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Abstract.

We study existence and regularity of solutions for nonlinear parabolic problems whose model is
ut − div(|∇u|p−2∇u) = β(u)|∇u|p + f in Ω×]0,∞[

u(x, t) = 0, on ∂Ω×]0,∞[

u(x, 0) = u0, in Ω

(1)

where p > 1 and Ω ⊂ RN is a bounded open set; as far as the function β is concerned, we make no
assumption on its sign; instead, we consider three possibilities of growth for β, which essentially are:
(1) constant, (2) polynomial and (3) exponential. In each case, we assume appropriate hypotheses
on the data f and u0, depending on the growth of β, and prove that a solution u exists such that
an exponential function of u belongs to the natural Sobolev “energy” space. Since the solutions
may well be unbounded, one cannot use sub/supersolution methods. However we show that, under
slightly stronger assumptions on the data, the solution we find is bounded. Our existence results,
in the cases (2) and (3) above, rely on new logarithmic Sobolev inequalities.

1 Introduction.

In this article we study different classes of nonlinear parabolic problems with lower order terms
depending on the gradient of the solution with natural growth. All classes are modeled by problem
(1) above, where Ω is a bounded open set in RN and p > 1. We will focus on three different
classes, depending on the growth of the real function β(s), which will be supposed to be continuous.
Basically, the growths on β(s) studied in this article are: (1) constant (or, more generally, bounded),
(2) polynomial, and (3) exponential. Different assumptions on f and u0 will be needed in order
to get solutions in these three situations. More general growths, for instance β(s) ∼ exp(exp(s)),
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could be studied with similar methods, but for simplicity we confine ourselves to the three cases
above. These higher growths have been studied in [13], when p = 2.

We point out, however, that β(s) could be “well signed” (which means that β(s) has the
opposite sign as s), and in this case its growth has no influence as far as existence is concerned (see
[24], [14]). To be more precise, the difference among the three cases is a consequence of the growth
of the part of the function β(s) whose sign is “bad”. If we denote β1 = −(β−)χ[0,+∞[ +(β+)χ]−∞,0]

and β2 = (β+)χ[0,+∞[ − (β−)χ]−∞,0], and decompose the function as

β(s) = β1(s) + β2(s) ,

then these two terms do not play the same role: β1(s) is the part of β(s) where its sign is “good”,
while β2(s) has a “bad” sign. So that, on the one hand, we will not impose any limitation on the
growth of β1(s), but, on the other hand, we have to impose certain limitations to that of β2(s)
in order to obtain a solution of the problem. Let us illustrate this point with an example: if
β(s) = −s3 + s2, then β2 = βχ[0,1] and we are in the situation of β2 bounded; when the function
is the opposite, that is β(s) = s3 − s2, we have to consider to be in the polynomial case.

We point out that the growth of the function β2 induces some summability assumptions on f
and u0 to obtain a weak solution. In other words, given β2, data must belong to suitable Orlicz
spaces related to β2 in order to prove an existence result. It seems intuitive that the faster grows
β2, the smaller have to be the spaces to which data belong, and vice versa. This fact is what we
found (compare our assumptions in Theorems 2.1, 2.2 and 2.3).

The main novelty of the present paper (as the previous ones [12] and [13] that deal with the
particular case p = 2) with respect to some other related papers, as in [17] and [9], is that the
function β2, which describes the growth of the reaction term with respect to u, can be unbounded.
Moreover, we get distributional solutions under this unboundedness hypothesis, without assuming
existence of sub and super-solutions as in the previous known literature ([5], [25], [18]), so that
we may handle with more general data. The case of bounded β2 is considered here for the sake
of completeness: the existence and regularity results are comparable with those obtained in [17]
and [9]. However we give here a detailed definition of weak solution, which allows to study further
regularity properties (for instance, boundedness) when one makes stronger assumptions on the
data. We also give a precise sense to the initial datum.

In order to explain the existence and regularity results, and the assumptions on the data, let
us consider problem (1) with p = 2 and f, u0 ≥ 0, for a general continuous function β : [0,+∞[→
[0,+∞[ satisfying lims→+∞ β(s) ∈]0,+∞]. If one performs the Cole-Hopf change of variable

v = Ψ(u) =

u∫
0

exp
( s∫

0

β(σ) dσ
)
ds, (2)

one obtains the semilinear problem
vt −∆v = f(x, t)g(v), in Ω×]0, T [;

v(x, t) = 0, on ∂Ω×]0, T [;

v(x, 0) = v0(x) := Ψ(u0), in Ω ,

(3)

where g(v) = exp
( u∫

0

β(s) ds
)

= Ψ′(Ψ−1(v)) has a linear or slightly superlinear growth in the

sense that

lim
s→+∞

g(s)

s
= lim
s→+∞

β(s) ∈]0,+∞]

and
+∞∫

1

g(s)
ds = +∞, (4)

as can easily be checked by a change of variable. For instance, if we start from equation

ut −∆u = (eu + 1)|∇u|2 + f
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and apply the change of variable v = exp
(

exp(s)− 1
)
− 1, then we obtain the equation

vt −∆v = f(v + 1)
(

log(v + 1) + 1
)
.

Let us point out that also for p 6= 2, in the model case (1), one can perform (as in the
case p = 2) a simple change of unknown which makes the gradient term disappear, leading to a
semilinear problem. However, in this process, the parabolic operator changes. For instance, if we
start from the equation

ut −∆pu = (eu/(p−1) + 1) |∇u|p + f(x, t) ,

where ∆pu = div(|∇u|p−2∇u), and we set

v = (p− 1)
(
ee
u/(p−1)−1 − 1

)
,

then we obtain the following equation for v:

(ϕ(v))p−2 vt −∆pv = f(x, t) (ϕ(v))p−1 , (5)

where
ϕ(v) =

(
1 +

v

p− 1

)(
1 + log

(
1 +

v

p− 1

))
.

The presence of the logarithm in the definition of ϕ(v) causes some extra difficulties that do not
occur when p = 2. For instance, to obtain a priori estimates in (5) a standard logarithmic Sobolev
inequality like∫

Ω

|w|p log |w|p ≤ ε
∫
Ω

|∇w|p +
(∫

Ω

|w|p
)

log
(∫

Ω

|w|p
)

+ C(ε)
(∫

Ω

|w|p
)

is not enough and new inequalities are required (see Proposition 5.1 and Proposition 6.1 below).
When the operator has a more general structure, an explicit change of variable is not possible.

Nevertheless, the use of convenient exponential test functions allows us to absorb the gradient term
by the principal part, obtaining the same estimates one would get with the change of unknown in
the model case. More precisely, let us suppose for simplicity f ≥ 0, β1 ≡ 0 and β = β2 and let us
consider the following functions

γ(s) =

s∫
0

β(σ)dσ , Ψ(s) =

s∫
0

e
γ(σ)
p−1 dσ .

Working on a convenient sequence of approximating problems Pn with solutions un and using
the exponential test function Ψ(un)eγ(un) in each of them, we are able to cancel the gradient
term with one of the integral terms given by the diffusion operator, but we are obliged to handle
the term

∫∫
QT

fΨ(un)eγ(un). Hence, we have to investigate the growth of eγ(un) with respect to

Ψ(un). We can see that the case β(s) bounded gives eγ(s) ∼ (Ψ(s))p−1 when s goes to +∞, while

β(s) = sλ ( λ > 0 ) gives eγ(s) ∼
[
Ψ(s)(log Ψ(s))α

]p−1
(0 < α < 1); finally, β(s) = es gives

eγ(s) ∼
[
Ψ(s) log Ψ(s)

]p−1
. Moreover, we have to do similar estimates as far as the integral term

stemming from the time derivative is concerned. Due to the previous behaviour of eγ(s) at +∞,
the case of unbounded growth for β requires the use of logarithmic Sobolev inequalities (similar
to those in [19], [2] and [8]) in order to apply a suitable nonlinear version of Gronwall’s lemma for
differential inequalities. Here we prove two logarithmic Sobolev inequalities (see Sections 5 and 6
below), that lead quite naturally to the different hypotheses on the data f(x, t) and u0(x).

Let us point out that the case p 6= 2 induces also some technical difficulties in the proof of
boundedness of solutions under the classical additional hypotheses f ∈ Lr(0, T ;Lq(Ω)), q > N

p r
′,

and u0 bounded (see Section 9). Indeed, in the case p = 2, we can quite easily achieve known
estimates involving the measure of the level set of the solutions and then apply the method of [21]
(see [13] for the details).
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In the case p 6= 2, this is not straightforward and the cases 1 < p < 2 and p > 2 have to be
treated separately (see Section 9 below).

The plan of the paper is the following.
In Section 2 we will give the precise assumptions and state the main results.
In Section 3 we will define the approximate problems, state the a priori estimates that we want

to obtain, and recall some tools to prove them.
In the following Sections we will prove the a priori estimates under the assumption that β2(s)

is bounded (Section 4), or grows like a power (Section 5), or has an exponential growth (Section
6), respectively. In each Section, suitable hypotheses on the data f(x, t) and u0(x) will be made.

In Section 7 we will prove strong convergence of {un} and their gradients {∇un}.
Section 8 is devoted to conclude the proof of the main existence results.
Section 9 will be devoted to L∞ estimates under stronger assumptions on the data.

2 Assumptions and statement of the main results.

Let Ω be a bounded, open set in RN . We will denote by Q the cylinder Ω×]0,∞[, while, for
t > 0, we will denote by Qt the cylinder Ω×]0, t[. Sometimes we will also use the notation Qτ,t to
designate the cylinder Ω×]τ, t[.

The symbols Lq(Ω), Lr(0, T ;Lq(Ω)), and so forth, will denote the usual Lebesgue spaces, see
for instance [16]. We will denote by W 1,q

0 (Ω) the usual Sobolev space of measurable functions
having weak derivative in Lq(Ω) and zero trace on ∂Ω. If T > 0, the spaces Lr(0, T ;Lq(Ω)) and
Lr(0, T ;W 1,q

0 (Ω)) have obvious meanings, see again [16].

Moreover, we will denote by W−1,q′(Ω) the dual space of W 1,q
0 (Ω). Here q′ is Hölder’s conjugate

exponent of q > 1, i.e., 1
q + 1

q′ = 1. Finally, if 1 ≤ q < N , we will denote by q∗ = Nq/(N − q) its
Sobolev conjugate exponent.

For the sake of brevity, instead of writing “u(x, t) ∈ Lr(0, τ ;W 1,q
0 (Ω)) for every τ > 0”, we shall

write u(x, t) ∈ Lrloc([0,∞);W 1,q
0 (Ω)). Similarly, we shall write u ∈ Lqloc(Q) instead of u ∈ Lq(Qτ )

for every τ > 0.

The general problem we are going to study is

(P )


ut − div(a(x, t, u,∇u)) = b(x, t, u,∇u) + f, in Q

u(x, 0) = 0 on ∂Ω×]0,∞[

u(x, 0) = u0 in Ω

when the following assumptions are made.

• The function a : Ω×]0,∞[×R× RN → RN is a Carathéodory vector-valued function such that:

A1) There exists a positive constant Λ1 such that

Λ1|ξ|p ≤ a(x, t, s, ξ) · ξ

for almost every (x, t) ∈ Q, for all (s, ξ) ∈ R× RN .

A2) For all ξ, η ∈ RN , ξ 6= η, for all s ∈ R and almost all (x, t) we have

[a(x, t, s, ξ)− a(x, t, s, η)] · (ξ − η) > 0 .

A3) There exists Λ2 > 0 such that, for all s ∈ R and ξ ∈ RN , and almost all (x, t) ∈ Q one has

|a(x, t, s, ξ)| ≤ Λ2 |ξ|p−1 ,

• The function b : Ω×]0,∞[×R× RN → R is a Carathéodory function for which
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B) There exist continuous non negative functions β1, β2 : R→ R such that

−β1(s)|ξ|p ≤ b(x, t, s, ξ) sign s ≤ β2(s)|ξ|p

for all (x, t, s, ξ) ∈ Q× R× RN . Note that this implies

|b(x, t, s, ξ)| ≤ max{β1(s) , β2(s)} |ξ|p .

