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Abstract. In this work we study the global existence of a solution to some
parabolic problems whose model is

(1)





ut −∆u = g(u) + µ , (x, t) ∈ Ω× (0,∞) ;

u(x, t) = 0 , (x, t) ∈ ∂Ω× (0,∞) ;

u(x, 0) = u0(x) , x ∈ Ω ,

where Ω ⊂ RN is a bounded domain, u0 ∈ L1(Ω), µ is a finite Radon measure
in Ω×(0,∞) and g is a real continuous function, slightly superlinear at infinity
(“slightly” in the sense that 1/g is not integrable at ∞). One of the main tools
is a new logarithmic Sobolev inequality.

We also prove some uniqueness results.

1. Introduction

In the present paper we deal with a class of parabolic problems whose basic
model is the following.

(2)





ut −∆u = g(u) + µ , (x, t) ∈ Q = Ω× (0,∞) ;

u(x, t) = 0 , (x, t) ∈ ∂Ω× (0,∞) ;

u(x, 0) = u0(x) , x ∈ Ω ,

where Ω ⊂ RN is a bounded domain, u0 ∈ L1(Ω), µ is a finite Radon measure
in Ω × (0,∞) (for the sake of simplicity, we may assume in this introduction that
u0 and µ are nonnegative) and g : R → [0,∞) is a slightly super-linear, even and
continuous function. Parabolic problems with measure data have been studied, for
instance, in [9], [8], [7], [23], [24], [1] and references therein.

Our model problem appears as the transformed by the Cole-Hopf change of
unknown (see, for instance, [19]) of problem

(3)





wt −∆w = β(w)|∇w|2 + 1 , (x, t) ∈ Q ;

w(x, t) = 0 , (x, t) ∈ ∂Ω× (0,∞) ;

w(x, 0) = w0(x) , x ∈ Ω ,
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where β is a positive, increasing, continuous function. Indeed by applying the
change of unknown

u = Ψ(w) =
∫ w

0

exp
( ∫ s

0

β(r) dr
)

ds ,

problem (3) transforms (formally) into problem (2) with µ = 0, where

g(u) = exp
( ∫ w

0

β(r) dr
)

.

It can be checked that the function g verifies

(G)





(g1) g : [0,∞) → [0,∞), increasing, convex and g(0) = 1,

(g2)
∫ ∞

0

ds

g(s)
= ∞ ,

(g3) lim
s→∞

g(s)
s

= ∞.

In [1] the Cole-Hopf change of unknown is studied in detail, and it is proved that if
w is not regular enough, then a singular measure µ may occur in (2). Conversely,
assuming µ is a positive, singular Radon measure (here “singular” means that it is
concentrated on a set of zero parabolic capacity, see [1]), and that u is a solution
of problem (2), then by performing the inverse change of variable w = Ψ−1(u) the
measure “disappears”, and w is a solution of problem (3).

The general relation between g and β can be seen, for instance, in [15]. Just to
fix ideas, some examples about the behaviour of g(s) at infinity are in order:

if β(s) = sλ , then g(s) ∼ s (log s)
λ

λ+1 ;

if β(s) = es , then g(s) ∼ s log s ;

if β(s) = ees

, then g(s) ∼ s (log s) (log log s) .

It is straightforward that in all cases, we might write g(s) in the form

g(s) = 1 + sA(log s) ,

for large s. Indeed, our global existence result will be obtained under the following
mild assumptions on A:

(H)





(h1) A is increasing ,

(h2)
∫ ∞

0

ds

A(s)
= ∞ ,

(h3) lim
s→∞

A(s) = ∞ ,

(h4) A satisfies the ∆2–condition: A(2s) ≤ KA(s)
for all large s and for some K > 0 .

Note that no convexity/concavity assumptions are assumed on g.
One of the main difficulties one encounters in looking for some a priori estimates

for problem (2) is that solutions to parabolic problems with measure data are
unbounded in general, so it would be difficult to find a priori estimates by means of
supersolutions. We have to rely on some different method, for instance using test
functions.
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Assuming for a moment that µ = 0 and that the initial datum is positive, after
multiplying problem

ut −∆u = u A(log∗ u)

by u and integrating on Ω, one obtains

1
2

d

dt

∫

Ω

u2 dx +
∫

Ω

|∇u|2 dx =
∫

Ω

u2 A(log∗ u) dx .

