [1] we
have that

u ∗ ρε → u∗ HN−1 − a.e.
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and therefore div z-a.e. We can pass to the limit in both sides of the inequality (50)
by dominated convergence theorem (with respect to the measure div z on the left
hand side and the Lebesgue measure on the right hand side), since |u ∗ ρε| ≤ ‖u‖∞
in Ω and since f

uγ ϕ ∈ L
1(Ω) by (43). Therefore (48) holds.

Now, in order to prove the opposite inequality, let ϕ ∈ C∞0 (Ω), with ϕ ≥ 0, and
take upϕ as a function test in (34). Then∫

Ω

ϕ|∇up|p dx+

∫
Ω

up|∇up|p−2∇up · ∇ϕdx =

∫
Ω

fu1−γ
p ϕdx .

Applying Young’s inequality, it yields∫
Ω

ϕ|∇up| dx+

∫
Ω

up |∇up|p−2∇up · ∇ϕdx

≤ 1

p

∫
Ω

ϕ|∇up|p dx+

∫
Ω

up |∇up|p−2∇up · ∇ϕdx+
p− 1

p

∫
Ω

ϕdx

≤
∫

Ω

fu1−γ
p ϕdx+

p− 1

p

∫
Ω

ϕdx .

To pass to the limit on the left hand side, we apply the lower semicontinuity, jointly
with (39) and (44). Assume first that 0 < γ < 1. On the right hand side, we point
out that, as p→ 1, by (40)

(51) u1−γ
p ⇀ u1−γ in L

N
N−1

1
1−γ (Ω) ⊆ L

N
N−1 (Ω) ,

so that

(52) lim
p→1

∫
Ω

fu1−γ
p ϕdx =

∫
Ω

fu1−γϕdx .

It leads to

(53)

∫
Ω

ϕ|Du|+
∫

Ω

uz · ∇ϕdx ≤
∫

Ω

fu1−γϕdx .

Note that if γ = 1 the first integral on the right hand side does note depend on p.
Taking into account (7) and (5), we deduce by (53) that

−
∫

Ω

u∗ϕdiv z =

∫
Ω

ϕ(z, Du) +

∫
Ω

uz · ∇ϕdx

≤
∫

Ω

ϕ |Du|+
∫

Ω

uz · ∇ϕdx ≤
∫

Ω

fu1−γϕdx .

Therefore,

(54) −u∗ div z ≤ fu1−γ , in D′(Ω)

and by (48) and (54) we conclude that (47) holds. This implies that −u∗ div z ∈
L1(Ω), so that u∗ ∈ L1(Ω,div z).

Step 7. The equality (z, Du) = |Du|, as measures on Ω, holds.
It is a straightforward consequence of (53) and (47). Indeed, consider ϕ ∈ C∞0 (Ω)

with ϕ ≥ 0. Then we have∫
Ω

ϕ|Du|+
∫

Ω

u z · ∇ϕdx ≤
∫

Ω

fu1−γϕdx = −
∫

Ω

u∗ϕdiv z .

Therefore by Proposition 2.4∫
Ω

ϕ|Du| ≤ −
∫

Ω

u z · ∇ϕdx−
∫

Ω

u∗ϕdiv z =

∫
Ω

ϕ(z, Du).
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The arbitrariness of ϕ implies that

|Du| ≤ (z, Du) ,

as measures on Ω. On the other hand, since ‖z‖∞ ≤ 1, the opposite inequality
holds, i.e.

|Du| ≥ (z, Du) ,

as measures on Ω. This concludes the proof of Step 7.
Step 8. The boundary condition u+ [uz, ν] = 0 holds HN−1–a.e. on ∂Ω.
By taking up as test function in (34) we have∫

Ω

|∇up|p dx =

∫
Ω

fu1−γ
p dx .

On the other hand, by the fact that up = 0 on ∂Ω and by the Young inequality we
get ∫

Ω

|∇up| dx+

∫
∂Ω

up dHN−1 ≤ 1

p

∫
Ω

|∇up|p dx+
p− 1

p
|Ω|

≤
∫

Ω

fu1−γ
p dx+

p− 1

p
|Ω| .