No other assumptions will be made on β1(s), while special emphasis will be placed on the
assumptions on β2(s). Three cases will be studied in detail, as they will require different assump-
tions on the data f(x, t) and u0(x), and will provide different regularity for the solution u(x, t) of
problem (P). More precisely we will focus on the following three important cases:

C1) β2(s) ≡M > 0 ;

C2) β2(s) = M(|s|λ + 1) , λ > 0;

C3) β2(s) = M eδ|s| .

We define the following auxiliary functions:

γ(s) =
1

Λ1

∣∣∣∣
s∫

0

β2(σ)dσ

∣∣∣∣ , Ψ(s) =

s∫
0

e
γ(σ)
p−1 dσ , Φ(s) =

s∫
0

Ψ(σ)eγ(σ)dσ . (6)

As far as the data are concerned, we require the following assumption on the initial datum u0:

D)

∫
Ω

Φ(u0) dx <∞ ,

With respect to the source datum f(x, t), the assumptions will be stated in each case separately,
depending on the assumptions on β2.

Next, we will explain which sense we give to a weak solution of our problems (P).

Definition 2.1 By a weak solution to problem (P) we mean a measurable function u : Q → R
satisfying the following conditions:

(1) Ψ(u) ∈ Lploc([0,∞[ ; W 1,p
0 (Ω)).

(2) Φ(u) ∈ C([0,∞[ ; L1(Ω)).
(3) b(x, t, u,∇u) , b(x, t, u,∇u) eγ(u) Ψ(u) and f eγ(u) Ψ(u) belong to L1

loc(Q).

(4) For every τ > 0 and every v ∈ Lp(0, τ ; W 1,p
0 (Ω)) ∩ L∞(Qτ ) such that its distributional

derivative with respect to time vt belongs to Lp
′
(0, τ ; W−1,p′(Ω)), the following equality holds:

∫
Ω

u(τ) v(τ) dx−
∫
Ω

u0 v(0) dx−
τ∫

0

〈vt(t), u(t)〉 dt+

∫∫
Qτ

a(x, t, u,∇u) · ∇v dx dt

=

∫∫
Qτ

b(x, t, u,∇u) v dx dt+

∫∫
Qτ

f v dx dt . (7)

(5) For every τ > 0 and every locally Lipschitz continuous function h : R → R such that
h(0) = 0, |h′(s)| ≤M1 Ψ′(s)p and |h(s)| ≤M1(1 + eγ(s)|Ψ(s)|) the following equality holds:∫

Ω

H(u(τ)) dx−
∫
Ω

H(u0) dx+

∫∫
Qτ

h′(u) a(x, t, u,∇u) · ∇u dx dt

=

∫∫
Qτ

b(x, t, u,∇u)h(u) dx dt+

∫∫
Qτ

f h(u) dx dt , (8)

where H(s) =
∫ s

0
h(σ) dσ.
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Remark 2.1 We point out that every term in (7) and (8) is well defined; this is a consequence of
the following observations.

a) By condition (1), and since |u| ≤ |Ψ(u)| and |∇u| ≤ |∇Ψ(u)|, we have

u ∈ Lploc([0,∞[ ; W 1,p
0 (Ω)) .

b) Condition (2) implies, on the one hand, that

u ∈ C([0,∞[ ; Lρ(Ω)) , for all 1 ≤ ρ <∞ ,

since the function Φ is, at least, of exponential type. On the other hand, it follows from the
connections between Φ and Ψ (see Lemmata 4.1, 5.1, 6.1) that

Ψ(u) ∈ C([0,∞[ ; Lq(Ω)) , for all 1 ≤ q < p .

The value q = p can always be attained when p ≥ 2, and for any p under hypothesis C1).

c) It is well known (see, for instance, [23]) that if v ∈ Lploc([0,∞[ ; W 1,p
0 (Ω)) ∩ L∞loc(Q) is such

that vt ∈ Lp
′

loc([0,∞[ ; W−1,p′(Ω)), then v ∈ C([0,∞[ ; Lρ(Ω)) for every 1 ≤ ρ <∞. Moreover,

v(t) ∈ L∞(Ω) for all t ≥ 0 , (9)

since one can take a sequence tn → t such that ‖v(tn)‖
∞
≤ c and v(tn)→ v(t) a.e. in Ω.

d) It follows from |h(s)| ≤M1(1 + eγ(s)|Ψ(s)|) that

|H(s)| ≤
|s|∫
0

|h(σ)| dσ ≤M1(|s|+ Φ(s)) ≤ c (Φ(s) + 1) .

Therefore, assumption (2) in Definition 2.1 implies H(u) ∈ C([0,∞[;L1(Ω)), therefore H(u(τ)) in
(8) has a meaning.

Remark 2.2 It is clear that a weak solution of problem (P) is also a solution in the sense of
distributions.

Remark 2.3 In the recent paper [1], the following equation is studied

ut −∆u = β(u)|∇u|2 + f(x, t) ,

with Cauchy-Dirichlet boundary conditions. The authors prove that there exist infinitely many
distributional solutions u ∈ L2

loc([0,∞[;W 1,2
0 (Ω)) to this problem, which are related (via a change

of variable) to semilinear problems with measure data. However, only one of these solutions is a
weak solution in the sense of Definition 2.1. Therefore, in this special case, the definition of weak
solutions ensures uniqueness.

The main results of the paper are the following

Theorem 2.1 Assume that A1), A2), A3), B) and D) hold true, with

C1) β2(s) ≡M > 0 .

If f(x, t) satisfies

f ∈ Lrloc([0,∞[ ; Lq(Ω)) , with q ≥ N

p
r′ and 1 < r <∞ , (10)

then there exists a weak solution u for problem (P) such that

Ψ(u) ∈ C([0,∞[ ; Lp(Ω)) . (11)
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Remark 2.4 One can check, by adapting the proof, that the result of the previous Theorem also
holds true in the case where the datum f satisfies a limit case in (10), i.e. f ∈ L∞loc([0,∞[;LN/p(Ω)),

provided the following condition is verified: for every T, ε > 0 there exist two functions f
(T,ε)
1 (x, t)

and f
(T,ε)
2 (x, t) such that f = f

(T,ε)
1 + f

(T,ε)
2 , f

(T,ε)
1 ∈ L∞(QT ) and ‖f (T,ε)

2 ‖L∞(0,T ;LN/p(Ω)) ≤ ε.

This is true, for instance, if f(x, t) = f(x) ∈ LN/p(Ω) or if f ∈ C([0,∞[;LN/p(Ω)).

Theorem 2.2 Assume that 1 < p < N and that A1), A2), A3), B) and D) hold true, with

C2) β2(s) = M(|s|λ + 1) , λ,M > 0 .

If f(x, t) satisfies

T∫
0

‖f(t)‖r
q

(
log∗ ‖f(t)‖

q

) λ
λ+1 [r(p−1)−(p−2)]

dt <∞ ,

with q ≥ N

p
max

{
r′ , 1 + (p− 1)λ

}
and 1 < r <∞ , (12)

for every T > 0, then there exists a weak solution u for problem (P) such that

Ψ(u) ∈ C([0,∞[ ; Lp(Ω)) , if p ≥ 2 , (13)

Ψ(u) ∈ C([0,∞[ ; Lσ(Ω)) , for every σ < p, if 1 < p < 2 . (14)

Theorem 2.3 Assume that A1), A2), A3), B) and D) hold true, with

C3) β2(s) = M eδ|s| , M, δ > 0 .

If f(x, t) satisfies

T∫
0

‖f(t)‖
ϕ

(
log∗ ‖f(t)‖

ϕ

) (
log∗

(
log∗ ‖f(t)‖

ϕ

))
dt <∞ , (15)

for every T > 0, where ‖.‖
ϕ

denotes the Orlicz norm (see Section 6 below for the definition)

corresponding to an N-function ϕ(s) ∼ exp(exp(s)) for s→∞ , then there exists a weak solution
u for problem (P) such that

Ψ(u) ∈ C([0,∞[ ; Lp(Ω)) , if p ≥ 2 , (16)

Ψ(u) ∈ C([0,∞[ ; Lσ(Ω)) , for every σ < p, if 1 < p < 2 . (17)

We explicitly observe that the functions Φ and Ψ which appear in the statements above depend
on β2, therefore they change from theorem to theorem.

If we assume a slightly stronger hypothesis on the data i.e.

D′) u0 ∈ L∞(Ω) ,

F) f ∈ Lr(0, T ;Lq(Ω)) ,
1

r
+
N

pq
< 1 ,

then we will show that every weak solution of problem (P) is bounded. We point out that F) is
the same assumption used in [3] to prove the boundedness of solutions. We will state and prove
the statement in the most general setting, that is, under the assumption C3) on the first order
term.

Theorem 2.4 If A1), A2), A3), B), C3), D′) and F) hold true. Then every weak solution of
problem (P) (in the sense of Definition 2.1) is essentially bounded in QT , for every T > 0.
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For k > 0, we will denote by Tk the usual truncation at level ±k, and by Gk its complement,
i.e.

Tks = max{−k,min{k, s}} , Gks = s− Tks . (18)

Finally, we will sometimes write a(u,∇u) and b(u,∇u) instead of a(x, t, u(x, t),∇u(x, t)) and
b(x, t, u(x, t),∇u(x, t)), respectively. Similarly, we will sometimes omit writing dx and dt in the
integrals, when no confusion may arise.

3 Approximate problems

For n ∈ N, let us consider the problem
(un)t − diva(x, t, un,∇un) = Tnb(x, t, un,∇un) + Tnf in Q

un(x, t) = 0 on ∂Ω×]0,∞[

un(x, 0) = u0,n in Ω

(19)

where u0,n belongs to L∞(Ω) ∩W 1,p
0 (Ω) and satisfies

Φ(u0,n)→ Φ(u0) strongly in L1(Ω), lim
n→∞

1

n
‖u0,n‖

W 1,p
0 (Ω)

= 0 . (20)

This last requirement will be used in the proof of the convergence of the gradients (see Section 7).
Problem (19) admits at least one solution un ∈ L∞loc(Q) ∩ Lploc([0,∞[ ; W 1,p

0 (Ω)) (see [23]).
We will fix an arbitrary time T > 0, and we will look for a priori estimates in QT = Ω×]0, T [.

We will prove, in each of the cases C1), C2) and C3), that, under the assumptions of Theorems
2.1, 2.2 and 2.3, respectively, the following estimates hold.

For every T > 0, there exists a positive constant C(T ) such that∫
Ω

Φ(un(x, τ)) dx ≤ C(T ) for every τ ∈ [0, T ] (21)

∫∫
QT

|∇Ψ(un)|p dx dt ≤ C(T ) , (22)

∫∫
QT

(
|f(x, t)|+ |Tnb(x, t, un,∇un)|

)
eγ(un) |Ψ(un)| dx dt ≤ C(T ) (23)

∫∫
QT

∣∣Tnb(x, t, un,∇un)
∣∣ dx dt ≤ C(T ) (24)

for all n ∈ N. Moreover,

lim
k→+∞

∫∫
QT∩{|un|>k}

|Tnb(x, t, un,∇un)| dx dt = 0 , uniformly in n ∈ N. (25)

The following result (which is a variant of a result contained in [6]) will be used throughout
the paper to obtain the main a priori estimates.

Proposition 3.1 Assume that un is a bounded weak solution of (19). If ψ is a locally Lipschitz-
continuous and increasing function such that ψ(0) = 0, then for a.e. t > 0 one has

d

dt

∫
Ω

φ(un(x, t)) dx+ Λ1

∫
Ω

eγ(un(x,t))ψ′(un(x, t))|∇un(x, t)|p dx

+

∫
{un b(un,∇un)<0}

|Tnb(x, t, un(x, t),∇un(x, t))| eγ(un(x,t)) |ψ(un(x, t))| dx

≤
∫
Ω

|f(x, t)| eγ(un(x,t))|ψ(un(x, t))| dx ,

8



where γ(s) is defined by (6), and φ(s) =
∫ s

0
eγ(σ)ψ(σ) dσ. Therefore

sup
τ∈[0,T ]

∫
Ω

φ(un(τ)) dx+ Λ1

∫∫
QT

eγ(un)ψ′(un)|∇un|p dx dt

+

∫∫
{un b(un,∇un)<0}

|Tnb(x, t, un,∇un)| eγ(un)|ψ(un)| dx dt

≤ 2

∫∫
QT

|f | eγ(un)|ψ(un)| dx dt+ 2

∫
Ω

φ(u0,n) dx .