To estimate the last integral, we need an inequality such as
∫

Ω

u2A(log∗ u) dx ≤ 1
2

∫

Ω

|∇u|2 dx + F
( ∫

Ω

u2 dx
)

,

for a suitable function F which does not grow too much: for instance, F (s) =
sA(log∗ s) would be fine, because the ordinary equation y′ = y A(log∗ y) has a
global solution on [0,∞), so one could use a nonlinear version of Gronwall’s lemma
(see for instance [20]) to conclude. In other words, one needs a Sobolev inequality
of logarithmic type (see [21], [2], [12], [15], [11]). Actually, the presence of the
measure term worsens the situation, because in this case it is not possible to take
u as a test, but only bounded functions of u are allowed (see, for instance, [9]).
Taking one of these test functions, one obtains an equation similar to the preceding
one, but with different powers of u. Therefore, an inequality such as

∫

Ω

uq A(log∗ u) dx ≤ 1
2

∫

Ω

|∇u|2 dx + F
( ∫

Ω

uq dx
)

is necessary, with 2 < q < 2∗. Since such a kind of inequalities is not available to
us, we have to begin by proving a generalized logarithmic Sobolev’s inequality. By
applying such an inequality, we are able to prove a priori estimates (Proposition 1)
and a global existence result (Theorem 1) for problem (2).

Under some stronger assumptions, we are also able to prove a uniqueness result
(Theorem 3).

The rest of this paper is divided in three sections. In the next one we will
give some notation and the precise assumptions for our problems, and we will
state the main results and the logarithmic Sobolev inequality. We will prove the
logarithmic inequality in Section 3. Finally, in Section 4 the proofs of the existence
and uniqueness results are given.

2. Global existence of the Cauchy-Dirichlet problem

Let Ω be a bounded, open set in RN , N ≥ 1. For T > 0, we write QT =
Ω× (0, T ), and for r, q ∈ [1,∞], the symbols Lq(Ω), Lr(0, T ; Lq(Ω)), and so forth,
denote the usual Lebesgue spaces, see for instance [19]. We will denote by W 1,q

0 (Ω)
the usual Sobolev space of measurable functions having weak derivative in Lq(Ω)
and zero trace on ∂Ω. If T > 0, the spaces Lr(0, T ; Lq(Ω)) and Lr(0, T ; W 1,q

0 (Ω))
have obvious meanings, see again [19].

Moreover, we will denote by q′ Hölder’s conjugate exponent of q > 1, i.e.,
1
q + 1

q′ = 1. Finally, if 1 ≤ q < N , we will denote by q∗ = Nq/(N − q) its Sobolev
conjugate exponent.

For the sake of brevity, instead of writing “u(x, t) ∈ Lr(0, τ ; W 1,q
0 (Ω)) for every

τ > 0”, we shall write u(x, t) ∈ Lr
loc([0,∞); W 1,q

0 (Ω)). Similarly, we shall write
u ∈ Lq

loc(Q) instead of u ∈ Lq(Qτ ) for every τ > 0.
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Finally, throughout this paper, we will use the usual truncation at levels ±k,

Tk s = max{−k, min{k, s}} .

We will consider the following parabolic problem

(4)





ut − div a(x, t, u,∇u) = b(x, t, u) + µ, (x, t) ∈ Q = Ω× (0,∞)

u(x, t) = 0, (x, t) ∈ ∂Ω× (0,∞)

u(x, 0) = u0(x), x ∈ Ω,

where Ω ⊂ RN is a bounded domain, u0 ∈ L1(Ω), µ is a finite Radon measure in Q
and the functions a and b verify the following hypotheses.