We may use the lower semicontinuity of the functional on the left hand side to pass
to the limit as p→ 1 and obtain by (51) and (47)∫

Ω

|Du|+
∫
∂Ω

u dHN−1 ≤
∫

Ω

fu1−γ dx = −
∫

Ω

u∗div z .

Applying the Green formula (see Proposition 2.6) on the right hand side we have∫
Ω

|Du|+
∫
∂Ω

u dHN−1 ≤
∫

Ω

(z, Du)−
∫
∂Ω

[uz, ν] dHN−1 .

Then, by Step 7, we arrive at∫
∂Ω

(u+ [uz, ν]) dHN−1 ≤ 0 .

Since |[uz, ν]| ≤ u‖z‖∞ ≤ u, we conclude that

u+ [uz, ν] = 0 HN−1–a.e. on ∂Ω ,

which concludes the proof of the Step 8.
Step 9. Variational formulation.
Consider a Lipschitz–continuous and nondecreasing function h : [0,+∞[→ [0,+∞[

such that h(0) = 0. Then by (38) we have that h(u) ∈ BV (Ω). Following the ar-
gument of Step 6, we have

(55) −h(u)∗ div z ≥ f

uγ
h(u) , in D′(Ω).

In order to prove the opposite inequality, let ϕ ∈ C∞0 (Ω), with ϕ ≥ 0, and taking
h(up)ϕ as test function in (34) we obtain

∫
Ω

ϕ|∇up|ph′(up) dx+

∫
Ω

h(up)|∇up|p−2∇up · ∇ϕdx =

∫
Ω

f

uγ
h(up)ϕdx .
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Applying Young’s inequality, it yields

(56)

∫
Ω

ϕ|∇h(up)| dx+

∫
Ω

h(up) |∇up|p−2∇up · ∇ϕdx

=

∫
Ω

ϕ|∇up|h′(up) dx+

∫
Ω

h(up) |∇up|p−2∇up · ∇ϕdx

≤ 1

p

∫
Ω

ϕ|∇up|ph′(up) dx+

∫
Ω

h(up) |∇up|p−2∇up · ∇ϕdx+
p− 1

p

∫
Ω

h′(up)ϕdx

≤
∫

Ω

f

uγp
h(up)ϕdx+

p− 1

p
L

∫
Ω

ϕdx ,

where L denotes the Lipschitz constant of h. Moreover, it follows from

(57) h(up) ≤ Lup ,

the convergence (39) and Vitali’s Theorem that, as p→ 1,

(58) h(up)→ h(u), in Lq(Ω) for every 1 ≤ q < N

N − 1
.

By (57) we also get ∫
E

f

uγp
h(up)ϕdx ≤ L

∫
E

fu1−γ
p ϕdx

for every Borel measurable set E ⊂ Ω. Therefore, by (52) and Vitali′s Theorem we
obtain

(59) lim
p→1

∫
Ω

f

uγp
h(up)ϕdx =

∫
Ω

f

uγ
h(u)ϕdx .

The lower semicontinuity, jointly with (56), (58) and (59), leads to

(60)

∫
Ω

ϕ|Dh(u)|+
∫

Ω

h(u)z · ∇ϕdx ≤
∫

Ω

f

uγ
h(u)ϕdx .

By (7) we deduce that

−
∫

Ω

h(u)∗ div zϕ =

∫
Ω

ϕ(z, Dh(u)) +

∫
Ω

h(u)z · ∇ϕdx

≤
∫

Ω

ϕ|Dh(u)|+
∫

Ω

h(u)z · ∇ϕdx ≤
∫

Ω

f

uγ
h(u)ϕdx

which implies that

(61) −h(u)∗ div z ≤ f

uγ
h(u) , in D′(Ω).

By (55) and (61), we conclude that

(62) −h(u)∗ div z =
f

uγ
h(u) , in D′(Ω) .