Proof: We multiply the equation by eγ(un)ψ(un). We obtain:

d

dt

∫
Ω

φ(un) dx+

∫
Ω

|∇un|peγ(un)|ψ(un)|β2(un) dx+ Λ1

∫
Ω

|∇un|peγ(un)ψ′(un) dx

=

∫
Ω

Tnb(un,∇un) eγ(un)ψ(un) dx+

∫
Ω

Tnf e
γ(un) ψ(un) dx ,

and then we observe that, by assumption B),∫
Ω

Tnb(un,∇un) eγ(un)ψ(un) dx

≤
∫

{un b(un,∇un)≥0}

β2(un)|∇un|peγ(un)|ψ(un)| dx−
∫

{un b(un,∇un)<0}

|Tnb(un,∇un)| eγ(un)|ψ(un)| dx .

A simple numerical inequality that we will use in the proofs of the logarithmic Sobolev inequal-
ities is the following (see [11] for the proof).

Lemma 3.1 Let A : [0,∞[→ [0,∞[ be an increasing, continuous function satisfying the so-called
∆2–condition: there exist positive constants t0 and K such that

A(2t) ≤ KA(t) for every t ≥ t0.

Then there exists a positive constant c satisfying

xA(log∗ y) ≤ c
(
xA(log∗ x) + y

)
,

for all x, y > 0.

Let us finally recall the following interpolation results due to Gagliardo-Nirenberg (see [15]):

Lemma 3.2 Let v(x) be a function in W 1,p
0 (Ω), p ≥ 1. Then, for every σ satisfying

p ≤ σ ≤ p∗ , if p < N ;

p ≤ σ <∞ , if p = N ;

p ≤ σ ≤ ∞ , if p > N ;

(26)

one has
‖v‖

Lσ(Ω)
≤ C(N, p) ‖∇v‖α

Lp(Ω;RN )
‖v‖1−α

Lp(Ω)
,

where

α =
N (σ − p)

σ p
.

9



Lemma 3.3 Let v(x, t) be a function such that

v ∈ L∞(0, T ;Lp(Ω)) ∩ Lp(0, T ;W 1,p
0 (Ω)) ,

with p ≥ 1. Then v ∈ Lρ(0, T ;Lσ(Ω)), for all σ as in (26) and for all ρ ∈ [p,∞] satisfying

N

σ
+
p

ρ
=
N

p
, (27)

and the following estimate holds

T∫
0

‖v(t)‖ρ
Lσ(Ω)

dt ≤ C(N, p) ‖v‖ρ−p
L∞(0,T ;Lp(Ω))

T∫
0

‖∇v(t)‖p
Lp(Ω;RN )

dt . (28)

4 A priori estimates: the case of constant β2.

In this Section we will assume that the function β2 which appears in hypothesis B) is given by

C1) β2(s) ≡M .

In this case the following result holds.

Lemma 4.1 Assume that C1) holds, and that the functions γ, Ψ and Φ are defined by (6). Then
there exist positive constants M1, M2, M3 such that

M1 |Ψ(s)| ≤ exp
( γ(s)

p− 1

)
≤M2

(
1 + |Ψ(s)|

)
, (29)

Φ(s) ≥M1|Ψ(s)|p −M3 , (30)

β2(s)eγ(s)|Ψ(s)| ≤M2 Ψ′(s)p , (31)

for every s ∈ R.

Proof: It is a consequence of De l’Hôpital’s rule. Indeed, by applying it several times, we get

lim
s→+∞

e
γ(s)
p−1

1 + |Ψ(s)|
=

M

Λ1(p− 1)
, lim

s→+∞

Φ(s)

|Ψ(s)|p
=

1

p

( M

Λ1(p− 1)

)p−2

,

lim
s→+∞

β2(s)eγ(s)|Ψ(s)|
Ψ′(s)p

= Λ1(p− 1)

Proposition 4.1 Assume that the same hypotheses of Theorem 2.1 hold true and let {un} be a
sequence of solutions of problems (19). Then the estimates (21)–(25) hold true. Moreover, one has∫

Ω

|Ψ(un(x, τ))|p dx ≤ C(T ) for every τ ∈ [0, T ] and for every n ∈ N . (32)

Proof: Let us begin by observing that pq = Nr′ can be assumed in (10). Indeed, if pq > Nr′

occurs, the value r may be replaced by a smaller one satisfying the equality and then we may apply
the usual inclusions between Lebesgue’s spaces.

Applying Proposition 3.1, with ψ = Ψ, in the approximating problem, it yields

d

dt

∫
Ω

Φ(un) dx+ Λ1

∫
Ω

eγ(un)Ψ′(un)|∇un|p dx+

∫
{un bn(un,∇un)<0}

|Tnb(un,∇un)| eγ(un)|Ψ(un)| dx

≤
∫
Ω

|f |eγ(un)|Ψ(un)| dx. (33)
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Having in mind hypothesis C1) and the definition of Ψ(s), and dropping a nonnegative term, this
inequality becomes

d

dt

∫
Ω

Φ(un) dx+

∫
Ω

|∇Ψ(un)|p dx ≤ c
∫
Ω

|f | |Ψ(un)| (1 + |Ψ(un)|)p−1 dx

≤ c
∫
Ω

|f | dx+ c

∫
Ω

|f | |Ψ(un)|p dx ,

(34)

by Young’s inequality. The last term in (34) is estimated by the Hölder, Gagliardo-Nirenberg and
Young inequalities. Indeed,∫

Ω

|f | |Ψ(un)|p dx ≤ ‖f(·, t)‖q ‖Ψ(un(·, t))‖p
pq′

≤ c ‖f(·, t)‖q‖∇Ψ(un(·, t))‖N/qp ‖Ψ(un(·, t))‖(pq−N)/q
p

≤ ε‖∇Ψ(un(·, t))‖pp + c(ε) ‖f(·, t)‖rq ‖Ψ(un(·, t))‖pp . (35)

Taking now ε = 1/2 and going back to (34), we obtain

d

dt

∫
Ω

Φ(un) dx+
1

2
‖∇Ψ(un(·, t))‖pp ≤ c‖f(·, t)‖1 + c‖f(·, t)‖rq‖Ψ(un(·, t))‖pp

≤ c‖f(·, t)‖1 + c‖f(·, t)‖rq
(

1 +

∫
Ω

Φ(un) dx
)
,

(36)

by (30). Therefore, setting ξn(t) =
∫

Ω
Φ(un(x, t)) dx, we get an inequality of the form

ξ′n(t) ≤ c‖f(·, t)‖1 + c‖f(·, t)‖rq (1 + ξn(t)) ≤ Υ(t) [1 + ξn(t)] , (37)

where Υ(t) ∈ L1(0, T ). Therefore, it follows that

log(1 + ξn(t))− log(1 + ξn(0)) ≤ C(T ) ,

which implies an estimate on ξn(t). Going back to (36), this yields the desired estimate (21);
now (32) follows from (30), and integrating in (36) we obtain (22). Moreover, observe that the
right-hand side in (33) has been estimated by the one in (36), so that, integrating, it gives∫∫

QT

|f(x, t)| eγ(un) |Ψ(un)| ≤ C(T ) .

In order to complete the proof of (23), we need to check that there exists a positive constant C(T )
satisfying ∫∫

QT

|Tnb(x, t, un,∇un)| eγ(un) |Ψ(un)| dx dt ≤ C(T ) , (38)

for all n ∈ N. Denoting for brevity bn(un) = Tnb(x, t, un,∇un), (38) is a consequence of the
following computations:∫∫

QT

|bn(un)| eγ(un) |Ψ(un)| =
∫∫

{unbn(un)<0}

|bn(un)| eγ(un) |Ψ(un)|+
∫∫

{unbn(un)≥0}

|bn(un)| eγ(un) |Ψ(un)|

≤
∫∫
QT

|f | eγ(un) |Ψ(un)|+
∫∫
QT

β2(un) eγ(un) |Ψ(un)| |∇un|p

≤ c
[ ∫∫
QT

|f | |Ψ(un)|p dx+

∫∫
QT

Ψ′(un)p |∇un|p +

∫∫
QT

|f |
]
,
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where we have applied (33), B) and Lemma 4.1. Now, the last integral is bounded by (22), while
the integral

∫∫
QT
|f | |Ψ(un)|p can be estimated using the same calculations as in (35). Therefore,

(38) follows.
Finally, (24) and (25) are straightforward consequences of (23).

5 A priori estimates: the case of polinomial growth.

In this Section we will assume that 1 < p < N , and that the function β2 which appears in
hypothesis B) is given by

C2) β2(s) = M (|s|λ + 1) ,

and let us define

θ =
λ

λ+ 1
.

In this case the following result holds.

Lemma 5.1 Assume that C2) holds, and that the functions γ, Ψ and Φ are defined by (6). Then
there exist positive constants M1, M2, M3 such that

M1 |Ψ(s)| (log∗ |Ψ(s)|)θ ≤ exp
( γ(s)

p− 1

)
≤M2

(
1 + |Ψ(s)| (log∗ |Ψ(s)|)θ

)
, (39)

Φ(s) ≥M1|Ψ(s)|p (log∗ |Ψ(s)|)θ(p−2) −M3 , (40)

β2(s)eγ(s)|Ψ(s)| ≤M2Ψ′(s)p , (41)

for every s ∈ R.

Proof: It suffices to observe that, by a repeated use of De L’Hôpital’s rule, one has

lim
s→+∞

exp
(γ(s)
p−1

)
Ψ(s) (log∗Ψ(s))θ

=

(
M (λ+ 1)λ

Λ1(p− 1)

) 1
λ+1

;

lim
s→+∞

Φ(s)

(Ψ(s))p (log∗Ψ(s))θ (p−2)
=

1

p
lim

s→+∞

(
exp

(γ(s)
p−1

)
Ψ(s) (log∗Ψ(s))θ

)p−2

=
1

p

(
M (λ+ 1)λ

Λ1(p− 1)

) p−2
λ+1

,

lim
s→+∞

β2(s) eγ(s) Ψ(s)

Ψ′(s)p
= Λ1(p− 1) .

The next instrument we will need is a logarithmic Sobolev inequality which will be used in the
main a priori estimates.

Proposition 5.1 For each 0 < δ ≤ 1 and each α ∈ R, there exists a positive constant C (depending
on N , p, meas Ω, α, δ) such that, for every ε > 0 and every u ∈W 1,p

0 (Ω),∫
Ω

|u(x)|p(log∗ |u(x)|)α+δ dx ≤

≤ C
[
ε

∫
Ω

|∇u(x)|p dx+ (log∗ 1/ε)δ
(∫

Ω

|u(x)|p(log∗ |u(x)|)α dx
)

+

(∫
Ω

|u(x)|p(log∗ |u(x)|)α dx
)(

log∗
∫
Ω

|u(x)|p(log∗ |u(x)|)α dx
)δ

+ 1

]
,

where log∗ s = max{1, log s}.
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Proof: It is enough to prove the above inequality for 0 < ε ≤ 1/e. If 1 < p < N , then we consider
a convex and increasing function Γ : [0,+∞[→ [0,+∞[ satisfying

Γ(s) ∼ exp((p∗ − p)s1/δ)s−α/δ as s→ +∞ .

When p ≥ N , we may consider, instead of p∗, any value greater than p. We point out that

Γ
(
(log |s|)δ

)
∼ |s|p

∗−p(log |s|)−α , Γ−1(t) ∼
(

log |t|
p∗ − p

)δ
for s→∞. (42)

Note that we may always assume Γ(1) > 1. We begin by applying Jensen’s inequality with the
weight function |u|p(log |u|)α in the set {|u| > e} to obtain

1 < Γ(1) ≤ Γ



∫
{|u|>e}

|u|p(log |u|)α(log |u|)δ dx

∫
{|u|>e}

|u|p(log |u|)α dx

 ≤
∫

{|u|>e}

|u|p(log |u|)αΓ
(
(log |u|)δ

)
dx

∫
{|u|>e}

|u|p(log |u|)α dx
.

