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BEHAVIOUR OF SOLUTIONS TO p-LAPLACIAN WITH ROBIN

BOUNDARY CONDITIONS AS p GOES TO 1

FRANCESCO DELLA PIETRA, FRANCESCANTONIO OLIVA, AND SERGIO SEGURA DE LEÓN

Abstract. We study the asymptotic behaviour, as p → 1+, of the solutions of the
following inhomogeneous Robin boundary value problem:

{

−∆pup = f in Ω,

|∇up|
p−2∇up · ν + λ|up|

p−2up = g on ∂Ω,
(P)

where Ω is a bounded domain in R
N with sufficiently smooth boundary, ν is its unit

outward normal vector and ∆pv is the p-Laplacian operator with p > 1. The data
f ∈ LN,∞(Ω) (which denotes the Marcinkiewicz space) and λ, g are bounded functions
defined on ∂Ω with λ ≥ 0. We find the threshold below which the family of p–solutions
goes to 0 and above which this family blows up. As a second interest we deal with the
1-Laplacian problem formally arising by taking p → 1+ in (P).
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1. Introduction

The aim of this paper is twofold. We first deal with the asymptotic behaviour of solutions
to inhomogeneous Robin boundary value problems with p-Laplacian as principal operator
and then we analyse existence of solution for the limit problem as p → 1+. To be more
precise, let Ω be an open bounded subset of RN (N ≥ 2) with smooth boundary and let
ν denote its unit outward normal vector. We consider problems

{

−∆pup = f in Ω,

|∇up|
p−2∇up · ν + λ|up|

p−2up = g on ∂Ω,
(1.1)

where ∆pv = div(|∇v|p−2∇v) is the p-Laplacian operator with p > 1, f belongs to the
Marcinkiewicz space LN,∞(Ω) and λ, g are bounded functions defined on ∂Ω with λ ≥ 0
not identically null. In this paper, we will study the behaviour of solutions up as p→ 1+

and, when this family converges to an almost everywhere finite function u, we will check
that u is a solution to the limit problem.

Let us observe that problem (1.1) formally turns into a Dirichlet problem once that
λ = ∞, or into a Neumann problem if λ ≡ 0. In these extremal cases, the study of the
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asymptotic behaviour with respect to p → 1+ in problems driven by the p–Laplacian is
nowadays classical and widely studied.

1.1. Asymptotic behaviour. Without the purpose of being exhaustive, we present
some of the results which mostly motivated our work.
The Dirichlet case presents a huge literature; in [9, 14] the authors observe that solutions
to (1.1), obtained as a minimum of a suitable functional, converge to a minimum of the
functional written for p = 1. Since W 1,1(Ω) is not reflexive, the limit is only expected
to belong to BV (Ω). It is shown in [14] that, when f ≡ 1, the family up goes to 0 or
to ∞, depending on the domain. This degeneration/blow up phenomenon was extended

in [9]. It is shown that if ‖f‖N,∞ < S̃1 then up → 0 almost everywhere in Ω as p → 1+

where S̃1 is the best constant in the Sobolev embedding from W 1,1(Ω) into the Lorentz

space L
N

N−1
,1(Ω) (see [2]). In the critical case ‖f‖N,∞ = S̃1 the solutions up converge

almost everywhere to a function u as p → 1+ which is, in general, not null. Finally, if
‖f‖N,∞ > S̃1, examples of up blowing up as p→ 1+ on a subset of Ω of positive measure
are made explicit.
This result has been specified in [23] in the following sense: if ‖f‖W−1,∞(Ω) < 1 then up
degenerates to zero, if ‖f‖W−1,∞(Ω) = 1 then up converges to an almost everywhere finite
function and, finally, if ‖f‖W−1,∞(Ω) > 1 then up blows up as p→ 1+.
For the Neumann case, we mention [21]; here, in case f ≡ 0 and under the compatibility
condition given by

∫

∂Ω
g dHN−1 = 0, the authors show once again the degeneration/blow

up phenomenon. If a suitable norm of g is small enough, then up converges almost
everywhere in Ω to a function which is almost everywhere finite. By the way, if the same
norm is large enough, up converges to a function which is infinite on a set of positive
measure.