Next, we deduce that

(63) (z, Dh(u)) = |Dh(u)|.

We point out that we cannot apply [5, Proposition 2.8] since u is not continuous
(it is proved for pairings such as z ∈ DM∞(Ω) and u ∈ BV (Ω) ∩ C(Ω) ∩ L∞(Ω)).
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Thus, we must focus on our equation and repeat the same arguments as in Step 7.
In fact, let us consider ϕ ∈ C∞0 (Ω) with ϕ ≥ 0. Then by (60) and (62) we have∫

Ω

ϕ|Dh(u)|+
∫

Ω

h(u) z · ∇ϕdx ≤
∫

Ω

f

uγ
h(u)ϕdx = −

∫
Ω

ϕh(u)∗div z .

Therefore by (4)∫
Ω

ϕ|Dh(u)| ≤ −
∫

Ω

h(u) z · ∇ϕdx−
∫

Ω

h(u)∗ϕdiv z =

∫
Ω

ϕ(z, Dh(u)).

The arbitrariness of ϕ implies that

|Dh(u)| ≤ (z, Dh(u)) ,

as measures on Ω. On the other hand, since ‖z‖∞ ≤ 1, the opposite inequality
holds, i.e.

|Dh(u)| ≥ (z, Dh(u)) ,

as measures on Ω. This proves that (z, Dh(u)) = |Dh(u)|.
By (63), (62) and (7) we have

(64) |Dh(u)| − div
(
h(u)z

)
=

f

uγ
h(u) , in D′(Ω)

and then (31) holds. Next, take h(up) as test function in (34) to obtain∫
Ω

|∇up|ph′(up) dx =

∫
Ω

f

uγp
h(up) dx .

The boundary condition and Young’s inequality yield

(65)

∫
Ω

|∇h(up)| dx+

∫
∂Ω

h(up) dHN−1 =

∫
Ω

|∇up|h′(up) dx

≤ 1

p

∫
Ω

|∇up|ph′(up) dx+
p− 1

p

∫
Ω

h′(up) dx

≤
∫

Ω

f

uγp
h(up) dx+

p− 1

p

∫
Ω

h′(up) dx .

Having in mind (57), we deduce

lim
p→1

∫
Ω

f

uγp
h(up) dx =

∫
Ω

f

uγ
h(u) dx .

On the left hand side of (65), one can use the lower semicontinuity of the functional
to arrive at ∫

Ω

|Dh(u)|+
∫
∂Ω

h(u) dHN−1 ≤
∫

Ω

f

uγ
h(u) dx .

Applying (64) and Green’s formula (13), this inequality becomes∫
Ω

|Dh(u)|+
∫
∂Ω

h(u) dHN−1 ≤
∫

Ω

|Dh(u)| −
∫
∂Ω

[h(u)z, ν] dHN−1 ,

wherewith ∫
∂Ω

h(u) + [h(u)z, ν] dHN−1 ≤ 0 .

Hence, h(u) + [h(u)z, ν] = 0 holds HN−1–a.e. on ∂Ω, i.e. (32) is proved.
Step 10. The function χ{u>0} belongs to BVloc(Ω).
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Let (hn) be a sequence of Lipschitz–continuous and nondecreasing functions
hn : [0,+∞[→ [0,+∞[ such that hn(0) = 0 and hn(u) ↑ χ{u>0} in L1(Ω). (For

instance, we may consider the truncation hn(s) = nT1/n(s+).)

By (64), for every n and ϕ ∈ C1
0 (Ω), with ϕ ≥ 0, we have∫

Ω

ϕ|Dhn(u)| ≤ −
∫

Ω

hn(u)z · ∇ϕdx+

∫
Ω

f

uγ
hn(u)ϕdx .