Denoting

J =

∫
{|u|>e}

|u|p(log |u|)α+δ dx and I =

∫
{|u|>e}

|u|p(log |u|)α dx ,

this inequality becomes

J ≤ I Γ−1

(
1

I

∫
{|u|>e}

|u|p(log |u|)αΓ
(
(log |u|)δ

)
dx

)
.

Note that the argument of Γ−1 is greater than Γ(1) > 1, therefore using (42) we can write

J ≤ C I
(

log

(
1

I

∫
{|u|>e}

|u|p (log |u|)α Γ
(
(log |u|)δ

)
dx

))δ

≤ CI
[

log

(
C

∫
{|u|>e}

|u|p
∗
dx

)
− log I

]δ

≤ C
[
I1/δ log

(
C

∫
Ω

|u|p
∗
dx

)
+ 1

]δ
,

since I1/δ log I is bounded from below. Hence,

J ≤ C
[
I1/δ log

(
Cε‖u‖pp∗

)
+ I1/δ log(1/ε) + 1

]δ
. (43)

On the other hand, we may apply Lemma 3.1, obtaining

I1/δ log
(
Cε‖u‖pp∗

)
≤ C

(
I1/δ log∗ I + ε1/δ‖u‖p/δp∗

)
. (44)

Thus, it follows from (43), (44) and Sobolev’s inequality that

J ≤ C
[
I1/δ log∗ I + ε1/δ‖∇u‖p/δp + I1/δ log∗(1/ε) + 1

]δ
≤ C

[
I (log∗ I)

δ
+ ε‖∇u‖pp + I (log∗(1/ε))

δ
+ 1
]
.

Therefore, on account of
∫

Ω
|u|p(log(1 + |u|))α+δ dx ≤ J + C, the above estimate on J implies the

desired result.
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Proposition 5.2 Assume that the assumptions of Theorem 2.2 hold, and that {un} is a sequence
of solutions of the approximate problems (19). Let the functions γ, Ψ, Φ be defined as in (6). Then
the estimates (21)–(25) hold true. Moreover, one has∫

Ω

|Ψ(un(x, τ))|p dx ≤ C(T ) for every τ ∈ [0, T ], if p ≥ 2; (45)

∫
Ω

|Ψ(un(x, τ))|σ dx ≤ C(σ, T ) for every σ < p, for every τ ∈ [0, T ], if 1 < p < 2, (46)

for all n ∈ N.

Proof: As in the proof of Proposition 4.1, applying Proposition 3.1, with ψ = Ψ, and using
inequality (39), one obtains

d

dt

∫
Ω

Φ(un) dx+ Λ1

∫
Ω

|∇Ψ(un)|p dx ≤
∫
Ω

|f | |Ψ(un)| eγ(un)

≤ c
∫
Ω

|f | |Ψ(un)|
(
1 + |Ψ(un)| (log∗ |Ψ(un)|)θ

)p−1
dx

≤ c
∫
Ω

|f | dx+ c

∫
Ω

|f | |Ψ(un)|p (log∗ |Ψ(un)|)θ(p−1) dx . (47)

From now on, in order to minimize notation we set

v = |Ψ(un)| .

Using the standard inclusions among Lebesgue spaces in sets of finite measure, we can assume that
the pair (p, q) satisfies

qp = Nr′ , r′ ≥ 1 + (p− 1)λ . (48)

Therefore, using the inequality
1

q
+

1

r
+

p

p∗r′
= 1 ,

Hölder’s and Sobolev’s inequalities and Proposition 5.1 with

α = θ (p− 2) =
λ(p− 2)

λ+ 1
, δ = θ r

[p− 2

r′
+ 1
]

= θ [r(p− 1)− (p− 2)] ≤ 1 ,

one has, for every positive η and ε,∫
Ω

|f | vp (log∗ v)θ(p−1) dx =

∫
Ω

|f | vp/r
′
vp/r (log∗ v)θ(p−1) dx

≤ ‖f(t)‖
q

(∫
Ω

vp
∗
dx

) p
p∗r′
(∫

Ω

vp (log∗ v)θr(p−1) dx

) 1
r

≤ η
(∫

Ω

vp
∗
dx

) p
p∗

+ c(η) ‖f(t)‖r
q

∫
Ω

vp (log∗ v)θr(p−1) dx

≤ c η
∫
Ω

|∇v|p dx+ c(η)C ‖f(t)‖r
q

[
ε

∫
Ω

|∇v|p dx+
(

log∗
1

ε

)δ ∫
Ω

vp (log∗ v)α dx

+
(∫

Ω

vp (log∗ v)α dx
)(

log∗
∫
Ω

vp (log∗ v)α dx
)δ

+ 1

]
.

We now choose

η =
Λ1

2c
, ε = ε(t) =

Λ1

2C c(η) ‖f(t)‖r
q

,
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so that the two terms containing
∫

Ω
|∇v|p dx can be absorbed by the corresponding term in the

l.h.s. of (47). Moreover inequality (40) can be written as

vp (log∗ v)α ≤ c (Φ(un) + 1) ,

therefore

d

dt

∫
Ω

Φ(un(t)) dx ≤ c
[
‖f(t)‖

1
+ ‖f(t)‖r

q
+ ‖f(t)‖r

q

(
log∗ ‖f(t)‖

q

)δ ∫
Ω

Φ(un(t)) dx

+ ‖f(t)‖r
q

∫
Ω

Φ(un(t)) dx

(
log∗

∫
Ω

Φ(un(t)) dx

)δ]
.

Setting

ξn(t) =

∫
Ω

Φ(un(t)) dx

and using assumption (12) on f , we have proved that

ξ′n(t) ≤ Υ(t)
(
1 +H(ξn(t))

)
, (49)

where Υ(t) is a positive, integrable function on ]0, T [, while H(s) is a positive function such that

+∞∫
0

ds

1 +H(s)
=∞ ,

since δ ≤ 1. Therefore, if we define

G(s) =

s∫
0

dσ

1 +H(σ)
,

it follows from (49) that
G(ξn(t))−G(ξn(0)) ≤ C(T ) ,

which implies an estimate on ξn(t), since, by the assumption on the initial data u0n, the initial value
ξn(0) is uniformly bounded. The estimate on ξn(t) immediately implies (21) and (22). Estimates
(45) and (46) follow at once from (21) and inequality (40). The proof of (23), (24) and (25) can
be done exactly as in the case of constant β2 in the previous Section.

6 A priori estimates: the case of exponential growth

In this Section we will assume that the function β2 which appears in hypothesis B) is given by

C3) β2(s) = M eδ|s| .

In this case the following result holds.

Lemma 6.1 Assume that C3) holds, and that the functions γ, Ψ and Φ are defined by (6). Then
there exist positive constants M1, M2, M3 such that

M1 |Ψ(s)| log∗ |Ψ(s)| ≤ exp
( γ(s)

p− 1

)
≤M2

(
1 + |Ψ(s)| log∗ |Ψ(s)|

)
, (50)

Φ(s) ≥M1 |Ψ(s)|p (log∗ |Ψ(s)|)p−2 −M3 , (51)

β2(s)eγ(s)|Ψ(s)| ≤M2 Ψ′(s)p , (52)

for every s ∈ R.
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Proof: As in the corresponding Lemma of the previous Section, it suffices to repeatedly use De
L’Hôpital’s rule to obtain

lim
s→+∞

exp
(γ(s)
p−1

)
Ψ(s) log∗Ψ(s)

= δ ;

lim
s→+∞

Φ(s)

(Ψ(s))p (log∗Ψ(s))p−2
=

1

p
lim

s→+∞

(
exp

(γ(s)
p−1

)
Ψ(s) log∗Ψ(s)

)p−2

=
δp−2

p
;

lim
s→+∞

β2(s) eγ(s) Ψ(s)

Ψ′(s)p
= Λ1(p− 1) .

Then, as before, in order to obtain a priori estimates, we will need a new logarithmic Sobolev
inequality, since Proposition 5.1 is not sufficient in this exponential case.

We point out that the inequality in Proposition 5.1 can be written for α = p− 2 and δ = 1 as∫
Ω

|v|p(log∗ |v|)p−2A(log∗ |v|) dx

≤ c

[
ε

∫
Ω

|∇v|p dx+A(log∗
1

ε
)

∫
Ω

|v|p(log∗ |v|)p−2 dx

+

(∫
Ω

|v|p(log∗ |v|)p−2 dx

)
A

(
log∗

(∫
Ω

|v|p(log∗ |v|)p−2 dx

))
+ 1

]
,

with A(s) = s.
To solve our problem under hypothesis C3), we need the above inequality for

A(s) = s log∗ s . (53)

Note that A satisfies

A(t+ s) ≤ c(A(t) +A(s)) for every s, t > 0, (54)

A(λs) ≤ k(λ)A(s) for every s, λ > 0. (55)

Actually, one could prove a family of logarithmic inequalities for a general A(s) satisfying (54)
and (55) (in the same spirit as in [2]). One could use such general inequalities to deal with more
general growths for the function β2(s), for instance β2(s) ∼ exp(exp s), as it is done, in the case
p = 2, in [13] (Section 5) and in [11].

Proposition 6.1 There exists a constant C = C(p,N,meas Ω) > 0 such that, for every ε > 0 and
every function v ∈W 1,p

0 (Ω), the following inequality holds:∫
Ω

|v|p(log∗ |v|)p−2A(log∗ |v|) dx

≤ C

[
ε

∫
Ω

|∇v|p dx+A(log∗
1

ε
)

∫
Ω

|v|p(log∗ |v|)p−2 dx

+

(∫
Ω

|v|p(log∗ |v|)p−2 dx

)
A

(
log∗

(∫
Ω

|v|p(log∗ |v|)p−2 dx

))
+ 1

]
.

(56)

Proof: It is enough to prove the inequality for ε ≤ 1
e . Moreover, to minimize notation, assume

that v ≥ 0. We can consider a convex, increasing function Γ(s) : [0,+∞)→ [0,+∞) such that

Γ(s) ∼ e(p∗−p) s
log s

(
log s

s

)p−2

for s→ +∞
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(if p ≥ N , replace p∗ with any number q > p). Then it is easy to check that

Γ(A(log s)) ≤ sp
∗−p

(log s)p−2
for large s .

Moreover one can always assume that Γ(1) ≥ e. Assume also that the set E = {x ∈ Ω : v(x) > e}
has positive measure, and define

I =

∫
E

vp(log v)p−2 dx , J =

∫
E

vp(log v)p−2A(log v) dx .

Then, by Jensen’s inequality, one obtains

e ≤ Γ(1) ≤ Γ

(
J

I

)
≤ 1

I

∫
E

vp(log v)p−2Γ(A(log v)) dx ≤ c

I

∫
Ω

vp
∗
dx . (57)

Therefore

J ≤ I Γ−1

(
c

I

∫
Ω

vp
∗
dx

)
.

One easily checks that

Γ−1(t) ∼ (log t) (log log t) = A(log t) for t→ +∞,

so that Γ−1(t) ≤ cA(log t) for all t ≥ e. Thus, using property (54) and Sobolev’s inequality, we get

J ≤ c I A
(

log
( c
I

∫
Ω

vp
∗
dx
))

≤ c I A
(p∗
p

log
(
c ε ‖∇v‖p

p

)
+ log

1

ε
− log I

)
≤ c I

[
A
((

log
(
c ε ‖∇v‖p

p

))+)
+A

(
log

1

ε

)
+A((− log I)+)

]
.

In order to estimate the product I A
((

log
(
c ε ‖∇v‖p

p

))+)
which appears in the last inequality,

one applies Lemma 3.1 yielding

I A
((

log
(
c ε ‖∇v‖p

p

))+)
≤ c

(
I A(log∗ I) + ε ‖∇v‖p

p

)
.

Thus we have obtained

J ≤ c
[
ε

∫
Ω

|∇v|p dx+ I A
(

log∗
1

ε

)
+ I A(log∗ I) + I A

(
(− log I)+

)]
.