• a(x, t, s, ξ) : Ω×(0,∞)×R×RN → RN is a Carathéodory function, i.e., it
is continuous with respect to (s, ξ) for a.e. (x, t) ∈ Q, and measurable with
respect to (x, t) for every (s, ξ) ∈ R × RN , such that there exist positive
constants Λ1, Λ2 satisfying:

|a(x, t, s, ξ)| ≤ Λ1|ξ| ,(5)

a(x, t, s, ξ) · ξ ≥ Λ2|ξ|2 ,(6)
(
a(x, t, s, ξ)− a(x, t, s, η)

) · (ξ − η) > 0 ,(7)

for a.e. (x, t) ∈ Q, for every s ∈ R and every ξ, η ∈ RN , with ξ 6= η.
• b(x, t, s) : Ω × (0,∞) × R → R is a Carathéodory function, i.e., it is

continuous with respect to s for a.e. (x, t) ∈ Q, and measurable with
respect to (x, t) for every s ∈ R, such that there exists a positive constant
Λ3 satisfying:

(8) |b(x, t, s)| ≤ Λ3

(
1 + |s|A(log∗ |s|)

)
,

for a.e. (x, t) ∈ Q and for every s ∈ R, where

log∗ s = max{1, log s}
The function A(s) : [0, +∞) → [0,+∞) which appears in (8) satisfies

the following hypotheses:
• A(s) is increasing and continuous, and lim

s→+∞
A(s) = +∞.

• A satisfies the so-called ∆2–condition at infinity (see for instance [22] or
[29]), that is, there exist positive constants t0 and K such that

A(2t) ≤ K A(t) for every t ≥ t0.

• A satisfies the following “slow-growth” condition:

(9)
∫ +∞

1

ds

A(s)
= +∞ .

Let us remark that, by a simple change of variable, the previous condition
is equivalent to ∫ +∞

1

ds

sA(log∗ s)
= +∞ .
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We set
t1 = exp(max{t0, 1})

and therefore log t = log∗ t for all t ≥ t1. Since A satisfies the ∆2–condition then
there exists k > 0 such that

A(s + t) ≤ k(A(s) + A(t)), for all r, s > t0.

Since
log∗(ab) ≤ log∗ a + log∗ b , for all positive a and b,

one obtains the subadditivity of A(log∗ t):

(10) A(log∗(ab)) ≤ c
(
A(log∗ a) + A(log∗ b)

)
, for all a, b > 0.

We wish to prove an existence result for problem (4). We first give a definition
of weak solution for this problem.

Definition 1. We will say that a function

u ∈ L∞loc([0,∞); L1(Ω)) ∩ Lr
loc([0,∞); W 1,r

0 (Ω)) ∩ Lσ
loc(Q) ,

for every r < 1 + 1
N+1 and for every σ < 1 + 2

N , is a weak solution of problem (4)
if it verifies

a) For every β < 1
2 ,

(
(1 + |u|)β − 1

) ∈ L2
loc([0,∞); W 1,2

0 (Ω))
b) For all k > 0, Tku ∈ L2

loc([0,∞); W 1,2
0 (Ω))

c) b(x, t, u) ∈ L1
loc(Q)

and if for every ξ ∈ C1
c ([0,∞)× Ω) the following equality holds

−
∫∫

Q

u ξt dx dt−
∫

Ω

u0(x) ξ(x, 0) dx +
∫∫

Q

a(x, t, u,∇u) · ∇ξ dx dt

=
∫∫

Q

b(x, t, u) ξ dx dt +
∫∫

Q

ξ dµ .

Remark 1. It is easy to obtain that the solution u belongs to Lr
loc([0, +∞); W 1,q

0 (Ω))
for all r, q ≥ 1 such that

2
r

+
N

q
> N + 1

(as in [8]).

Remark 2. Every weak solution according to this definition has the following
property: up to null sets in (0, +∞)

lim
t→0+

∫

Ω

u(x, t)ϕ(x) dx =
∫

Ω

u0(x) ϕ(x) dx

for every ϕ ∈ C∞0 (Ω). As a consequence, taking into account that C∞0 (Ω) is dense
in C0(Ω), one easily obtains that

lim
t→0+

u(·, t) = u0(·) weakly-∗ in the space of measures,

still up to null sets. This gives further sense to the initial datum. Moreover, if µ is a
function in L1

loc(Q), then the weak solution we obtain belongs to C([0, +∞); L1(Ω))
because of Proposition 6.4 of [14]. See also Theorem 2, where more regularity is
considered.
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Theorem 1. Under the above hypotheses, for every u0 ∈ L1(Ω) and for every finite
Radon measure µ, problem (4) admits a weak solution u in the sense of Definition
1.