On account of (43), this fact implies that for every ω ⊂⊂ Ω there exists a constant
C such that

|Dhn(u)|(ω) ≤ C .
Hence for every ω ⊂⊂ Ω

|Dχ{u>0}|(ω) ≤ lim inf
n→+∞

|Dhn(u)|(ω) ≤ C ,

and χ{u>0} belongs to BVloc(Ω). Then by Proposition 2.4 we have that zχ{u>0} ∈
DM∞loc(Ω) and by (7) the following equality holds

div
(
zχ{u>0}

)
=
(
div z

)
χ∗{u>0} + (z, Dχ{u>0})

in D′(Ω).

Step 11. u satisfies the inequality −div
(
zχ{u>0}

)
+|Dχ{u>0}| ≤ f

uγ , in D′(Ω) .

By (64) for every n and ϕ ∈ C1
0 (Ω), with ϕ ≥ 0, we have∫

Ω

ϕ|Dhn(u)|+
∫

Ω

hn(u)z · ∇ϕdx =

∫
Ω

f

uγ
hn(u)ϕdx .

By the lower semicontinuity we have∫
Ω

ϕ|Dχ{u>0}|+
∫

Ω

χ{u>0}z · ∇ϕdx ≤
∫

Ω

f

uγ
ϕdx .

Step 12. u satisfies the equation −
(
div z

)
χ∗{u>0} = f

uγ in D′(Ω).

Since χ{u>0} ∈ BVloc(Ω), we have that (30) and (46) imply

−
(
div z

)
χ∗{u>0} ≥

f

uγ
in D′(Ω) .

Since ‖z‖∞ ≤ 1, the inequality

(66) (z, Dχ{u>0}) ≤ |Dχ{u>0}|
holds. Moreover, by (4), (66) and Step 11 we have that

−
(
div z

)
χ∗{u>0} = −div

(
zχ{u>0}

)
+ (z, Dχ{u>0})

≤ −div
(
zχ{u>0}

)
+ |Dχ{u>0}| ≤

f

uγ
.

This concludes the Step.
Step 13. (z, Dχ{u>0}) = |Dχ{u>0}|
By (66) we need to prove the opposite inequality (z, Dχ{u>0}) ≥ |Dχ{u>0}| .

We note that by Steps 11 and 12 for every ϕ ∈ C∞0 (Ω) with ϕ ≥ 0 we have∫
Ω

ϕ|Dχ{u>0}|+
∫

Ω

χ{u>0} z · ∇ϕdx ≤
∫

Ω

f

uγ
ϕdx = −

∫
Ω

ϕχ∗{u>0}div z .

Therefore by (4) we get∫
Ω

ϕ|Dχ{u>0}| ≤ −
∫

Ω

χ{u>0} z · ∇ϕdx−
∫

Ω

χ∗{u>0}ϕdiv z =

∫
Ω

ϕ(z, Dχ{u>0}).
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The arbitrariness of ϕ implies that

|Dχ{u>0}| ≤ (z, Dχ{u>0}) ,

as measures on Ω.
This concludes the proof.

Remark 4.6. We recall that the boundary condition used, as a rule, in the Dirichlet
problem for equations involving the 1–Laplacian is [z, ν] ∈ sign (−u) holds on ∂Ω,
which requires that z ∈ DM∞(Ω). This is not the case in our situation since we
just have z ∈ DM∞loc(Ω) and therefore the trace [z, ν] is not defined and the usual
boundary condition has no sense. On the contrary, the above boundary condition
h(u) + [h(u)z, ν] = 0, satisfied for every Lipschitz–continuous and nondecreasing
function h : [0,+∞[→ [0,+∞[ such that h(0) = 0, is completely meanigful since
h(u)z ∈ DM∞(Ω) by Proposition 2.6.

Remark 4.7. We point out that if k > 0, then χ{u>k} ∈ BV (Ω). This fact is a
consequence of the inequality

f

uγ
h(Gku) ≤ f

kγ
h(Gku) ∈ L1(Ω) ,

valid for every Lipschitz–continuous and nondecreasing h : [0,+∞[→ [0,+∞[ such
that h(0) = 0, since we may apply the variational formulation to h(Gk(s)) and
follow the argument of Step 9. Moreover, we can deduce the following facts as well:

− div (χ{u>k}z) + |Dχ{u>k}| =
f

uγ
χ{u>k} in D′(Ω) ;

(z, Dχ{u>k}) = |Dχ{u>k}| as measures in Ω ;

χ{u>k} + [χ{u>k}z, ν] = 0 holds HN−1–a.e. on ∂Ω .