Since
I A
(
(− log I)+

)
≤ c
(
I A(log∗ I) + 1

)
,

it follows that

J ≤ c
[
ε

∫
Ω

|∇v|p dx+ I A
(

log∗
1

ε

)
+ I A(log∗ I) + 1

]
.

Now we recall that ∫
Ω

vp(log v)p−2A(log v) dx ≤ J + ep meas Ω

and we obtain the desired inequality.
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We need to introduce some definitions concerning Orlicz spaces; we will refer to [20] for a more
detailed presentation. Let us recall that a function ϕ(s) : [0,+∞[→ [0,+∞[ is called an N-function
if it admits the representation

ϕ(s) =

s∫
0

p(t) dt

where p(t) is right continuous for t ≥ 0, positive for t > 0, nondecreasing and satisfying p(0) = 0
and p(∞) =∞. If ϕ is an N-function, we call Orlicz space associated to ϕ, denoted by Lϕ(Ω), the
class of those measurable real functions u, defined on Ω, for which the norm

‖u‖
Lϕ(Ω)

= inf

{
λ > 0 :

∫
Ω

ϕ
( |u|
λ

)
dx ≤ 1

}

is finite. It is clear that N-functions which are asymptotically equivalent near infinity generate the
same Orlicz spaces. The following inequality always holds true:

‖u‖
Lϕ(Ω)

≤ 1 +

∫
Ω

ϕ(|u(x)|) dx (58)

We will sometimes write ‖u‖
ϕ

instead of ‖u‖
Lϕ(Ω)

.

Let ϕ and ϕ̃ be two N -functions of class C1. We say that they are conjugate if ϕ′ = (ϕ̃′)−1.
For instance, the functions ϕ(s) = sp/p and ϕ̃(s) = sp

′
/p′, with p, p′ > 1 and 1/p + 1/p′ = 1, are

conjugate N -functions. Moreover, as in the case of Lebesgue’s spaces, if ϕ and ϕ̃ are two conjugate
N -functions, the following Hölder inequality holds:∫

Ω

uv dx ≤ 2‖u‖
Lϕ(Ω)

‖v‖
Lϕ̃(Ω)

, (59)

for all u ∈ Lϕ(Ω), v ∈ Lϕ̃(Ω). Evolution Orlicz spaces Lψ(0, T ;Lϕ̃(Ω)) can be defined in an obvious
way.

Proposition 6.2 Assume that the hypotheses of Theorem 2.3 hold, and that {un} is a sequence
of bounded solutions of the approximate problems (19). Let the functions γ, Ψ, Φ be defined as in
(6). Then the estimates (21)–(25) hold true. Moreover, one has∫

Ω

|Ψ(un(x, τ))|p dx ≤ C(T ) for every τ ∈ [0, T ], if p ≥ 2; (60)

∫
Ω

|Ψ(un(x, τ))|σ dx ≤ C(σ, T ) for every σ < p, for every τ ∈ [0, T ], if 1 < p < 2, (61)

for all n ∈ N.

Proof: As in the previous Section, we use Proposition 3.1 with ψ = Ψ; then by (50), one obtains
(again we set v = vn = |Ψ(un)| for brevity)

d

dt

∫
Ω

Φ(un) dx+ Λ1

∫
Ω

|∇v|p dx ≤
∫
Ω

|f | |Ψ(un)| eγ(un) ≤ c
∫
Ω

|f | v
(
1 + v log∗ v

)p−1
dx

≤ c
∫
Ω

|f | dx+ c

∫
Ω

|f | vp (log∗ v)p−1 dx , (62)

We use the generalized Hölder-Orlicz inequality with the pair of conjugate N-functions

φ(s) =

s∫
0

log
(
1 + log(1 + σ)

)
dσ φ̃(s) =

s∫
0

(
e(eσ−1) − 1

)
dσ .
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Note that, for s→ +∞,

φ(s) ∼ s log log s ,
φ̃(s)

ϕ(s)
→ 0 , (63)

where ϕ(s) ∼ exp(exp(s)) is the same function appearing in assumption (15). Then using (59),
(58) and Proposition 6.1, we obtain∫

Ω

|f | vp(log∗ v)p−1 dx ≤ 2 ‖f(t)‖
φ̃
‖vp(log∗ v)p−1‖

φ
≤ c ‖f(t)‖

ϕ

[
1 +

∫
Ω

φ
(
vp(log∗ v)p−1

)
dx

]

≤ c ‖f(t)‖
ϕ

[
1 +

∫
Ω

vp(log∗ v)p−1(log∗ log∗ v) dx

]

≤ c ‖f(t)‖
ϕ

[
ε

∫
Ω

|∇v|p dx+A(log∗
1

ε
)

∫
Ω

vp(log∗ v)p−2 dx

+

(∫
Ω

vp(log∗ v)p−2 dx

)
A

(
log∗

(∫
Ω

vp(log∗ v)p−2 dx

))
+ 1

]
. (64)

Then, if we choose

ε = ε(t) =
η

‖f(t)‖
ϕ

,

with η small enough, setting

ξn(t) =

∫
Ω

Φ(un(t)) dx ,

and recalling inequality (51), from (62) and (64) we obtain

ξ′n(t) ≤ c
[
‖f(t)‖

1
+ ‖f(t)‖

ϕ
+ ‖f(t)‖

ϕ
(log∗ ‖f(t)‖

ϕ
) (log∗ log∗ ‖f(t)‖

ϕ
)
(
1 + ξn(t)

)
+ ξn(t) (log∗ ξn(t)) (log∗ log∗ ξn(t)) + 1

]
.

Using assumption (15) and D) on the data f and u0, this implies an inequality of the form

ξ′n(t) ≤ Υ(t)
(
1 +H(ξn(t))

)
, ξn(0) ≤ C , (65)

where Υ(t) is an integrable function on ]0, T [, and

+∞∫
0

ds

1 +H(s)
<∞ .

This proves estimates (21), (22), (60) and (61). The proof of (23), (24) and (25) can be done
exactly as in the previous Sections.

7 Convergence of the gradients

In this section we will consider a sequence {un}n of solutions to problems (19) and we will see
that (up to a subsequence) this sequence converges almost everywhere to a function u and the
sequence {∇un}n of its gradients converges almost everywhere to ∇u. The three cases Ci’s) will
be consider together.

We already have proved in the previous Sections some estimates on the approximate solutions
un. For fixed T > 0, we know that Ψ(un) is bounded in Lp(0, T ;W 1,p

0 (Ω)), and moreover the
gradient term is bounded in L1(QT ). Therefore, using the equation (19), the time derivative
(un)t is bounded in Lp

′
(0, T ;W−1,p′(Ω)) +L1(QT ). Hence, we may apply the compactness results

contained in [27] and then use a diagonal argument to obtain the following result.
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Proposition 7.1 If {un}n is a sequence of solutions of the approximate problems (19), then there
exists a subsequence, still denoted by {un}n, and a function u ∈ L1

loc(Q) such that

un → u a.e. in Q and strongly in L1(QT ), for every T > 0.

The convergence of the gradients {∇un}n is more cumbersome and some preliminar notation
is required.

We fix T > 0. We begin by introducing a suitable regularization with respect to time (see [22],
[24], [26]). For every ν ∈ N, we define (Tku)ν as the solution of the Cauchy problem

1

ν
[(Tku)ν ]t + (Tku)ν = Tku;

(Tku)ν(0) = Tku0,ν ,

where Tku0,ν are the truncations of the same initial data u0,ν used for the approximate problems
(19). Then, by the assumptions (20) on u0,ν , one has (see [22]):

(Tku)ν ∈ Lp(0, T ;W 1,p
0 (Ω)) ((Tku)ν)t ∈ Lp(0, T ;W 1,p

0 (Ω)) ,

‖(Tku)ν‖L∞(QT ) ≤ ‖Tku‖L∞(QT ) ≤ k,
and as ν goes to infinity

(Tku)ν → Tku strongly in Lp(0, T ;W 1,p
0 (Ω)).

From now on, ω(ν) will denote a quantity which goes to zero as ν goes to infinity, ω(n, ν) will
denote a quantity which goes to zero as first n and then ν go to infinity, while ων(n) will denote
a quantity which goes to zero as n goes to infinity, for every fixed ν.

Proposition 7.2 Assume that A1), A2), A3), B), D) hold, and also that one of the hypotheses
C1), C2), or C3) is satisfied, together the corresponding assumption on f : (10), (12) or (15),
respectively. Let {un} be a sequence of solutions of the approximate problems (19) which converges
to u. Then, for every k > 0, one has

∇T kun → ∇T ku strongly in Lp(QT ;RN ). (66)

In particular, up to the extraction of a subsequence, ∇un converges to ∇u almost everywhere in Q.

Proof: The proof follows the lines introduced in [24], [14], [9] and [10].
We multiply problems (19) by eγ(un)−γ(Tkun) ϕ

(
(Tkun − (Tku)ν)+

)
, where

ϕ(s) = ϕµ(s) = eµs − 1 ,

and µ is a positive number that will be conveniently chosen hereafter. Note that, since |(Tku)ν | ≤ k,
this function is zero in the set where un < −k.

One obtains

A

T∫
0

〈(un)t , e
γ(un)−γ(Tkun) ϕ

(
(Tkun − (Tku)ν)+

)
〉 dt

B +
1

Λ1

∫∫
{un>k}

eγ(un)−γ(k) β2(un) a(un,∇un) · ∇un ϕ
(
(k − (Tku)ν)+

)
C +

∫∫
QT

eγ(un)−γ(Tkun) a(un,∇un) · ∇(Tkun − (Tku)ν)+ϕ′((Tkun − (Tku)ν)+)

=

∫∫
QT

eγ(un)−γ(Tkun) b(un,∇un)ϕ((Tkun − (Tku)ν)+) D

+

∫∫
QT

Tnf(x, t) eγ(un)−γ(Tkun) ϕ((Tkun − (Tku)ν)+) . E
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We start analyzing the integrals which appear in the previous equality:

Integral A : We wish to show that

A ≥ ω(n, ν) . (67)

To this end, for σ > 0, we define un,σ as the solution of
1
σ (un,σ)t + un,σ = un;

un,σ(0) = u0,n.

Then the functions un,σ satisfy the same properties shown above for (Tku)ν . Moreover

(un,σ)t → (un)t strongly in Lp
′
(0, T ;W−1,p′(Ω)), as σ →∞.

Let us define the function vσ = vν,n,σ = ϕ ((Tkun,σ − (Tku)ν)+) eγ(un,σ)−γ(Tkun,σ), so that

T∫
0

〈(un)t, e
γ(un)−γ(Tkun)ϕ

(
(Tkun − (Tku)ν)+

)
〉 = lim

σ→∞

∫∫
QT

(un,σ)tvσ

= lim
σ→∞

∫∫
QT

∂

∂t
(Tkun,σ +Gkun,σ) vσ

≥ lim inf
σ→∞

∫∫
QT

∂

∂t
Tkun,σ ϕ

(
(Tkun,σ − (Tku)ν)+

)
+ lim inf

σ→∞

∫∫
QT

∂

∂t
Gkun,σ vσ

≥ lim inf
σ→∞

∫∫
QT

∂

∂t
(Tkun,σ − (Tku)ν) ϕ

(
(Tkun,σ − (Tku)ν)+

)
+ lim inf

σ→∞

∫∫
QT

∂

∂t
(Tku)ν ϕ

(
(Tkun,σ − (Tku)ν)+

)
+ lim inf

σ→∞

∫∫
QT

∂

∂t
Gkun,σ vσ

= lim inf
σ→∞

I1
σ + lim inf

σ→∞
I2
σ + lim inf

σ→∞
I3
σ

(here we have used the fact that the term ∂
∂tTkun,σ is zero where |un,σ| > k. If we set φ(s) =∫ s

0
ϕ(σ) dσ, we obtain

I1
σ =

∫
Ω

φ((Tkun,σ(T )− (Tku)ν(T ))+)−
∫
Ω

φ((Tkun,σ(0)− (Tku)ν(0))+)

≥ −
∫
Ω

φ((Tku0,n − Tku0,ν)+) = ων(n) + ω(ν).