Therefore, it should be expected that the solutions up to (1.1) experience the same phe-
nomena described above. Then a natural question is determining the threshold which
describes it. As we will see, a key role is played by the following quantity

M(f, g, λ) = sup
u∈W 1,1(Ω)\{0}

∫

Ω

fu dx+

∫

∂Ω

gu dHN−1

∫

Ω

|∇u| dx+

∫

∂Ω

λ|u| dHN−1
,

which is finite once that f ∈ LN,∞(Ω) and g ∈ L∞(∂Ω). We point out that the deno-
minator defines a norm in W 1,1(Ω) which is equivalent to the usual one (see [28, Section
2.7]).
Using M(f, g, λ), our first result can be described as follows: if M ≤ 1 then the sequence
up is bounded in BV (Ω) with respect to p and it converges to zero if M < 1. Moreover,
the result is optimal in the sense that if M > 1, then up blows up on a set of positive
measure as p→ 1+ (see Theorem 3.1 below). Let us also mention that explicit examples
show that when M = 1 the limit function is not null in general (see Section 5.2 below).
This means that the asymptotic behaviour of up is completely settled from M .
A further remark on this threshold M is in order. We stress that M depends on both
the volumetric datum f and the boundary datum g. As far as we know, it is the first
time that the phenomenon of degeneracy/blow up is studied when two data occur. For
a single datum an essential tool is the Hölder inequality. In our setting this inequality
does not lead to the desired value. So, we needed to extend it in order to handle both
data (for details we refer to the appendix).
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1.2. Limit problem. After studying the asymptotic behaviour, we mean to study the
1-Laplace limit problem. That is we deal with existence of a solution, intended suitably
(see Definition 4.1 below), to the following problem







−∆1u = f in Ω,
Du

|Du|
· ν + λ sign u = g on ∂Ω,

(1.2)

which is formally the limit as p→ 1+ of (1.1). Here ∆1u := div
(

Du
|Du|

)

is the 1-Laplacian

operator.
It is worth highlighting that, among others, the 1-Laplace equations are strongly related to
image processing, torsion and mean curvature problems (see [3, 4, 7, 15, 27, 29, 30]). From
the mathematical point of view, there is huge literature concerning existence, uniqueness
and regularity of solutions to problems involving the 1-Laplace operator under Dirichlet
boundary conditions; even the case λ = 0 has been dealt with but, unsurprisingly, the
literature is more limited. The study of this type of problems is a very active branch as
shown by recent works such as [1, 10, 11, 18, 25, 26, 31].

Nevertheless, in all the papers cited above, a common denominator is that the solutions
belong, in general, only to the BV -space. This clearly plays a role in the way the
singular quotient |Du|−1Du needs to be intended both in Ω and on ∂Ω. In [11] and
[4] this difficulty is overcome for the first time by using a bounded vector field z whose
divergence is a function enjoying some regularity. Just have in mind that this allows to
define a distribution (z, Du) which couples one of these bounded vector fields and the
gradient of a BV –function (see [5] and [8], in Section 2.3 below is briefly recalled). In
other words this pairing, which is nothing more than the scalar product if the involving
terms are regular enough, is a way to give sense to the singular quotient through a
bounded vector field z satisfying ‖z‖∞ ≤ 1 and (z, Du) = |Du|, while the equation holds
as − div z = f .
For a vector field z of this type it is also possible to define a weak normal trace (denoted by
[z, ν] below) which enters strongly in the definition of the boundary condition. Indeed,
another common feature for 1-Laplace equations is that the boundary datum is not
necessarily attained in the sense of traces. Just to give an idea, in the Dirichlet problem,
a standard request is [z, ν] ∈ sign (−u) on ∂Ω. On the contrary, the Neumann boundary
condition holds pointwise as shown in [21]. In our framework, situated in between, we
cannot expect the boundary condition to hold. Nevertheless, it should be satisfied when
λ tends to 0.

As far as we know, the only related paper involving the 1-Laplace operator and a boundary
condition of Robin’s type is [20]. The authors deal with f ≡ 0 jointly with a boundary
condition as

Du

|Du|
· ν + λu = g

where λ is a positive constant and g ∈ L2(∂Ω). Note, however, that this condition is
slightly different from ours. More general data g can be handled in [20] owing to the
presence of the absorption term λu. It also provides a regularizing effect on the solution
which is proved to always lie in L2(∂Ω); this is something that in general we will not
expect for solutions to (1.2).

3



Thus, we deal with existence of a solution to (1.2) under the assumptions f ∈ LN,∞(Ω),
g ∈ L∞(∂Ω) and 0 ≤ λ ∈ L∞(∂Ω) (see Theorem 4.3). Working by approximation through
problems (1.1), the result is achieved by requiring that M ≤ 1. It worth mentioning that
the presence of λ ∈ L∞(∂Ω) (see also Section 5.1 for the extension to the merely integrable
case) produces extra difficulties with respect to the Dirichlet and Neumann cases. Indeed,
for the equation in Ω a lower semicontinuity argument is needed (see Lemma 4.8 below)
which has also its own interest besides problem (1.2). Even the boundary condition
presents some challenges. Indeed, in order to characterize the solution on the boundary we
will use an auxiliary function β which is actually the sign function under some restriction
on the data and in the zone where λ is positive. If |g − λ sign (u)| ≤ 1, the boundary
condition holds pointwise on the set {λ > 0}∩{u

∣

∣

∂Ω
6= 0}. Otherwise, if |g−λ sign (u)| >

1, then the boundary condition should be interpreted as ||Du|−1Du · ν| is forced to be as
high as possible. This is basically the weak way we mean the boundary term (see also
Remark 4.2 below). This feature is similar to that obtained in [20, Definition 2.3 and
Remark 2.7], but our approach is different.