We also give an existence and regularity result in the case where µ = f(x, t) is
a function such that

(11) f(x, t) ∈ Lρ
loc([0, +∞); Lσ(Ω)) , with

N

σ
+

2
ρ

=
N + 4

2
.

Theorem 2. Under the above hypotheses on the operator, if µ = f(x, t), with f
satisfying (11) and u0 ∈ L2(Ω), there exists a weak solution to (4) such that

u ∈ C0([0,∞); L2(Ω)) ∩ L2
loc([0,∞); W 1,2

0 (Ω)).

As far as uniqueness is concerned, we will give a result in the case of the heat
equation (see also Remark 3 below), that is, when a(x, t, s, ξ) = a(ξ) = ξ. We will
assume that the function b(x, t, s) satisfies (8) and moreover

(12) |b(x, t, s1)− b(x, t, s2)| ≤ Λ4 (1 + |s1|δ + |s2|δ) |s1 − s2| , 0 < δ <
2
N

for a.e. (x, t) ∈ Q and every s1, s2 ∈ R, where Λ4 > 0. Note that this condition is
satisfied in all the model cases, for instance if b(x, t, s) = g(x, t)

(
1 + |s| (log∗ |s|)θ

)
,

with θ ≤ 1, or if b(x, t, s) = g(x, t)
(
1 + |s| (log∗ |s|) (log∗ log∗ |s|)), and so on, with

g(x, t) bounded.

Theorem 3. Assume that µ is a Radon measure on Q, that u0 ∈ L1(Ω) and that
the function b(x, t, s) satisfies assumptions (8) and (12). Then there exists a unique
weak solution of problem

(13)





ut −∆u = b(x, t, u) + µ, (x, t) ∈ Q

u(x, t) = 0, (x, t) ∈ ∂Ω× (0,∞)

u(x, 0) = u0(x), x ∈ Ω.

Remark 3. In the last theorem we have considered the heat operator in order to
avoid the need to introduce more complicated definitions of solution. It should be
noted, indeed, that even in the linear case a(x, t, s, ξ) = A(x, t) ξ and b(x, t, u) ≡ 0,
problem (4) may admit multiple solutions in the sense of distributions (see the
counterexample in [25], based on the elliptic result by Serrin [26]). Therefore,
in order to obtain uniqueness one should consider the notion of duality solutions
in the case of linear operators (see [23]), or else assume that the measure µ is a
function in L1 or more generally a soft measure, that is, a measure which does not
charge sets of zero parabolic capacity (see [18]); then one has to use the notions
of entropy solutions (see [3] and [25]) or renormalized solutions (see [6], [18] and
[24]), or approximate solutions (see [13]). It should be pointed out that all these
formulations have elliptic precedents, see [27], [5], [9], [16] and references therein. In
anyone of these frameworks, if we assume that the vector-valued function a(x, t, s, ξ)
defined at the beginning of this Section does not depend on s (that is, on u), and
that, instead of (7), it satisfies the stronger condition

(
a(x, t, ξ)− a(x, t, η)

) · (ξ − η) ≥ Λ5 |ξ − η|2 ,

for a.e. (x, t) ∈ Q and every ξ, η ∈ RN , with Λ5 > 0, then it is possible to prove a
uniqueness result similar to Theorem 3.
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As we explained in the Introduction, the main tool to obtain the a priori estimate
necessary for the existence result is the following logarithmic Sobolev inequality,
which we think may have an interest on its own:

Theorem 4. Assume that the function A satisfies the hypotheses stated above. Let
p, q be positive numbers such that 1 ≤ p ≤ q < p∗ if N > p, and p ≤ q if N ≤ p.
Then there exists a positive constant C such that, for every ε > 0 and for every
v ∈ W 1,p

0 (Ω) the following inequality holds:

(14)
∫

Ω

|v|q A(log∗ |v|) dx

≤ C

(
ε

∫

Ω

|∇v|p dx+‖v‖q

q
A

(
log∗

1
ε

)
+‖v‖q

q
A(log∗ ‖v‖q

q
)+‖v‖q

q
A(log∗ ‖v‖−q

q
)
)

,

and as a consequence it yields

(15)
∫

Ω

|v|q A(log∗ |v|) dx

≤ C

(
ε

∫

Ω

|∇v|p dx + ‖v‖q

q
A

(
log∗

1
ε

)
+ ‖v‖q

q
A(log∗ ‖v‖q

q
) + 1

)
.