Remark 4.8. The BV -estimate proven in Step 2 depends only on the fact that
γ > 0 (see (36)). We point out that in the non singular setting (when γ = 0) this
fact does not hold, unless f is small enough. This fact agrees with [34], where it is
seen that only if ‖f‖W−1,∞ ≤ 1 there is a BV –estimate.

Remark 4.9. The L∞–estimate proven in Step 3 is not a consequence of Stam-
pacchia’s procedure. We remark that it depends on the singularity (since it goes
to 0 at infinity) and the fact that we are dealing with the 1-Laplacian operator.

5. The case of strictly positive f

In this section we will assume that f(x) > 0 a.e. in Ω and we will prove those
specific features holding in this case, in particular, we will see a uniqueness result.
We will see in Section 6, uniqueness does not hold for f which vanishes on a set of
positive Lebesgue measure.

Remark that f ≡ 0 must be studied in a different way, the solutions being
1-harmonic functions. If f ≡ 0, then the approximate solution up vanishes and
so the solution u founded in Theorem 4.5 becomes the trivial solution. Moreover,
applying the results in [42] (which require some additional geometrical assumptions)
we obtain that this trivial solution is the only one.

Theorem 5.1. Let f ∈ LN (Ω) be such that f(x) > 0 for almost all x ∈ Ω. Then
the solution u we have found in Theorem 4.5 to problem (27) satisfies

(a) u(x) > 0 for almost all x ∈ Ω,
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(b)
f

uγ
∈ L1(Ω),

and there exists z ∈ DM∞(Ω) with div z ∈ L1(Ω) and ‖z‖∞ ≤ 1 such that

(c) −div z =
f

uγ
in D′(Ω) ,

(d) (z, Du) = |Du| as measures in Ω ,
(e) [z, ν] ∈ sign (−u) HN−1–a.e. on ∂Ω.

Proof. Since u is a solution, we already know that (d) holds. Condition (a) is a
consequence of Remark 4.3, and it yields condition (c) by Definition 4.1. Observe
that assuming condition (b), we deduce in a straightforward way that z ∈ DM∞(Ω)
(with div z ∈ L1(Ω)) and so [z, ν] has sense and (e) holds. Hence, only condition
(b) remains to be proved. We will see it in two steps.

Step 1. For every nonnegative v ∈W 1,1
0 (Ω), we have

∫
Ω

z · ∇v dx =
∫

Ω
f
uγ v dx.

In this Step we use an argument close to those used in Section 3, where existence
and uniqueness of approximating problems (16) are proved. We repeat these ar-
guments for the sake of completeness (note that here p = 1). Consider a sequence
ϕn ∈ C∞0 (Ω) such that ϕn ≥ 0 and

(67) ϕn → v strongly in W 1,1
0 (Ω).

We take for every η > 0 the function

ρη ∗ (v ∧ ϕn),

where ρη is a standard convolution kernel and v ∧ ϕn := inf{v, ϕn}. By taking it
as test function in (c), we get

(68)

∫
Ω

z · ∇(ρη ∗ (v ∧ ϕn)) dx =

∫
Ω

f

uγ
(ρη ∗ (v ∧ ϕn)) dx .

We want to pass to the limit as η → 0 using

ρη ∗ (v ∧ ϕn)→ v ∧ ϕn strongly in W 1,1(Ω).

This implies for the left hand side of (68) that

(69)

∫
Ω

z · ∇(ρη ∗ (v ∧ ϕn)) dx→
∫

Ω

z · ∇(v ∧ ϕn) dx

As far as the right hand side of (68) is concerned, let us observe that, for η > 0
small enough,

supp (ρη ∗ (v ∧ ϕn)) ⊆ Kn,

where Kn is a compact set contained in Ω. Moreover, it follows from f
uγ ∈ L

1
loc(Ω)

(see (43)), that
f

uγ
∈ L1(Kn).