1.3. Plan of this paper. The next Section is on preliminaries; the theory underlying
the pairings (z, Du) and the weak trace [z, ν] is sketching there. Section 3 is dedicated
to the asymptotic behaviour of up as p → 1+. In Section 4 we consider the 1-Laplace
problem which formally arises by taking p → 1+ into (1.1). In Section 5 we give some
extensions and examples concerning the results of the previous two sections. Finally, in
the appendix, we briefly consider two inequalities which are used throughout the paper.

2. Preliminaries

2.1. Notation. For a given function v we denote by v+ = max(v, 0) and by v− =
−min(v, 0). For a fixed k > 0, we define the truncation functions Tk : R → R as
follows

Tk(s) :=max(−k,min(s, k)).

We denote by |E| and by HN−1(E) respectively the Lebesgue measure and the (N − 1)–
dimensional Hausdorff measure of a set E. Moreover χE stands for its characteristic
function.
If no otherwise specified, we denote by C several positive constants whose value may
change from line to line and, sometimes, on the same line. These values will only depend
on the data but they will never depend on the indexes of the sequences we introduce
below.

2.2. Functional spaces. Throughout this paper, Ω ⊂ R
N (with N ≥ 2) stands for an

open bounded set with, at least, Lipschitz boundary. The unit outward normal vector,
which exists HN−1–a.e. on ∂Ω, is denoted by ν.
We denote by Lq(E) the usual Lebesgue space of q–summable functions on E. The
symbol Lq(∂Ω, λ) stands for the Lebesgue space having weight λ.
A function f belongs to the Marcinkiewicz (or weak Lebesgue) space LN,∞(Ω) when
|{|f | > t}| ≤ Ct−N , for any t > 0. We recall that LN (Ω) ⊂ LN,∞(Ω) ⊂ LN−ε(Ω), for any
ε > 0. We refer to [13] for an overview on these spaces.
We will denote by W 1,p(Ω) the usual Sobolev space, of measurable functions having weak

derivative in Lp(Ω)N . It is a Banach space when endowed with the usual norm. It is well-
known that functions in Sobolev spaces have a trace on the boundary, this fact allows
us to write u

∣

∣

∂Ω
. Moreover, if u ∈ W 1,1(Ω), then u

∣

∣

∂Ω
∈ L1(∂Ω) and the embedding
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W 1,1(Ω) → L1(∂Ω) is onto. On the other hand, the Sobolev space W 1,1(Ω) is compactly

embedded in L1(Ω) and continuously embedded into the Lorentz space L
N

N−1
,1(Ω) (see[2]).

Since this Lorentz space has LN,∞(Ω) as its dual (see [13]), it follows that fu ∈ L1(Ω)
for every f ∈ LN,∞(Ω) and every u ∈ W 1,1(Ω). Finally, for a nonnegative λ ∈ L∞(∂Ω)
not identically null, the norm defined in W 1,1(Ω) as

‖v‖λ =

∫

Ω

|∇v| dx+

∫

∂Ω

λ(x)|v| dHN−1 (2.1)

is equivalent to the usual norm in W 1,1(Ω) (see [28, Section 2.7]).
The space of functions of bounded variation is defined as

BV (Ω) := {u ∈ L1(Ω) : Du is a Radon measure with finite variation},

which is a Banach space.
Most of the features of W 1,1(Ω) also hold for BV (Ω), since the proofs can easily be
adapted by approximation. In this paper, we will use the following facts:

(1) equation (2.1) defines a norm in BV (Ω) equivalent to the usual one;
(2) the trace operator BV (Ω) → L1(∂Ω) is continuous and onto;
(3) the embedding BV (Ω) → L1(Ω) is compact;

(4) the embedding BV (Ω) → L
N

N−1
,1(Ω) is continuous.

As a consequence of the last property, fu ∈ L1(Ω) for every f ∈ LN,∞(Ω) and every
u ∈ BV (Ω). We refer to [6] for a complete account on this space.

2.3. L∞-divergence vector fields. We briefly present the L∞-divergence-measure vec-
tor fields theory (see [5] and [8]). We denote

X(Ω) := {z ∈ L∞(Ω,RN) : div z ∈ LN,∞(Ω)}.