3. Proof of the logarithmic Sobolev inequality

In this Section we shall prove the logarithmic Sobolev inequality stated in The-
orem 4. Throughout this Section, we will assume that the function A satisfies the
hypotheses stated in the previous Section. To prove Theorem 4, we will need some
lemmata:

Lemma 1. There exists a positive constant c1 such that

A(log s)
s

≤ c1
A(log t)

t
for every s > t ≥ t1.

Proof. For s and t fixed, let m ∈ N be such that

t2
m−1

< s ≤ t2
m

.

Then, recalling the assumptions on A, one has

A(log s) ≤ A(log t2
m

) = A(2m log t) ≤ Km A(log t) .

Therefore
A(log s)

s
≤ Km A(log t)

t2m−1 ≤ Km

t2
m−1−1

1

A(log t)
t

.

To finish, it suffices to observe that the sequence Km/(t2
m−1−1

1 ) is bounded, since
it tends to zero. ¤

Lemma 2. Let ν be a nonnegative measure on Ω such that ν(Ω) = 1. Then there
exists a positive constant c2 such that

∫

Ω

A(log∗ f) dν ≤ c2 A
(

log∗
∫

Ω

f dν
)

,

for all nonnegative f ∈ L1(Ω, ν).
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Remark 4. The previous result, with c2 = 1, would just be Jensen’s inequality
under the assumption that A(log∗ s) is concave. We point out that this is not
always true under our hypotheses.

Also note that f ∈ L1(Ω, ν) implies A(log∗ f) ∈ L1(Ω, ν), since A grows less
than a power.

Proof of Lemma 2. We set

B(s) =





A(log s) if s ≥ t1

A(log t1)
t1

s if 0 ≤ s ≤ t1 .

Then, applying Lemma 1, B(t) satisfies

B(s)
s

≤ c3
B(t)

t
for every s > t > 0 and for some constant c3 ≥ 1.

Therefore it follows that

B(s)− c3 B(t) ≤ c3
B(t)

t
(s− t) for every s > t > 0.

We define
f1(x) = f(x) χ{f(x)≥∫

f dν} .

For every x ∈ Ω such that f(x) ≥ ∫
f dν one has

B(f1(x))− c3B
( ∫

f dν
)
≤ c3

B
( ∫

f dν
)

∫
f dν

(
f1(x)−

∫
f dν

)
.

It is trivial to check that this same inequality continues to hold for every x such
that f(x) <

∫
f dν, i.e., such that f1(x) = 0. Therefore, integrating the inequality

over Ω and recalling that ν(Ω) = 1, one gets

∫
B(f1(x))− c3B

( ∫
f dν

)
≤ c3

B
( ∫

f dν
)

∫
f dν

( ∫
f1(x)−

∫
f dν

)
≤ 0 ,

which means

(16)
∫

B(f1(x)) dν ≤ c3B
( ∫

f dν
)

.

On the other hand, if we set

f2(x) = f(x)− f1(x) = f(x)χ{f(x)<
∫

f dν} ,

then the monotonicity of B gives B(f2(x)) ≤ B
( ∫

f dν
)
, from which, integrating,

(17)
∫

B(f2) dν ≤ B
( ∫

f dν
)

.

Adding up (16) and (17), one obtains
∫

B(f) dν =
∫

B(f1) dν +
∫

B(f2) dν ≤ (c3 + 1) B
( ∫

f dν
)

.
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To obtain the result one only has to take into account that A(log∗ t) − B(t) is a
bounded function and that A(log∗ t) ≥ A(1) > 0. ¤
Lemma 3. There exists a positive constant c4 satisfying

xA(log∗ y) ≤ c4

(
xA(log∗ x) + y

)
,

for all x, y > 0.

Remark 5. This result resembles Young’s inequality for conjugate N-functions
(see for instance [22]), but in this case we do not assume any hypothesis on con-
cavity/convexity of A(log∗ s).