On the other hand

I2
σ = ν

∫∫
QT

(Tku− (Tku)ν) ϕ
(
(Tkun,σ − (Tku)ν)+

)

= ν

∫∫
QT

(Tku− (Tku)ν) ϕ
(
(Tkun − (Tku)ν)+

)
+ ων,n(σ)

= ν

∫∫
QT

(Tku− (Tku)ν) ϕ
(
(Tku− (Tku)ν)+

)
+ ων,n(σ) + ων(n)

≥ ων,n(σ) + ων(n),
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where ων,n(σ) denotes a quantity which tends to zero as σ →∞, for every fixed ν and n. If we set
Hk(s) :=

∫ s
0
eγ(τ+k sign (τ))−γ(k sign (τ))dτ , the term I3

σ can be estimated as follows

I3
σ =

∫∫
QT

∂

∂t
Hk(Gkun,σ) ϕ

(
(Tkun,σ − (Tku)ν)+

)

=

∫
Ω

Hk(Gkun,σ(T )) ϕ
(
(Tkun,σ(T )− (Tku)ν(T ))+

)
−
∫
Ω

Hk(Gkun,σ(0)) ϕ
(
(Tku0,n − Tku0,ν)+

)
−
∫∫
QT

Hk(Gkun,σ)
∂

∂t
ϕ
(
(Tkun,σ − (Tku)ν)+

)
= I3,1

σ + I3,2
σ + I3,3

σ .

We note that I3,1
σ ≥ 0. Indeed, one has |(Tku)ν | ≤ k, thus in the set where Gkun,σ(T ) is different

from zero, that is, the set where |un,σ(T )| > k, the function (Tkun,σ(T ) − (Tku)ν(T ))+ (which is
nonnegative) is different from zero only where un,σ(T ) > k, so that Hk(Gkun,σ(T )) = Hk(un,σ(T )−
k) ≥ 0. To analyze the remaining terms, we will need the following easy estimate

|Hk(Gks)| ≤ ηΦ(s) + c(η), (68)

for every η > 0, s ∈ R. Then one has

I3,2
σ = −

∫
Ω

Hk(Gku0) ϕ
(
(Tku0 − Tku0,ν)+

)
+ ων(n) = ων(n) + ω(ν).

Finally

I3,3
σ =

∫∫
QT

H+
k (Gkun,σ)

∂

∂t
(Tku)ν ϕ

′ ((Tkun,σ − (Tku)ν)+
)

= ν

∫∫
QT

H+
k (Gkun,σ) (Tku− (Tku)ν) ϕ′

(
(Tkun,σ − (Tku)ν)+

)

= ν

∫∫
QT

H+
k (Gkun) (Tku− (Tku)ν) ϕ′

(
(Tkun − (Tku)ν)+

)
+ ων,n(σ) ,

since H+
k (Gkun,σ) converges to H+

k (Gkun) in L1(QT ) as σ goes to infinity. Observe also that
H+
k (Gkun) converges to H+

k (Gku) in L1(QT ), as n goes to infinity, due to (68) and to the fact
that the sequence {Φ(un)} is bounded in L1(QT ). Therefore,

I3,3
σ = ν

∫∫
QT

H+
k (Gku) (Tku− (Tku)ν) ϕ′

(
(Tku− (Tku)ν)+

)
+ ων,n(σ) + ων(n) ,

from where we deduce that I3,3
σ = ων,n(σ) + ων(n) + ω(ν). Putting all these estimates together,

we conclude the proof of (67).

Integral B : One obviously has, by A1):

B ≥
∫∫

{un>k}

eγ(un)−γ(k) β2(un) |∇un|p ϕ
(
k − (Tku)ν

)
.

22



Integral C :

C =

∫∫
{|un|≤k}

a(un,∇un) · ∇(un − (Tku)ν)+ϕ′((un − (Tku)ν)+)

−
∫∫

{un>k}

eγ(un)−γ(k) a(un,∇un) · ∇(Tku)ν ϕ
′(k − (Tku)ν)

=

∫∫
{|un|≤k}

(
a(un,∇un)− a(un,∇(Tku)ν)

)
· ∇(un − (Tku)ν)+ ϕ′((un − (Tku)ν)+) C1

+

∫∫
{|un|≤k}

a(un,∇(Tku)ν) · ∇(un − (Tku)ν)+ ϕ′((un − (Tku)ν)+) C2

−
∫∫

{un>k}

eγ(un)−γ(k) a(un,∇un) · ∇(Tku)ν ϕ
′(k − (Tku)ν) C3

Then we can write

C2 =

∫∫
{|un|≤k,|u|6=k}

a(un,∇(Tku)ν) · ∇(un − (Tku)ν)+ ϕ′((un − (Tku)ν)+)

+

∫∫
{|un|≤k,|u|=k}

a(un,∇(Tku)ν) · ∇(un − (Tku)ν)+ ϕ′((un − (Tku)ν)+)

= ω(n, ν) +

∫∫
{|un|≤k,|u|=k}

a(un,∇(Tku)ν) · ∇(un − (Tku)ν)+ ϕ′((un − (Tku)ν)+) .

Here we have used the weak convergence of ∇T kun to ∇T ku in Lp(QT ;RN ), the strong conver-
gence of ∇(Tku)ν to ∇T ku in the same space (which in turn implies the weak convergence of
a(u,∇(Tku)ν) to a(u,∇T ku) in Lp

′
(QT ;RN ), and finally the convergence of χ{|un|≤k}χ{|u|6=k} to

χ{|u|<k} almost everywhere. Finally, as far as the last integral of the above formula is concerned,
using assumption (A3) on a, one has

∣∣∣ C2
∣∣∣ ≤ ω(n, ν)+c(k)

(∫∫
QT

|∇(Tkun−(Tku)ν)|p
)1/p( ∫∫

{|u|=k}

|∇(Tku)ν)|p
)1/p′

≤ ω(n, ν)+c(k)ω(ν) .

On the other hand, using assumption (A3), the definition of Ψ, Hölder’s inequality and the estimate
on |∇Ψ(un)| in Lp(QT ), one easily obtains∣∣∣ C3

∣∣∣ ≤ c(k) Λ2

∫∫
{un>k}

eγ(un)|∇un|p−1|∇(Tku)ν | ≤ c(k) Λ2

∫∫
{un>k}

|∇Ψ(un)|p−1|∇(Tku)ν |

≤ c(k) Λ2

(∫∫
QT

|∇Ψ(un)|p
)(p−1)/p( ∫∫

{un>k}

|∇(Tku)ν |p
)1/p

≤ c
( ∫∫
{un>k}

|∇(Tku)ν |p
)1/p

≤ c
( ∫∫
{un>k , u 6=k}

|∇(Tku)ν |p +

∫∫
{u=k}

|∇(Tku)ν |p
)1/p

= ω(n, ν) .

Therefore
C ≥ C1 + ω(n, ν) .
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Integral D :∫∫
QT

eγ(un)−γ(Tkun) b(un,∇un)ϕ((Tkun − (Tku)ν)+)

≤
∫∫

{b(un,∇un)≥0}

eγ(un)−γ(Tkun) b(un,∇un)ϕ((Tkun − (Tku)ν)+)

≤
∫∫

{b(un,∇un)≥0 , un>k}

eγ(un)−γ(k) β2(un) |∇un|p ϕ(k − (Tku)ν)

+

∫∫
{b(un,∇un)≥0 , |un|≤k}

b(un,∇un)ϕ((un − (Tku)ν)+)

≤ B + c(k)

∫∫
{|un|≤k}

|∇un|p ϕ((un − (Tku)nu)+) .

Integral E : In order to estimate this term, we only have to observe that ϕ((Tkun − (Tku)ν)+) is
bounded by a constant not depending on n or ν, and then it yields

E ≤
∫∫
QT

|f(x, t)| eγ(un) ϕ((Tkun − (Tku)ν)+) = ω(n, ν) ,

as a consequence of the following result.

Lemma 7.1 The sequence
{
|f(x, t)| eγ(un)

}
n

converges to |f(x, t)| eγ(u) in L1(QT ).

Proof: Since we already know that
{
|f(x, t)| eγ(un)

}
converges to |f(x, t)| eγ(u) a.e. in QT ,

because of Vitali’s Theorem, we only have to prove that this sequence is equi-integrable. From the
a priori estimate (23), we have obtained in the three cases that there exists a positive constant C
satisfying ∫∫

QT

|f(x, t)| eγ(un) |Ψ(un)| ≤ C for all n ∈ N .

Thus, ∫∫
{|un|>k}

|f(x, t)| eγ(un) ≤ 1

|Ψ(k)|

∫∫
QT

|f(x, t)| eγ(un) |Ψ(un)| ≤ C

|Ψ(k)|
,

and it follows that

lim
k→∞

∫∫
{|un|>k}

|f(x, t)| eγ(un) = 0 , uniformly in n.

Hence, given ε > 0, we may find k large enough such that
∫∫
{|un|>k} |f(x, t)| eγ(un) ≤ ε

2 . If we fix

such a k, then for every measurable set E ⊂ QT , we have∫∫
E

|f(x, t)| eγ(un) ≤ c(k)

∫∫
E∩{|un|≤k}

|f(x, t)| +

∫∫
{|un|>k}

|f(x, t)| eγ(un) ≤ c(k)

∫∫
E

|f(x, t)| +
ε

2
.

Now the integrability of f(x, t) implies the equi-integrability of our sequence.

End of the Proof of Proposition 7.2: Putting all the estimates together, we have shown
that

C1 ≤ c(k)

∫∫
{|un|≤k}

|∇un|p ϕ((un − (Tku)ν)+) + ω(n, ν)

≤ c(k)

Λ1

∫∫
{|un|≤k}

a(un,∇un) · ∇un ϕ((un − (Tku)ν)+) + ω(n, ν) .
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Now we observe that∫∫
{|un|≤k}

a(un,∇un) · ∇un ϕ((un − (Tku)ν)+)

=

∫∫
{|un|≤k}

(
a(un,∇un)− a(un,∇(Tku)ν)

)
· ∇(un − (Tku)ν)ϕ((un − (Tku)ν)+)

+

∫∫
{|un|≤k}

a(un,∇(Tku)ν) · ∇(un − (Tku)ν)ϕ((un − (Tku)ν)+)

+

∫∫
{|un|≤k}

a(un,∇un) · ∇(Tku)ν ϕ((un − (Tku)ν)+) .

The last two integrals can be treated similarly to term C2 above, therefore

C1 ≤ c(k)

Λ1

∫∫
{|un|≤k}

(
a(un,∇un)− a(un,∇(Tku)ν)

)
· ∇(un − (Tku)ν)ϕ((un − (Tku)ν)+)

+ ω(n, ν)

This is where we use the function ϕ defined in (7). Indeed, ϕ(s) satisfies

ϕ(s) ≤ ϕ′(s)

µ
for every s ≥ 0,

therefore, if we choose µ such that µ > 2 c(k)
Λ1

, and recall the definition of C1 , we obtain

C1 ≤ 1

2
C1 + ω(n, ν) ,

from which immediately follows∫∫
{|un|≤k}

(
a(un,∇un)− a(un,∇(Tku)ν)

)
· ∇(un − (Tku)ν)+ = ω(n, ν) . (69)

Similarly, using −eγ(un)−γ(Tkun) ϕ
(
(Tkun − (Tku)ν)−

)
as test function in (19), one obtains∫∫

{|un|≤k}

(
a(un,∇un)− a(un,∇(Tku)ν)

)
· ∇(un − (Tku)ν)− = ω(n, ν) ,

which, together with (69), implies∫∫
{|un|≤k}

(
a(Tkun,∇T kun)− a(Tkun,∇(Tku)ν)

)
· ∇(Tkun − (Tku)ν) = ω(n, ν) . (70)

On the other hand,∫∫
{|un|>k}

(
a(Tkun,∇T kun)− a(Tkun,∇(Tku)ν)

)
· ∇(Tkun − (Tku)ν)

=

∫∫
{|un|>k}

a(Tkun,∇(Tku)ν) · ∇(Tku)ν = ω(n, ν) ,

which, together with (70), gives∫∫
QT

(
a(Tkun,∇T kun)− a(Tkun,∇(Tku)ν)

)
· ∇(Tkun − (Tku)ν) = ω(n, ν) . (71)
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Therefore∫∫
QT

(
a(Tkun,∇T kun)− a(Tkun,∇T ku)

)
· ∇(Tkun − Tku)

=

∫∫
QT

(
a(Tkun,∇T kun)− a(Tkun,∇(Tku)ν)

)
· ∇(Tkun − (Tku)ν)

+

∫∫
QT

a(Tkun,∇T kun) · ∇((Tku)ν − Tku)−
∫∫
QT

a(Tkun,∇T ku) · ∇(Tkun − Tku)

+

∫∫
QT

a(Tkun,∇(Tku)ν) · ∇(Tkun − (Tku)ν)

= ω(n, ν) .