In [5] the distribution (z, Dv) : C1
c (Ω) → R is defined as

〈(z, Dv), ϕ〉 := −

∫

Ω

vϕ div z−

∫

Ω

vz · ∇ϕ, ϕ ∈ C1
c (Ω),

which is well defined if v ∈ BV (Ω) and z is a bounded vector field such that its divergence
belongs to LN (Ω). Moreover (z, Dv) is a Radon measure satisfying

∣

∣

∣

∣

∫

B

(z, Dv)

∣

∣

∣

∣

≤

∫

B

|(z, Dv)| ≤ ||z||L∞(U,RN )

∫

B

|Dv| ,

for all Borel sets B and for all open sets U such that B ⊂ U ⊂ Ω.
Let us also remark that, in [5], it is shown the existence of a weak trace on ∂Ω for the
normal component of a bounded vector field z such that div z ∈ L1(Ω). This is denoted
by [z, ν] where ν(x) is the outward normal unit vector. Then it is proven that

||[z, ν]||L∞(∂Ω) ≤ ||z||∞ .

Finally a Green formula holds:
∫

Ω

v div z+

∫

Ω

(z, Dv) =

∫

∂Ω

v[z, ν] dHN−1,

where z ∈ L∞(Ω,RN ), div z ∈ LN(Ω) and v ∈ BV (Ω). Let us stress that all previous
results can be easily extended to the case where z ∈ X(Ω) and u ∈ BV (Ω) thanks to the

continuous embedding of BV (Ω) into L
N

N−1
,1(Ω).
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3. Asymptotic behaviour as p→ 1+

Let Ω be a bounded open set of RN (N ≥ 2) with Lipschitz boundary. We are interested
into taking p→ 1+ in the following Robin problem:

{

−∆pup = f in Ω,

|∇up|
p−2∇up · ν + λ|up|

p−2up = g on ∂Ω,
(3.1)

where f ∈ LN,∞(Ω), λ ∈ L∞(∂Ω) is nonnegative but not identically null and finally
g ∈ L∞(∂Ω). The existence of up ∈ W 1,p(Ω) satisfying (3.1) follows from [17]. We
remark that up can also be obtained as a minimum of a suitable functional (see Section
5.3 below). For this section we are interested in the asymptotic behaviour of up as p→ 1+.

To begin with, we introduce the key quantity

M(f, g, λ) = sup
u∈W 1,1(Ω)\{0}

∫

Ω

fu dx+

∫

∂Ω

gu dHN−1

‖u‖λ
,

which is always finite once that f ∈ LN,∞(Ω) and g ∈ L∞(∂Ω). In particular we show
that if M(f, g, λ) ≤ 1, then we have an estimate of the family up in BV (Ω); otherwise,
as we will see, the solutions up blow up on a set of positive measure as p approaches 1.
This is the content of main theorem of this section:

Theorem 3.1. Given f ∈ LN,∞(Ω), λ ∈ L∞(∂Ω) nonnegative but not identically null
and g ∈ L∞(∂Ω), let up be a solution to (3.1). Then, up to subsequences, it holds:

i) if M(f, g, λ) < 1 then up converges almost everywhere in Ω to zero as p→ 1+;
ii) if M(f, g, λ) = 1 then up converges almost everywhere in Ω to a function u as

p→ 1+ which is almost everywhere finite;
iii) if M(f, g, λ) > 1 then |up| blows up either on a subset of Ω of positive Lebesgue

measure or on a subset of ∂Ω of positive HN−1 measure.

Remark 3.2. It is worth to highlighting that in Section 5.2 below the results of the
previous theorem are explicitly computed for the case Ω as a ball. In particular, let us
note that in caseM = 1 one can actually find explicit examples of limit functions u which
are not null.

Remark 3.3. In the homogeneous Dirichlet case, that is when formally λ = +∞, then

M = sup
u∈W 1,1

0
(Ω)\{0}

∫

Ω

fu dx
∫

Ω

|∇u|dx

.

By the Hardy-Littlewood and Sobolev inequalities, it is easy to see that

M ≤
‖f‖LN,∞(Ω)

Nω
1/N
N

,

where ωN is the volume of the unit ball in R
N . This implies that the smallness condition

on f considered in [9] in order to obtain a finite limit for up, namely ‖f‖LN,∞(Ω) ≤ Nω
1/N
N ,

always implies that M ≤ 1 (see also [22]).

We start stating and proving the uniform estimate under the smallness condition on
M(f, g, λ).
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Lemma 3.4. Let f ∈ LN,∞(Ω), let λ ∈ L∞(∂Ω) be nonnegative but not identically null
and let g ∈ L∞(∂Ω). If up is a solution to (3.1), then it holds

‖up‖λ ≤M(f, g, λ)
1

p−1

[

|Ω|+

∫

∂Ω

λ dHN−1

]

.