Furthermore, for any η > 0

‖ρη ∗ (v ∧ ϕn)‖L∞ ≤ ‖v ∧ ϕn‖L∞

and, as η → 0,

ρη ∗ (v ∧ ϕn)→ v ∧ ϕn a.e.,

and so

ρη ∗ (v ∧ ϕn) ⇀ v ∧ ϕn w∗ − L∞.
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We conclude that, as η → 0,

(70)

∫
Ω

f

uγ
(ρη ∗ (v ∧ ϕn)) dx→

∫
Ω

f

uγ
(v ∧ ϕn) dx.

By (68), (69) and (70) we obtain

(71)

∫
Ω

z · ∇(v ∧ ϕn) dx =

∫
Ω

f

uγ
(v ∧ ϕn) dx.

Now, we are going to pass to the limit in (71), as n→ +∞. Since

v ∧ ϕn → v in W 1,1(Ω),

we have ∫
Ω

z · ∇(v ∧ ϕn) dx→
∫

Ω

z · ∇v dx.

We are going now to prove that∫
Ω

f

uγ
(v ∧ ϕn) dx→

∫
Ω

f

uγ
v dx ,

as n→ +∞. Indeed
f

uγ
(v ∧ ϕn)→ f

uγ
v a.e.

and

0 ≤ f

uγ
(v ∧ ϕn) ≤ f

uγ
v.

Then by Lebesgue dominated convergence theorem, it is sufficient to prove that

(72)
f

uγ
v ∈ L1(Ω) .

Indeed, by condition (c) we have∫
Ω

f

uγ
ϕn dx =

∫
Ω

z · ∇ϕn dx ≤ ‖z‖∞
∫

Ω

|∇ϕn| dx ≤ C ,

where the last inequality is due to (67). It follows from (67) and Fatou’s Lemma
that (72) holds. Therefore, Step 1 is proved.

Step 2. The inequality
∫

Ω
f
uγ v dx ≤

∫
Ω
|∇v| +

∫
∂Ω
v dHN−1 dx holds for every

nonnegative v ∈W 1,1(Ω) ∩ L∞(Ω).
Applying [5, Lemma 5.5], we find a sequence (wn)n in W 1,1(Ω)∩C(Ω) such that

(1) wn|∂Ω = v|∂Ω .

(2)

∫
Ω

|∇wn| dx ≤
∫
∂Ω

v dHN−1 +
1

n
.

(3) wn(x)→ 0, for all x ∈ Ω .

Since |v − wn| ∈W 1,1
0 (Ω), Step 1 becomes∫

Ω

f

uγ
|v − wn| dx =

∫
Ω

z · ∇|v − wn| dx

≤ ‖z‖∞
∫

Ω

|∇v| dx+ ‖z‖∞
∫

Ω

|∇wn| dx ≤
∫

Ω

|∇v|+
∫
∂Ω

v dHN−1 +
1

n
.
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Then Fatou’s Lemma implies∫
Ω

f

uγ
v dx ≤ lim inf

n→∞

∫
Ω

f

uγ
|v − wn| dx ≤

∫
Ω

|∇v|+
∫
∂Ω

v dHN−1 .

In particular, chosing v(x) = 1 for all x ∈ Ω, we obtain f
uγ ∈ L

1(Ω) , as desired.

As a consequence of Theorem 5.1 (b) and (c), every v ∈ BV (Ω)∩L∞(Ω) can be
taken as test function in our problem.

Corollary 5.2. Let f ∈ LN (Ω) be such that f(x) > 0 for almost all x ∈ Ω. Then

(73)

∫
Ω

(z, Dv)−
∫
∂Ω

v[z, ν] dHN−1 =

∫
Ω

f

uγ
v dx

holds for every v ∈ BV (Ω) ∩ L∞(Ω).