Proof of Lemma 3. We write t = y/x, and apply the inequality (10) to obtain

xA(log∗ y) ≤ c x A(log∗ x) + c x A(log∗ t) ≤ c xA(log∗ x) + c′ x (t + 1)

≤ c′′
(
xA(log∗ x) + y + x

)
≤ c′′′

(
xA(log∗ x) + y

)
.

¤
Proof of Theorem 4. Without loss of generality, we can assume that ε < 1/e,
and that v ≥ 0. We may also assume that N > p, since in the case N ≤ p one only
has to replace p∗ by any r > q.

Then, using Lemma 2 with ν = vq/‖v‖q

q
and Sobolev’s inequality, one has

∫

Ω

vq A(log∗ v) dx ≤ c ‖v‖q

q

∫

Ω

vq

‖v‖q

q

A(log∗ vp∗−q) dx ≤ c‖v‖q

q
A

(
log∗

∫

Ω

vp∗

‖v‖q

q

dx
)

≤ c‖v‖q

q

[
A

(
log∗

∫

Ω

|∇v|p dx
)

+ A
(

log∗ ‖v‖−q

q

)]

≤ c‖v‖q

q

[
A

(
log∗

(
ε

∫

Ω

|∇v|p dx
))

+ A
(

log∗
1
ε

)]
+ c‖v‖q

q
A

(
log∗ ‖v‖−q

q

)
.

We now apply Lemma 3 to obtain

‖v‖q

q
A

(
log∗

(
ε

∫

Ω

|∇v|p dx
))

≤ c

(
‖v‖q

q
A(log∗ ‖v‖

q
) + ε

∫

Ω

|∇v|p dx

)
,

from which (14) follows; it implies (15) since

‖v‖q

q
A

(
log∗ ‖v‖−q

q

)
≤ c

(
1 + ‖v‖q

q

)
.

¤

4. Proof of the main results

To begin the proof of Theorem 1, we consider the truncated problems,

(18)





(un)t − div a(x, t, un,∇un) = bn(x, t, un) + fn, in Q

un(x, t) = 0, on ∂Ω× (0,∞)

un(x, 0) = u0,n(x), x ∈ Ω,

where u0,n is a sequence of bounded functions such that u0,n → u0 strongly in
L1(Ω), bn(x, t, s) = Tn(b(x, t, s)), while fn(x, t) is a sequence of bounded functions
such that ∫∫

Q

ϕ(x, t) fn(x, t) dx dt →
∫∫

Q

ϕ(x, t) dµ
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for every function ϕ(x, t) continuous and with compact support in Ω× [0, +∞).
The existence of a bounded solution of problem (18) is well known. The first

and most important step is to prove some a priori estimates.

Proposition 1. Let {un} be a sequence of solutions of the approximate problems
(18) and let T > 0. Then, for each β < 1/2, the sequence

{{(1 + |un|)β − 1
}

n
is

bounded in L2(0, T ; W 1,2
0 (Ω)), and the sequence {un}n is bounded in

L∞(0, T ; L1(Ω)) ∩ Lr(0, T ;W 1,r
0 (Ω)) ∩ Lσ(QT )

for all 1 ≤ r < N+2
N+1 and for all 1 ≤ σ < N+2

N .

Proof. Take 0 < α < min{1, 2/N} and set p = 2 and q = 2
1−α , so that p, q satisfy

the assumptions of Theorem 4. Consider φ(un) =
(
1− (1 + |un|)−α

)
sign unχ(0,τ),

with 0 < τ ≤ T , as test function in the approximating problems. Then we reach
the inequality

(19)
∫

Ω

Φ(un(τ)) dx−
∫

Ω

Φ(u0,n) dx + Λ2

∫∫

Qτ

|∇un|2
(1 + |un|)α+1

≤
∫∫

Qτ

b(x, t, un)φ(un) + |µ|(Qτ ) ≤ Λ3

∫∫

Qτ

(
1 + |un|A(log∗ |un|)

)
+ |µ|(Qτ ) ,

where

Φ(s) =
∫ |s|

0

(1− (1 + σ)−α) dσ ≡ |s|+ 1
1− α

− 1
1− α

(1 + |s|)1−α,

hence, there exist positive constants c1, c2 such that

i) Φ(s) ≥ c1|s| − c2, ii) Φ(s) ≤ |s|.
Therefore

(20)
∫

Ω

|un(τ)|dx + c(α, Λ2)
∫∫

Qτ

|∇[(1 + |un|)
1−α

2 − 1]|2

≤ c
( ∫∫

Qτ

|un|A(log∗ |un|) +
∫

Ω

|u0,n| dx + 1
)

.