Furthermore if M(f, g, λ) ≤ 1 then up is bounded in BV (Ω) with respect to p and it
converges, up to a subsequence, *-weakly in BV (Ω) to a function u as p → 1+. In
particular if M(f, g, λ) < 1 then u is identically null.

Proof. Let us take up as test function in (3.1), it yields
∫

Ω

|∇up|
pdx+

∫

∂Ω

λ|up|
pdHN−1 =

∫

Ω

fup dx+

∫

∂Ω

gup dH
N−1

≤ M(f, g, λ)

[
∫

Ω

|∇up| dx+

∫

∂Ω

λ|up| dH
N−1

]

Denoting

Ap =

∫

Ω

|∇up|
pdx+

∫

∂Ω

λ|up|
pdHN−1 Bp′ = |Ω|+

∫

∂Ω

λ dHN−1 ,

one can apply Proposition A.1 in order to obtain

Ap ≤M(f, g, λ)

[
∫

Ω

|∇up| dx+

∫

∂Ω

λ|up| dH
N−1

]

≤M(f, g, λ)AB ,

so that
Ap−1 ≤M(f, g, λ)B.

Hence,
[
∫

Ω

|∇up|
pdx+

∫

∂Ω

λ|up|
pdHN−1

]
p−1

p

≤M(f, g, λ)

[

|Ω|+

∫

∂Ω

λ dHN−1

]
p−1

p

,

from which we deduce
∫

Ω

|∇up|
pdx+

∫

∂Ω

λ|up|
pdHN−1 ≤ M(f, g, λ)

p

p−1

[

|Ω|+

∫

∂Ω

λ dHN−1

]

. (3.2)

Then it follows from Proposition A.1 and from (3.2) that we get

‖up‖λ =

∫

Ω

|∇up| dx+

∫

∂Ω

λ|up| dH
N−1

≤

[
∫

Ω

|∇up|
pdx+

∫

∂Ω

λ|up|
pdHN−1

]
1

p
[

|Ω|+

∫

∂Ω

λ dHN−1

]
1

p′

≤M(f, g, λ)
1

p−1

[

|Ω|+

∫

∂Ω

λ dHN−1

]

.

(3.3)

If M(f, g, λ) ≤ 1 the previous estimate reads as

‖up‖λ ≤ |Ω|+

∫

∂Ω

λ dHN−1.

Then standard compactness arguments hold and there exists a function u such that, up
to subsequences, up converges to u *-weakly in BV (Ω) as p→ 1+.

Moreover the same estimate (3.3), if M(f, g, λ) < 1, guarantees that

lim
p→1+

‖up‖λ = 0,

7



which means that up goes to zero almost everywhere in Ω as p→ 1+. �

Let us show now that |∇up|
p−2∇up and |up|

p−2up weakly converges to some functions in
Ω and on ∂Ω as p→ 1+. Next theorem identifies these objects.

Lemma 3.5. Under the assumptions of Lemma 3.4, let up be the solution to problem
(3.1). Then there exist z ∈ L∞(Ω;RN) and β ∈ Ls(∂Ω, λ) for every s < ∞ such that
βχ{λ>0} ∈ L∞(∂Ω) satisfying, up to subsequences, the following convergences

|∇up|
p−2∇up ⇀ z weakly in Ls(Ω;RN) for every 1 ≤ s <∞, (3.4)

|up|
p−2up ⇀ β weakly in Ls(∂Ω, λ) for every 1 ≤ s <∞. (3.5)

Moreover, the following identities hold

max{‖z‖∞, ‖βχ{λ>0}‖∞} =M(f, g, λ) (3.6)

− div z = f in D′(Ω) (3.7)

[z, ν] + λβ = g HN−1–a.e. on ∂Ω (3.8)

Proof. It follows from Lemma 3.4 that it holds
∫

Ω

|∇up|
pdx+

∫

∂Ω

λ|up|
pdHN−1 ≤M(f, g, λ)

p

p−1Λ

where Λ = |Ω|+
∫

∂Ω
λ dHN−1. Let us now fix s ∈ (1,∞) and consider 1 < p <

s

s− 1
. By

Proposition A.1 below, it yields
[
∫

Ω

|∇up|
(p−1)sdx+

∫

∂Ω

λ|up|
(p−1)sdHN−1

]
1

s

≤

[
∫

Ω

|∇up|
pdx+

∫

∂Ω

λ|up|
pdHN−1

]
p−1

p

Λ
1

s
− p−1

p ≤M(f, g, λ)Λ
1

s

(3.9)

from where we infer that this family is bounded. Thus, up to subsequences, there exist
zs ∈ Ls(Ω;RN) and βs ∈ Ls(∂Ω, λ) satisfying

|∇up|
p−2∇up ⇀ zs weakly in Ls(Ω;RN)

and
|up|

p−2up ⇀ βs weakly in Ls(∂Ω, λ)