Since the left-hand side does not depend on ν, this means∫∫
QT

(
a(Tkun,∇T kun)− a(Tkun,∇T ku)

)
· ∇(Tkun − Tku)

n−→ 0 .

By a well-known lemma by Browder ([7], p.27, see also [4], p. 190) the last convergence implies
the strong convergence of the truncations:

∇T kun
n−→ ∇T ku strongly in Lp(QT ;RN ), for every k > 0. (72)

8 Proof of the existence theorems

This Section is devoted to prove the main existence theorems, namely Theorems 2.1, 2.2 and 2.3.
Since these Theorems essentially differ from each other only in the proof of the a priori estimates
(which was carried over in the previous Sections), they will be proved together.

Up to now we have extracted a subsequence of approximate solutions, still denoted by {un}n,
such that

un → u a.e. in Q, strongly in L1(QT ) and weakly in Lp(0, T ;W 1,p
0 (Ω)) , (73)

∇un → ∇u a.e. in Q ,

∇Tkun → ∇Tku strongly in Lp(QT ;RN ), for every k > 0 , (74)

a(x, t, un,∇un)→ a(x, t, u,∇u) a.e. in Q and weakly in Lp
′
(QT ;RN ) , (75)

Tn b(x, t, un,∇un)→ b(x, t, u,∇u) a.e. in Q . (76)

Ψ(un) ⇀ Ψ(u) weakly in Lp(0, T ;W 1,p
0 (Ω)) ,

for every T > 0. Note that (76) implies, by Fatou’s Lemma and estimate (23), that

b(x, t, u,∇u) eγ(u) Ψ(u) , f eγ(u) Ψ(u) ∈ L1
loc(Q) .

From now on we will assume that {un}n is a subsequence satisfying the previous properties.
In this Section we will finish the proof of our main theorems by showing three points. First

we will see that the sequence {Tnb(x, t, un,∇un)}n converges in L1(QT ) to b(x, t, u,∇u) for every
T > 0, then that the initial datum has sense and finally that the limit function u is a weak solution
of our problem.
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8.1 Convergence of the gradient term

Proposition 8.1

Tnb(x, t, un,∇un)→ b(x, t, u,∇u) strongly in L1(QT ) , for every T > 0. (77)

Proof: By (76), we only have to prove that the sequence {Tnb(x, t, un,∇un)}n is equi-integrable
and then apply Vitali’s Theorem.

Let E be a measurable subset of QT and take ε > 0. Since∫∫
E

|Tnb(x, t, un,∇un)| ≤
∫∫

E∩{|un|≤k}

|Tnb(x, t, un,∇un)|+
∫∫

{|un|>k}

|Tnb(x, t, un,∇un)| , (78)

the result follows from estimating the right hand side. To estimate the second integral in the right
hand side, using (25)) one can choose a k > 0 such that∫∫

{|un|>k}

Tnb(x, t, un,∇un) dx dt <
ε

2

for all n ∈ N. On the other hand, we point out that hypothesis B) implies

|Tnb(x, t, un,∇un)| ≤ [β1(un) + β2(un)] |∇un|p ,

so that ∫∫
E∩{|un|≤k}

|Tnb(x, t, un,∇un)| ≤ max
|s|≤k

[β1(s) + β2(s)]

∫∫
E

|∇Tkun|p .

Hence, it follows from (78) that∫∫
E

|Tnb(x, t, un,∇un)| ≤ c
∫∫
E

|∇Tkun|p +
ε

2
.

By Proposition 7.2, the sequence {|∇Tkun|p}n is equi-integrable and it implies that the sequence
{Tnb(x, t, un,∇un)}n is also equi-integrable.

8.2 Giving sense to the initial datum

The next result was proved (when p = 2) in [10], Proposition 6.4. The generalization to p 6= 2 is
straightforward.

Proposition 8.2 Let vn ∈ L1
(
0, T ;W 1,p

0 (Ω)
)
∩ C

(
[0, T ];Lp(Ω)

)
be a sequence of solutions to

problems (vn)t − div a(x, t, vn,∇vn) = gn, in QT ;

vn(x, 0) = v0,n in Ω,

such that

gn → g in L1(QT ), v0,n → v0 in L1(Ω),

∇T kvn → ∇T kv in Lp(QT ;RN ), for every k > 0,

∇vn bounded in Lp(QT ;RN ).

Then vn → v in C
(
[0, T ];L1(Ω)

)
.

Applying the previous result with gn = Tnb(un,∇un) + Tnf , we obtain

un → u in C
(
[0, T ];L1(Ω)

)
. (79)

Note that this convergence and the a priori estimates for un imply that∫
Ω

Φ(u(x, t)) dx ≤ C(T ) for every t ∈ [0, T ].
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8.3 End of the proof of the existence results.

We now wish to show that u satisfies the equality (7) for every v ∈ Lp(0, T ;W 1,p
0 (Ω)) ∩ L∞(QT )

such that vt ∈ Lp
′
(0, T ;W−1,p′(Ω)) (which, we recall, implies that, for every t, v(t) is well defined

as an element of L∞(Ω)). Using the weak formulation of problems (19), one has

∫
Ω

un(τ) v(τ)−
∫
Ω

u0,n v(0)−
τ∫

0

〈vt(t) , un(t)〉 dt+

∫∫
Qτ

a(un,∇un) · ∇v

=

∫∫
Qτ

Tnb(un,∇un) v +

∫∫
Qτ

Tnf v .

Using the convergences (20), (73), (75), (76), (77) and (79), one can take the limit as n → ∞ in
each term of the last equality, obtaining (7).

We want to show that (8) holds. Indeed, let h(s) : R → R be a function as in Definition 2.1
(5). Then one can use h(Tkun) as test function in the approximate problems (19), obtaining∫

Ω

Hk(un(τ))−
∫
Ω

Hk(u0,n) +

∫∫
Qτ

a(un,∇un) · ∇Tkun h′(Tkun)

=

∫∫
Qτ

(
Tnb(un,∇un) + Tnf

)
h(Tkun) , (80)

where

Hk(s) =

s∫
0

h(Tkσ) dσ .

Note that |Hk(s)| ≤ c(k) (|s|+ 1). Using the convergences (79), (20), (74), (75) and (77), one can
easily take the limit as n→ +∞ in equality (80), obtaining∫

Ω

Hk(u(τ))−
∫
Ω

Hk(u0) +

∫∫
Qτ

a(u,∇u) · ∇Tkuh′(Tku) =

∫∫
Qτ

(
b(u,∇u) + f

)
h(Tku) . (81)

Then we let k go to infinity. Note that, under our assumptions on h,

|Hk(u)| ≤M1

∣∣∣∣∣∣
u∫

0

(
1 + eγ(Tks)|Ψ(Tks)|

)
ds

∣∣∣∣∣∣ ≤ c (1 + Φ(u)
)
,

|a(u,∇u) · ∇Tkuh′(Tku)| ≤ Λ2M1|∇u|pΨ′(u)p = Λ2M1|∇Ψ(u)|p ,∣∣(b(u,∇u) + f
)
h(Tku)

∣∣ ≤M1

(
|b(u,∇u)|+ |f |

) (
1 + eγ(u)|Ψ(u)|

)
,

therefore we can apply the dominated convergence theorem to every integral in (81), and therefore
(8) is proved.

Finally, we will show that Φ(u) ∈ C
(
[0,∞[;L1(Ω)

)
: if we choose h(s) = eγ(s)Ψ(s) in (8), one

obtains∫
Ω

Φ(u(t))−
∫
Ω

Φ(u(τ)) +

∫∫
Qτ,t

Ψ′(u)p a(u,∇u) · ∇u

+

∫∫
Qτ,t

β2(u)

Λ1
|Ψ(u)|eγ(u) a(u,∇u) · ∇u =

∫∫
Qτ,t

b(u,∇u)Ψ(u)eγ(u) +

∫∫
Qτ,t

fΨ(u)eγ(u) ,

for every τ, t ≥ 0. From this it follows that the function ξ(t) =
∫

Ω
Φ(u(t)) dx is continuous on

[0,∞[. Consider a sequence tn in [0,∞[ converging to t. Then u(tn) → u(t) in L1(Ω), and, up to
subsequences, u(tn)→ u(t) a.e in Ω. Thus, it yields

Φ(u(tn))→ Φ(u(t)) a.e in Ω .
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On the other hand, one has ‖Φ(u(., tn)‖1 → ‖Φ(u(., t)‖1. Therefore we have proved that
Φ(u(., tn))→ Φ(u(., t)) in L1(Ω), as desired.

9 Proof of the L∞ estimates

This Section is devoted to the proof of the boundedness result stated in Theorem 2.4. First of all,
for T > 0 and t ∈ [0, T ] let us define the sets

Ak =
{

(x, t) ∈ QT : |Ψ(u(x, t))| ≥ k
}
, Ak(t) =

{
x ∈ Ω : |Ψ(u(x, t))| ≥ k

}
.

Let us take
h(u) = hk(u) = eγ(u)GkΨ(u)

as test function in (8), where γ and Ψ are defined as in (6), Gks is defined as in (18), while

k ≥ max{1, ‖Ψ(u0)‖
∞
} .

Then, after simplifying the gradient term as in Proposition 3.1, one obtains:

max
τ∈[0,T ]

∫
Ω

Hk(u(x, τ)) +

∫∫
QT

|∇GkΨ(u)|p ≤ c
(∫

Ω

Hk(u0(x)) +

∫∫
QT

f eγ(u)GkΨ(u)

)

≤ c
∫∫
QT

|f | eγ(u) |GkΨ(u)| ,
(82)

where

Hk(s) =

s∫
0

eγ(σ)GkΨ(σ) dσ .

We now have to consider separately the two cases p ≥ 2 and 1 < p < 2. Let us consider the
case p ≥ 2. In this case one has

Hk(s) ≥ c |GkΨ(s)|p (83)

for some positive constant c. Indeed, using (50),

Hk(s) = Hk(|s|) =

|s|∫
0

e
γ(σ)
p−1 e

p−2
p−1γ(σ)GkΨ(σ) dσ

≥ c
|s|∫
0

Ψ(σ)p−2 (log∗Ψ(σ))p−2 e
γ(σ)
p−1 GkΨ(σ) dσ

≥ c
|s|∫
0

(
GkΨ(σ)

)p−1 (
GkΨ(σ)

)′
dσ = c |GkΨ(s)|p .

On the other hand, we wish to show that, for every ε > 0, there exists a constant c(ε) such that

eγ(s) |GkΨ(s)| ≤ c(ε)
(
|GkΨ(s)|p+ε + kp

)
, (84)

for every k ≥ 1 and every s ∈ R. Indeed, using the second inequality in (50), one has, for
δ = ε

p+ε < ε,

eγ(s) ≤ c(ε) |Ψ(s)|p−1+δ ≤ c(ε)
(
|GkΨ(s)|p−1+δ + kp−1+δ

)
for every s such that |Ψ(s)| > 1; therefore

eγ(s) |GkΨ(s)| ≤ c(ε)
(
|GkΨ(s)|p+δ + kp−1+δ |GkΨ(s)|

)
, s ∈ R.
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By Young’s inequality we have

kp−1+δ |GkΨ(s)| ≤ c(ε)
(
kp + |GkΨ(s)|

p
1−δ
)

= c(ε)
(
kp + |GkΨ(s)|p+ε

)
,

and so
eγ(s) |GkΨ(s)| ≤ c(ε)

(
|GkΨ(s)|p+δ + |GkΨ(s)|p+ε + kp

)
,

which implies (84), since |GkΨ(s)|p+δ ≤ |GkΨ(s)|p+ε + 1. Therefore, going back to (82), if we set

wk = |GkΨ(u)| ,

we have shown that

max
τ∈[0,T ]

∫
Ω

wk(x, τ)p dx+

∫∫
QT

|∇wk|p ≤ c(ε)
∫∫
Ak

|f |
(
|wk|p+ε + kp

)
, (85)

where ε will be chosen as in (90) below.
We now proceed to estimate the right hand side of this inequality. Namely, we will prove the

following claim: There exist positive constants η and c satisfying

max
τ∈[0,T ]

∫
Ω

wk(x, τ)p dx+

∫∫
QT

|∇wk|p ≤ c kpµ(k)
1+η
ρ p , (86)

where

µ(k) =

T∫
0

|Ak(t)|ρ/σ dt , with ρ, σ > 1 such that
N

σ
+
p

ρ
=
N

p
. (87)

Once this claim is proved, we can apply Theorem 6.1 of Chapter II in [21] to obtain the boundedness
of Ψ(u), and a fortiori of u.