Proof. Fix v ∈ BV (Ω) ∩ L∞(Ω). It follows from Theorem 5.1 (b) and (c) that
div z ∈ L1(Ω), so that we may apply Anzellotti’s theory to the case div z ∈ L1(Ω)
and v ∈ BV (Ω) ∩ L∞(Ω). This gives for every v ∈ BV (Ω) ∩ L∞(Ω)

−
∫

Ω

v div z dx =

∫
Ω

f

uγ
v dx,

which follows by (c) of Theorem 5.1. Then equation (73) is a consequence of Green’s
formula (13) and (9).

Theorem 5.3. For every f ∈ LN (Ω), with f(x) > 0 a.e., there exists at most a
solution of (27) in the sense of Definition 4.1.

Proof. Assume to get a contradiction that u1 and u2 are positive solutions to
problem (27). Then, for i = 1, 2, ui(x) > 0 for almost all x ∈ Ω and there exist
vector fields zi satisfying all the requirements of Definition 4.1. Applying Corollary
5.2 to the difference of the solutions and taking conditions (d) and (e) in Theorem
5.1 into account, we obtain∫

Ω

|Du1| −
∫

Ω

(z1, Du2) +

∫
∂Ω

(u1 + u2[z1, ν]) dHN−1 =

∫
Ω

f

uγ1
(u1 − u2) dx∫

Ω

|Du2| −
∫

Ω

(z2, Du1) +

∫
∂Ω

(u2 + u1[z2, ν]) dHN−1 = −
∫

Ω

f

uγ2
(u1 − u2) dx .

Adding both equations and rearranging its terms, we get∫
Ω

[
|Du1| − (z2, Du1)

]
+

∫
Ω

[
|Du2| − (z1, Du2)

]
+

∫
∂Ω

(u1 + u1[z2, ν]) dHN−1 +

∫
∂Ω

(u2 + u2[z1, ν]) dHN−1

=

∫
Ω

( f
uγ1
− f

uγ2

)
(u1 − u2) dx =

∫
Ω

−f
u1u2

(uγ1 − u
γ
2)(u1 − u2) .

Since

∫
Ω

[
|Du1|−(z2, Du1)

]
≥ 0,

∫
Ω

[
|Du2|−(z1, Du2)

]
≥ 0,

∫
∂Ω

(u1+u1[z2, ν]) dHN−1 ≥

0 and

∫
∂Ω

(u2 + u2[z1, ν]) dHN−1 ≥ 0, we infer that

0 ≤
∫

Ω

−f
u1u2

(uγ1 − u
γ
2)(u1 − u2) ,
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whose integrand is nonpositive, so that this term vanishes. It follows that the
integrand vanishes as well. Therefore, (uγ1 − u

γ
2)(u1 − u2) = 0 and so u1 = u2 in Ω.

6. Explicit 1–dimensional solutions

In this Section we will show some explicit solutions taken Ω =]−1, 1[ and γ = 1.
We restrict to the one dimensional case for the sake of simplicity. Indeed, in any
dimension and considering any γ ∈]0, 1], one may think that the constant function

u(x) = ‖f‖1/γW−1,∞(Ω) is a solution to our problem reasoning as follows. Since then

f/uγ = f/‖f‖W−1,∞(Ω), and applying [34, Theorem 4.3 and Remark 4.7] we get a

vector field z ∈ DM∞ satisfying ‖z‖∞ ≤ 1 and −div z = f
uγ in D′(Ω). Obviously,

(z, Du) = 0 = |Du| holds as measures in Ω. Unfortunately, the condition [z, ν] ∈
sign (−u) HN−1–a.e. on ∂Ω is not guaranteed. Nevertheless, when Ω =]− 1, 1[, it
is easy to define a function z which satisfy the weak form of boundary condition,
just choosing z such that z(−1) = 1 if u(−1) 6= 0 and z(1) = −1 if u(1) 6= 0.

In what follows we deal with the problem

(74)

 −
( u′
|u′|

)′
=
f

u
, in ]− 1, 1[ ;

u(−1) = 0 = u(1) .