Since these facts hold for every s, two diagonal procedures allow us to find z ∈ Ls(Ω;RN )
and β ∈ Ls(Ω, λ) for all s ∈ (1,∞), and satisfying (3.4) and (3.5).
Moreover, having in mind the lower semicontinuity of the s–norm with respect to the
weak convergence, we may let p go to 1 in (3.9); it yields

[
∫

Ω

|z|s dx+

∫

∂Ω

λ|β|s dHN−1

]
1

s

≤M(f, g, λ)Λ
1

s

for every s ∈ (1,∞). Thanks to Proposition A.2 below, we deduce that z ∈ L∞(Ω;RN )
and βχ{λ>0} ∈ L∞(∂Ω). In addition, we may take the limit as s tends to ∞ and obtain

max{‖z‖∞, ‖βχ{λ>0}‖∞} ≤M(f, g, λ).

Now let us show the reverse inequality in order to deduce (3.6); to this aim we take
v ∈ W 1,2(Ω) as test function in (3.1) (with 1 < p < 2) to get

∫

Ω

fv dx+

∫

∂Ω

gv dHN−1 =

∫

Ω

|∇up|
p−2∇up · ∇v dx+

∫

∂Ω

λ|up|
p−2upv dH

N−1.

8



Letting p go to 1, we deduce
∫

Ω

fv dx+

∫

∂Ω

gv dHN−1 =

∫

Ω

z · ∇v dx+

∫

∂Ω

λβv dHN−1

≤ ‖z‖∞

∫

Ω

|∇v| dx+ ‖βχ{λ>0}‖∞

∫

∂Ω

λ|v| dHN−1

≤ max{‖z‖∞, ‖βχ{λ>0}‖∞}‖v‖λ.

By density, it yields
∫

Ω

fv dx+

∫

∂Ω

gv dHN−1 ≤ max{‖z‖∞, ‖βχ{λ>0}‖∞}‖v‖λ

for every v ∈ W 1,1(Ω). Therefore,

M(f, g, λ) ≤ max{‖z‖∞, ‖βχ{λ>0}‖∞},

which gives (3.6).

The validity of (3.7) simply follows by taking ϕ ∈ C∞
0 (Ω) as test function in (3.1) and

letting p→ 1+.
Now for 1 < p < 2, we choose v ∈ W 1,2(Ω) as test function in (3.1) obtaining:

∫

Ω

fv dx+

∫

∂Ω

gv dHN−1 =

∫

Ω

|∇up|
p−2∇up · ∇v dx+

∫

∂Ω

λ|up|
p−2upv dH

N−1.

Letting p→ 1+, it yields
∫

Ω

fv dx+

∫

∂Ω

gvHN−1 =

∫

Ω

z · ∇v dx+

∫

∂Ω

λβv dHN−1

for every v ∈ W 1,2(Ω). This equality can be extended to every v ∈ W 1,1(Ω) by density.
Using (3.7) and Green’s formula, we deduce

∫

∂Ω

gvHN−1 =

∫

∂Ω

v[z, ν] dHN−1 +

∫

∂Ω

λβv dHN−1

for all v ∈ W 1,1(Ω), wherewith it holds for every v ∈ L1(∂Ω). Thus, we have obtained
(3.8). �

The following lemma focuses on the behaviour of the objects studied in the previous
lemma when the family up is truncated at a certain level. This will be useful in the next
Lemma 3.7.

Lemma 3.6. Under the assumptions of Lemma 3.4, let up be the solution to problem
(3.1). For each k > 0 there exist zk ∈ L∞(Ω;RN) and βk such that βkχ{λ>0} ∈ L∞(∂Ω)
satisfying ‖zk‖∞ ≤ 1, ‖βkχ{λ>0}‖∞ ≤ 1 and, up to subsequences, the following conver-
gences hold

|∇up|
p−2∇upχ{|up|<k} ⇀ zk weakly in Ls(Ω;RN) for every 1 ≤ s <∞,

|up|
p−2upχ{|up|<k} ⇀ βk weakly in Ls(∂Ω, λ) for every 1 ≤ s <∞.

Proof. For each k > 0, we take Tk(up) as test function in (3.1), it yields
∫

Ω

|∇Tk(up)|
pdx+

∫

∂Ω

λ|up|
p−1|Tk(up)| dH

N−1 =

∫

Ω

fTk(up) dx+

∫

∂Ω

gTk(up) dH
N−1,

from where we get the estimate
∫

Ω

|∇Tk(up)|
pdx ≤ k

(
∫

Ω

|f | dx+

∫

∂Ω

|g| dHN−1

)

.
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Given s < p
p−1

, Hölder’s inequality implies

[
∫

Ω

|∇up|
(p−1)sχ{|up|<k} dx

]
1

s

≤

[
∫

Ω

|∇up|
pχ{|up|<k} dx

]
p−1

p

|Ω|
1

s
− p−1

p

≤ k
p−1

p

(
∫

Ω

|f | dx+

∫

∂Ω

|g| dHN−1

)
p−1

p

|Ω|
1

s
− p−1

p .