Calling v = (1 + |un|) 1−α
2 − 1 we find that |un| = (v + 1)q − 1 and, moreover, in

terms of v, (20) becomes
∫

Ω

vq(t)dx +
∫∫

Qt

|∇v|2 ≤ c
(
1 +

∫∫

Qt

vqA(log∗ v)
)
.

Next, using Theorem 4 with a suitable choice of ε > 0, we get

‖v(t)‖q
q +

∫∫

Qt

|∇v|2 ≤ c
(
1 +

∫ t

0

‖v(τ)‖q
qA(log∗ ‖v(τ)‖q) dτ

)
, t ∈ [0, T ] .

By condition (9), we can apply a nonlinear version of Gronwall’s lemma (see, for
instance, Lemma 3.11 in [20]) to obtain the desired estimate on v in

L∞(0, T ;Lq(Ω)) ∩ L2(0, T, W 1,2
0 (Ω)) ,

and consequently the right-hand side of (20) is bounded.
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Therefore, the sequences {un}n and
{
(1 + |un|) 1−α

2 − 1
}

n
are bounded in the

spaces L∞(0, T ; L1(Ω)) and L2(0; T ; W 1,2
0 (Ω)), respectively. Moreover, going back

to (19) we know that
∫∫

QT

|∇un|2
(1 + |un|)α+1

≤ C(α) , α > 0 ;

thus, by the Boccardo-Gallouët estimates (see [9]), the sequence {un}n is bounded
in Lr(0, T ; W 1,r(Ω)) for 1 ≤ r < N+2

N+1 . Finally, by applying the Gagliardo-Nirenberg
interpolation Theorem (see, for instance, [17]), we obtain that the sequence {un}n

is also bounded in Lσ(QT ) for 1 ≤ σ < N+2
N . ¤

Proof of Theorem 1. Let {un}n be a sequence of solutions to the approx-
imating problems (18). For each T > 0, taking Proposition 1 into account, the
sequence {(un)t}n is bounded in L1(QT ) + Lr′(0, T, W−1,r′(Ω)), 1 ≤ r < N+2

N+1 , so
that the Aubin result (see [4] or [28]) implies that, up to subsequences, there exists
a measurable function uT such that un → uT a.e. in QT and strongly in L1(QT ).
Actually, since the sequence {un}n is bounded in Lσ(QT ) for all 1 ≤ σ < N+2

N , it
follows that we may assume un → uT strongly in Lσ(QT ) for all such σ. Thus, a
diagonal argument allows us to find a limit u that does not depend on T , that is:

(21)
un → u a.e. in Q and in

Lσ
loc(Q) for all 1 ≤ σ <

N + 2
N

.

Moreover, Fatou’s Lemma yields
(
(1 + |u|)β − 1

) ∈ L2
loc([0, +∞); W 1,2

0 (Ω)), for
every 0 < β < 1

2 , and u ∈ L∞loc([0, +∞); L1(Ω)) ∩ Lr
loc([0, +∞); W 1,r

0 (Ω)) ∩ Lσ
loc(Q)

for all 1 ≤ r < N+2
N+1 and for all 1 ≤ σ < N+2

N .
Furthermore, the right-hand side of the equation converges in L1

loc(Q). Indeed,
on the one hand

b(x, t, un) → b(x, t, u) a.e. in Q ,

because of (21) and the Carathéodory condition. On the other hand,

|b(x, t, un)| ≤ Λ3(1 + |un|A(log∗ |un|)) ≤ Λ3(1 + |un|σ) , 1 < σ <
N + 2

N
,

since A grows less than a power.
Since the operator is nonlinear, to pass to the limit in the weak formulation of

(18), one has to prove that the gradients ∇un converge to ∇u almost everywhere in
Q. To prove this, one can use the techniques introduced in [10], [8], [7] and, more
recently, [24] and [23] in our general setting. This shows that u solves (4) in the
sense of distributions. ¤

Proof of Theorem 2. The proof is very similar to the one of the previous
theorem. One has to use un as a test function in the approximate problems (18), use
again the logarithmic Sobolev inequality (15) and Gagliardo-Nirenberg inequality
to get rid of the term with fn. ¤

Proof of Theorem 3. Assume that u and v are two weak solutions of problem
(13). Then, if we set

w = u− v ,
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then w satisfies the equation
{

wt −∆w = b(x, t, u)− b(x, t, v) in D′(Q)

w(x, 0) = 0, x ∈ Ω.