It is worth recalling the conditions of being a solution in this 1–dimensional setting.
As just mentioned, the boundary condition becomes z(−1) = 1 if u(−1) 6= 0 and
z(1) = −1 if u(1) 6= 0. On the other hand, the condition −z′χ{u>0} = f/u implies
that z′ is a function and so z does not jump (at least where u > 0). Finally, it
follows from (z, u′) = |u′| that z(x) = 1 if u “increases” at x and z(x) = −1 if u
“decreases” at x.

Example 6.1. Set f(x) = χ]−1/2,1/2[(x). From the previous argument, we already

know that a solution to (74) is given by u1(x) = 1
2 with

z1(x) =


1 , if − 1 < x < − 1

2 ;

−2x , if − 1
2 ≤ x ≤

1
2 ;

−1 , if 1
2 < x < 1 .

The same function z1 allows us to check that any u satisfying u nondecreasing in
]− 1,− 1

2 ], u(x) = 1
2 in ]− 1

2 ,
1
2 [ and u nonincreasing in [ 1

2 , 1[, is a solution to (74).

For instance, u2(x) = 1
2χ]− 1

2 ,
1
2 [(x) defines a solution. We conclude that uniqueness

does not hold.
Observe that, for u2 = 1

2χ]− 1
2 ,

1
2 [, other choices of the auxiliary function are

possible, namely:

z2(x) =


2(x+ 1) , if − 1 < x < − 1

2 ;

−2x , if − 1
2 ≤ x ≤

1
2 ;

2(x− 1) , if 1
2 < x < 1 .
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Remark 6.2. We point out that the function z is not unique. Moreover, what is
really important in our equation is the identity

−z′χ∗{u>0} =
f

u
.

We remark that in the previous example z′1 = z′1χ
∗
{u>0}, while z′2 6= z′2χ

∗
{u>0}.

Furthermore, one may wonder if the identity

−(zχ{u>0})
′ =

f

u

holds as well. The answer is negative since one can easily check that, for solution
u = 1

2χ]− 1
2 ,

1
2 [, it yields

(z1χ{u>0})
′ = −2χ]− 1

2 ,
1
2 [ + δ−1/2 + δ1/2 = z′1χ

∗
{u>0} + δ−1/2 + δ1/2 6= z′1χ

∗
{u>0} .

Note that the terms δ−1/2 and δ1/2 are the measure |Dχ{u>0}| concentrated in
∂∗{u > 0}.

Example 6.3. Consider the function f :]− 1, 1[→ R defined by

f(x) =


x− 1

2 , if 1
2 ≤ x < 1 ;

0 , if − 1
2 < x < 1

2 ;

−x− 1
2 , if − 1 < x ≤ − 1

2 .

It is straightforward that a solution of (74) is given by the constant function
u1(x) = 1

8 with

z1(x) =


−4x2 + 4x− 1 , if 1

2 ≤ x < 1 ;

0 , if − 1
2 < x < 1

2 ;

4x2 + 4x+ 1 , if − 1 < x ≤ − 1
2 .

Another solution is given by u2(x) = 1
16χ{f>0}(x) with

z2(x) =


−8x2 + 8x− 1 , if 1

2 ≤ x < 1 ;

2x , if − 1
2 < x < 1

2 ;

8x2 + 8x+ 1 , if − 1 < x ≤ − 1
2 .

In this case, −z′2χ{u2>0} = f/u2 holds, and z′2χ{u2>0} 6= z′2. Observe that this
example shows that there is not uniqueness even where {f > 0}.

There are still other solutions to (74), for instance, u3(x) = 1
16χ]−1,− 1

4 [∪] 14 ,1[(x)

with

z3(x) =



−8x2 + 8x− 1 , if 1
2 ≤ x < 1 ;

1 , if 1
4 ≤ x <

1
2 ;

4x , if − 1
4 < x < 1

4 ;

−1 , if − 1
2 < x ≤ − 1

4 ;

8x2 + 8x+ 1 , if − 1 < x ≤ − 1
2 .
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