(3.10)

Hence, the family |∇up|
p−2∇upχ{|up|<k} is bounded in Ls(Ω;RN ) for all s ∈ (1,∞). By

the same procedure used in Lemma 3.5, there exist zk ∈ Ls(Ω;RN ) and a subsequence
(not relabeled) such that

|∇up|
p−2∇upχ{|up|<k} ⇀ zk

for all s ∈ (1,∞). Going back to (3.10) and letting p go to 1, the lower semicontinuity of
the s–norm with respect to the weak convergence gives

[
∫

Ω

|zk|
s dx

]
1

s

≤ |Ω|
1

s

for all s ∈ (1,∞). Therefore, zk ∈ L∞(Ω;RN) and ‖zk‖∞ ≤ 1.
On the other hand, it follows from |up|

p−1χ{|up|<k} ≤ kp−1 that, up to subsequences,

|up|
p−2upχ{|up|<k}

∗
⇀βk *-weakly in L∞(∂Ω, λ)

for certain βk ∈ L∞(∂Ω, λ) that satisfies ‖βkχ{λ>0}‖∞ ≤ 1. �

Here we deal with the case M(f, g, λ) > 1; in particular we show that up blows up on a
set of positive measure.

Lemma 3.7. Under the assumptions of Lemma 3.4, let up be the solution to problem
(3.1). If M(f, g, λ) > 1, then up converges almost everywhere in Ω as p → 1+ to a
function u such that |u| = +∞ either on a subset of Ω of positive Lebesgue measure or
on a subset of ∂Ω of positive HN−1 measure. As a consequence, u /∈ BV (Ω).

Proof. Firstly one can show that up converges almost everywhere in Ω to a function u
as p → 1+ using arguments similar to the ones of Step 2 of [23]. It follows from the
pointwise convergence up → u as p→ 1+ that

χ{|up|<k} → χ{|u|<k} strongly in Lr(Ω) ∀r ∈ (1,∞)

up to a countable set of k > 0. So, for almost all k > 0, it follows from Lemmas 3.5 and
3.6 that we have

zk = zχ{|u|<k} and βkχ{λ>0} = βχ{{λ>0}∩{|u|<k}}

Thus, conditions ‖zk‖∞ ≤ 1 and ‖βkχ{λ>0}‖∞ ≤ 1 for all k > 0 imply

‖zχ{|u|<∞}‖∞ ≤ 1 and ‖βχ{{λ>0}∩{|u|<∞}}‖∞ ≤ 1.

Having in mind (3.6), the result follows. �

Finally we can gather the previous results to give the proof of the main result of the
current section.

Proof of Theorem 3.1. The proof follows from Lemmas 3.4 and 3.7. �
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4. The limit problem

Here we are interested into the study of the limit problem for (3.1) as p → 1+. In
particular we first deal with the case with Ω regular enough. Later and under some
assumptions on the data, we treat the case where Ω has Lipschitz boundary.
Thus we are studying the existence of a solution to

{

−∆1u = f in Ω,

[z, ν] + λ sign (u) = g on ∂Ω.
(4.1)

Let us stress that the sign function needs to be intended as a multivalued function which
is sign (u) = [−1, 1] when u = 0. Then let us specify the notion of solution we adopt for
problem (4.1).

Definition 4.1. A function u ∈ BV (Ω) is a solution to (4.1) if there exists z ∈ L∞(Ω,RN )
with ||z||∞ ≤ 1 such that

− div z = f as measures in Ω, (4.2)

(z, Du) = |Du| as measures in Ω, (4.3)

[z, ν] + λβ = g for HN−1-a.e. x ∈ ∂Ω, (4.4)

where β is a measurable function such that ‖βχ{λ>0}‖∞ ≤ 1 and

(λβ − g) ∈ T1(λ sign (u)− g) for HN−1-a.e. x ∈ ∂Ω. (4.5)

Remark 4.2. The notion of solution given by Definition 4.1 is nowadays classical in the
context of 1-Laplace operator. Equation (4.3) is how z plays the role of the quotient
|Du|−1Du, which, jointly with (4.2), formally represents the equation in problem (4.1).
Equations (4.4) and (4.5) deserve a particular attention. It is clear that if |λ sign (u)−g| ≤
1 then (4.5) means β ∈ sign (u) in {λ > 0} which is what one clearly expect as for the
boundary equation in (4.1). Otherwise, if |λ sign (u)− g| > 1, then (4.5) in (4.4) simply
means that |[z, ν]| is forced to be highest possible.