The idea to prove (86) is, roughly speaking, that the term
∫∫

Ak
|f |wp+εk in (85) may be absorbed

by the left-hand side. Indeed, recall that, by assumption F), (r, q) satisfies 1
r + N

p q < 1, therefore
we may find ν > 1 such that the exponents

q1 =
q

ν′
, r1 =

r

ν′

still satisfy
1

r1
+

N

p q1
< 1 . (88)

Then Young’s inequality implies
|f |wεk ≤ |f |ν

′
+ wενk ,

and so ∫∫
QT

|f |wp+εk ≤
∫∫
QT

|f |ν
′
wpk +

∫∫
QT

wp+ενk = I1 + I2 . (89)

As a consequence of Hölder’s inequality and of (88), we have that∫∫
QT

|f |ν
′
wpk ≤ ‖f‖

ν′

ν′ q1,ν′ r1‖wk‖
p
p q′1,p r

′
1
≤ c ‖f‖ν

′

q,r‖wk‖pσ,ρ ,

with (σ, ρ) satisfying
N

σ
+
p

ρ
=
N

p
. Thus, if ‖f‖q,r is small enough, we may absorb I1 by the left

hand side of (85); otherwise, one can divide the interval ]0, T [ in a finite number of subintervals
such that in each one of them the above norm is small enough.

A similar manipulation, although a little bit involved since f does not appear, can be done to

absorb I2. Consider a pair (σ1, ρ1) such that
N

σ1
+

p

ρ1
=
N

p
and apply Hölder’s inequality to get∫∫

QT

wp+ενk ≤ ‖wk‖ενσ1,ρ1‖wk‖
p
pσ1
σ1−εν

,
pρ1
ρ1−εν

≤ c ‖wk‖p pσ1
σ1−εν

,
pρ1
ρ1−εν

.
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Indeed, since f eγ(u) Ψ(u) ∈ L1(QT ), it follows from (82) and (83) that wk is bounded in the spaces
L∞(0, T ;Lp(Ω)) and Lp(0, T ;W 1,p

0 (Ω)) uniformly in k. Therefore, applying Lemma 3.3, we deduce
that the norm ‖wk‖σ1,ρ1 is bounded by a constant depending on T but not on k.

Note that we may choose ε small enough (depending on ν) to have

N

pσ1/(σ1 − εν)
+

p

pρ1/(ρ1 − εν)
=
N

p

(
1− εν

σ1

)
+
(

1− εν

ρ1

)
>
N

p
. (90)

Then using Hölder’s inequality again, it results that

‖wk‖p pσ1
σ1−εν

,
pρ1
ρ1−εν

≤ ω(T )‖wk‖pσ,ρ

where (σ, ρ) satisfies
N

σ
+
p

ρ
=

N

p
and ω(T ) is a quantity which tends to 0, as T goes to 0.

Therefore, if ω(T ) is small enough, then the term I2 can be absorbed by the left hand side of (97)
choosing T small enough, otherwise, as before, one can split the interval ]0, T [ in a finite number
of subintervals.

Finally we analyse the integral

∫∫
Ak

|f |. Having in mind the assumption F), one can choose

η > 0 such that

1 + η =
p

N

( N
q′p

+
1

r′

)
.

Then the exponents
ρ = r′p (1 + η) , σ = q′p (1 + η) ,

satisfy the equality in (87). Then

∫∫
Ak

|f | ≤ ‖f‖
q,r

( T∫
0

|Ak(t)|r
′/q′ dt

)1/r′

= c
( T∫

0

|Ak(t)|ρ/σ dt
)p(1+η)/ρ

= c µ(k)p(1+η)/ρ .

Summing up, we have proved the claim (86), and so the L∞ estimate in the case p ≥ 2.
Let us turn our attention to the case 1 < p < 2. Now we are not able to follow the same

arguments as above, since (83) is not true in this case. Instead of defining wk as above, we now
define

wk = eγ(u) p−2
p(p−1) (GkΨ(u))

2
p ; (91)

our next aim is to transform inequality (82) in terms of this new wk.
Left-hand side.- Since

Hk(s) = Hk(|s|) =

s∫
0

eγ(σ) p−2
p−1 e

γ(σ)
p−1 GkΨ(σ) dσ ≥ eγ(s) p−2

p−1

s∫
0

Ψ′(σ)GkΨ(σ) dσ =
1

2
eγ(s) p−2

p−1 (GkΨ(s))2 ,

it follows that

Hk(u) ≥ 1

2
wpk . (92)

As far as the second term is concerned, we will next see that

|∇GkΨ(u)|p ≥ c|∇wk|p . (93)

First note that both members vanish when |Ψ(u)| ≤ k; thus we only have to consider (x, t) ∈ Ak.
Fix one of these points. Then

|∇wk| ≤
2− p

Λ1p(p− 1)
β2(u) eγ(u) p−2

p(p−1) (GkΨ(u))2/p |∇u|+ 2

p
eγ(u) p−2

p(p−1)
∣∣GkΨ(u)

∣∣(2−p)/p e γ(u)p−1 |∇u|

≤ c β2(u) eγ(u) p−2
p(p−1) Ψ(u)2/p |∇u|+ c eγ(u) 2

p |Ψ(u)|(2−p)/p |∇u|

= I1 + I2 .

(94)
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As a consequence of Lemma 6.1 and of De L’Hôpital’s rule, it yields

lim
s→∞

β2(s) eγ(s) p−2
p(p−1) Ψ(s)2/p

eγ(s)/(p−1)
= lim
s→∞

(
Ψ(u)

eγ(s)/(p−1)

) 2−p
p

= 0 ;

and, on the other hand,

lim
s→∞

e2γ(s)/p Ψ(s)(2−p)/p

eγ(s)/(p−1)
= lim
s→∞

(
Ψ(u)

eγ(s)/(p−1)

) 2−p
p

= 0 .

Therefore, there exist positive constants c1, c2 satisfying

Ii ≤ ci e
γ(u)
p−1 |∇u| , i = 1, 2 .

Going back to (94), we obtain

|∇wk| ≤ c e
γ(u)
p−1 |∇u| ,

from where (93) follows.
Right-hand side.- Next we will prove the following claim: for every ε > 0 there exists c(ε) > 0

satisfying
eγ(u) |GkΨ(u)| ≤ c(ε)

(
wp+εk + kp

)
χAk . (95)

Let δ > 1 satisfy ε = p (δ − 1), and apply Young’s inequality to obtain

eγ(u) |GkΨ(u)| = eγ(u) p−2
2(p−1) |GkΨ(u)| eγ(u) p

2(p−1)

≤ eγ(u)
(p−2)δ
p−1 |GkΨ(u)|2δ + eγ(u) p δ

(p−1)(2δ−1) ≤ wp+εk +
(
e
γ(u)
p−1

)p−ε′
, (96)

where ε′ = p (δ − 1)/(2δ − 1). Having in mind the inequalities (50) and |Ψ(u)| > k ≥ 1, and
performing easy manipulations in the last term of (96), it yields

(
e
γ(u)
p−1

)p−ε′
=
(
e
γ(u)
p−1

)p−2(
e
γ(u)
p−1

)2−ε′

≤ c(ε)
(
e
γ(u)
p−1

)p−2

Ψ(u)2

≤ c(ε) eγ(u) p−2
p−1
(
|Ψ(u)| − k

)2
+ c(ε) k2 eγ(u) p−2

p−1 .

By noting that eγ(u) p−2
p−1
(
|Ψ(u)| − k

)2
= wpk and eγ(u) p−2

p−1 ≤ c |Ψ(u)|p−2 ≤ c kp−2 (recall that
p− 2 < 0), we deduce that (

e
γ(u)
p−1

)p−ε′
≤ c(ε) (wpk + kp) .

Moreover, since wpk ≤ w
p+ε
k + 1 ≤ wp+εk + kp, it follows that(

e
γ(u)
p−1

)p−ε′
≤ c(ε) (wp+εk + kp) .

Hence, from here, (96) implies (95). On account of (92), (93) and (95), the inequality (82) becomes

max
τ∈[0,T ]

∫
Ω

wk(x, τ)p dx+

∫∫
QT

|∇wk|p ≤ c(ε)
∫∫
Ak

|f |
(
wp+εk + kp

)
. (97)

From here, one obtains the claim (86) exactly as in the case p ≥ 2. However, that inequality is
now not enough to obtain the L∞-estimate directly, since now wk 6= |Gk(Ψ(u))| and so we cannot
apply Theorem 6.1 in [21]. Hence, we are going to estimate also the left hand side of (97), proving
that, for every ε > 0, there exists a constant c(ε) > 0 such that

‖wk‖pσ,ρ ≥ c(ε)(h− k)2h(1+ε)(p−2)µ(h)p/ρ for all h > k ≥ 1 , (98)
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for (ρ, σ) as in (87). Indeed, on account of hypothesis C3), and recalling that the exponent of h is

negative and the function s→ s
(1+ε)(p−2)

p (s− k)
2
p is increasing, one obtains

‖wk‖pρ,σ =

[ T∫
0

( ∫
Ak(t)

(
eγ(u) p−2

p(p−1) |GkΨ(u)|2/p
)σ) ρ

σ
] p
ρ

≥ c(ε)
[ T∫

0

( ∫
Ak(t)

(
|Ψ(u)|

(1+ε)(p−2)
p |GkΨ(u)|2/p

)σ) ρ
σ
] p
ρ

≥ c(ε)h(1+ε)(p−2)(h− k)2

[ T∫
0

|Ah(t)|
ρ
σ

] p
ρ

= c(ε)h(1+ε)(p−2)(h− k)2µ(h)
p
ρ .

Having in mind Lemma 3.3, it follows from (86) and (98) that

µ(h)1/ρ ≤ c(ε)h
(1+ε)(2−p)/p

(h− k)2/p
kµ(k)(1+η)/ρ for all h > k ≥ 1 . (99)

Our purpose is to deduce from this inequality that µ(k) = 0 for k large enough; this straightfor-
wardly implies our L∞-estimate.

First observe that Ψ(u) ∈ C([0,∞[: L1(Ω)) implies |Ak(t)| ≤ c
k for all t ∈ [0, T ] and so

µ(k) =

T∫
0

|Ak(t)|ρ/σ dt ≤ c

kρ/σ
.

Thus, we have obtained

µ(k)1/ρ ≤ c

kλ
, with λ > 0.

We now take ε > 0 small enough to satisfy λ > ε(2−p)
pη , and consider M such that

µ(M)1/ρ ≤ c(ε)−1/ηM−ε
2−p
pη b−1/η2 , (100)

where b = 22/p > 1. If we denote kn = M (2− 2−n), then, by (99), we have

µ(kn+1)1/ρ ≤ c(ε)
kn k

(1+ε)(2−p)/p
n+1

(kn+1 − kn)2/p
µ(kn)(1+η)/ρ .

It follows that
µ(kn+1)1/ρ ≤ cMε(2−p)/p bn µ(kn)(1+η)/ρ .

Since (100) holds true, we may apply the result in [21], Lemma 5.6, Chapter II, to obtain that
µ(2M) = 0.
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