We would like to multiply this equation by |w|α−1w, for some α such that 0 < α <
2
N , but we cannot do it directly because this function is not regular when w = 0
and moreover is not bounded. Therefore we multiply by Tk

(
(ε+ |w|)α−εα

)
sign w,

and we integrate on Qτ , obtaining

(22)
∫

Ω

Sk,ε(w(x, τ)) dx + α

∫∫

Qτ

|∇w|2 (ε + |w|)α−1

≤
∫∫

Qτ

|b(x, t, u)− b(x, t, v)| Tk

(
(ε + |w|)α − εα

)
,

where

Sk,ε(s) =
∫ |s|

0

Tk

(
(ε + σ)α − εα

)
dσ .

Since we know that u and v belong to Lσ(Qτ ) for every σ < N+2
N and that |b(x, t, s)|

grows less than any power |s|1+ν at infinity, we obtain that |b(x, t, u)−b(x, t, v)| also
belongs to Lσ(Qτ ) for every σ < N+2

N . Therefore we can first let k go to infinity,
and then ε go to zero in the right-hand side of (22). As far as the left-hand side is
concerned, the passages to the limit are justified by monotone convergence. In the
end we obtain∫

Ω

|w(x, τ)|α+1 dx +
∫∫

Qτ

|∇w|2 |w|α−1

≤ c

∫∫

Qτ

|b(x, t, u)− b(x, t, v)| |w|α ≤ c

∫∫

Qτ

(
1 + |u|δ + |v|δ) |w|α+1 .

Therefore, if we set

η(x, t) = |w(x, t)|(α+1)/2 , f(x, t) = 1 + |u(x, t)|δ + |v(x, t)|δ ,

then we obtain that f ∈ Lq(QT ) for every T > 0 and for some q ≥ N+2
2 . Moreover,

using Hölder’s inequality,

‖η‖2
L∞(0,T ;L2(Ω))

+ ‖η‖2
L2(0,T ;W 1,2

0 (Ω))

≤ c

∫∫

QT

|f | η2 ≤ c‖f‖
L(N+2)/2(QT )

‖η‖2
L2(N+2)/N (QT )

.

By the Gagliardo-Nirenberg inequality (see for instance [17]), one also has

‖η‖2
L2(N+2)/N (QT )

≤ c(N)
(
‖η‖2

L∞(0,T ;L2(Ω))
+ ‖η‖2

L2(0,T ;W 1,2
0 (Ω))

)
,

therefore, if we take T small enough, we can assume that ‖f‖
L(N+2)/2(QT )

is small,
and therefore the last two formulas imply that η ≡ 0 in QT . Since f is a fixed
function in L(N+2)/2(QT ) for every T > 0, we can divide the time interval ]0, T [ in
a finite number of intervals such that the previous argument can be carried out in
each of them. This shows that u ≡ v. ¤
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[22] M.A. Krasnosel’skii and Ya.B. Rutickii: Convex functions and Orliz spaces. Noordhoff
Ltd., Groningen (1961).

[23] F. Petitta: Nonlinear parabolic equations with general measure data. Ph. D. Thesis, Rome
(2006).

[24] F. Petitta: Renormalized solutions of nonlinear parabolic equations with general measure
data. To appear.

[25] A. Prignet: Existence and uniqueness of “entropy” solutions of parabolic problems with
L1 data. Nonlinear Anal. 28 (1997), 1943–1954.

[26] J. Serrin: Pathological solutions of elliptic differential equations. Ann. Scuola Norm. Sup.
Pisa Cl. Sci. 18 (1964), 385–387.

[27] G. Stampacchia: Le problème de Dirichlet pour les équations elliptiques du seconde ordre
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