4.1. The case ∂Ω ∈ C1. In this section Ω is a bounded open set of RN with C1 boundary.

The main result of this section is the following:

Theorem 4.3. Let f ∈ LN,∞(Ω), g ∈ L∞(∂Ω) and let λ ∈ L∞(∂Ω) be nonnegative but
not identically null. If M(f, g, λ) ≤ 1, then there exists a solution to (4.1).

Remark 4.4. One can wonder if the solution found in Theorem 4.3 is actually the unique
one. In the context of the 1-Laplace operator this is often a delicate issue. Let us stress
that indeed for problem 4.1 one can not expect uniqueness of solutions in the sense of
Definition 4.1. Indeed, let F be an increasing function such that F (0) = 0. It is now
simple to convince that if u is a solution to (4.1) then F (u) is a solution itself to the same
problem.

Clearly we will prove Theorem 4.3 by means of approximation through problems (3.1)
and using the information already gained on up. Henceforth z and β are the ones found
in Lemmas 3.5 and 3.6 respectively.

Hence we just need to show the identification of both z and β by proving (4.3) and (4.5).

We start by proving the identification of β; we first show that the assumption on M can
be read as an assumption connecting λ and g in an explicit way.
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Lemma 4.5. Under the assumptions of Theorem 4.3 let up be a solution of (3.1). If
M(f, g, λ) ≤ 1, then |g| ≤ λ+ 1. As a consequence,

T1(λ sign (r)− g)r ≤ λ|r| − gr (4.6)

holds for all r ∈ R.

Proof. It follows from Lemma 3.5 that ifM(f, g, λ) ≤ 1 then ‖z‖∞ ≤ 1 and ‖βχ{λ>0}‖∞ ≤
1, so that −1 ≤ [z, ν] ≤ 1 and −1 ≤ βχ{λ>0} ≤ 1. These facts and the identity
[z, ν] + λβ = g yield the desired inequality. Indeed,

λ− g ≥ λβ − g = −[z, ν] ≥ −1

−λ− g ≤ λβ − g = −[z, ν] ≤ 1

wherewith g ≤ λ+ 1 and −g ≤ λ+ 1 hold.

It is enough to analyze two possibilities since (4.6) trivially holds when r = 0.
If r > 0, since we have already proven −1 ≤ λ− g, then T1(λ− g)r ≤ λr − gr.
If r < 0, since one has −1 ≤ λ+ g , then −T1(λ+ g)r ≤ −λr− gr, that is T1(−λ− g)r ≤
λ|r| − gr. �

The previous lemma allows us to prove the following result.

Lemma 4.6. Under the assumptions of Theorem 4.3 let up be a solution of (3.1) and let
z and β be the vector field and the function found in Lemma 3.5. Then it holds

u([z, ν] + T1(λ signu− g)) = 0 HN−1–a.e. on ∂Ω.

In particular it holds (4.5).

Proof. Let us take Tk(up) as a test function in (3.1) obtaining that
∫

Ω

|∇Tk(up)|
p dx+

∫

∂Ω

λ|Tk(up)|
pdHN−1 =

∫

Ω

fTk(up) dx+

∫

∂Ω

gTk(up)dH
N−1,

which, applying the Young inequality, implies that
∫

Ω

|∇Tk(up)| dx+

∫

∂Ω

(λ|Tk(up)| − gTk(up))dH
N−1

≤

∫

Ω

fTk(up) dx+
p− 1

p
|Ω|+

p− 1

p

∫

∂Ω

λdHN−1.

(4.7)

Owing to Lemma 4.5, (4.7) becomes
∫

Ω

|∇Tk(up)| dx+

∫

∂Ω

T1(λ sign (up)− g)Tk(up) dH
N−1

≤

∫

Ω

fTk(up) dx+
p− 1

p

[

|Ω|+

∫

∂Ω

λdHN−1

]

.

(4.8)

Notice that the left hand side of (4.8) is lower semicontinuous with respect to the L1-
convergence as p→ 1+ thanks to Proposition 1.2 of [24]. Hence, taking p→ 1+ in (4.8),
one yields to

∫

Ω

|DTk(u)|+

∫

∂Ω

T1(λ sign u− g)Tk(u) dH
N−1 ≤

∫

Ω

fTk(u) dx. (4.9)
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Now since it follows from Lemma 3.5 that −div z = f , from (4.9) one deduces that
∫

Ω

|DTk(u)|+

∫

∂Ω

T1(λ sign u− g)Tk(u) dH
N−1 ≤ −

∫

Ω

div z Tk(u)

=

∫

Ω

(z, DTk(u))−

∫

∂Ω

Tk(u)[z, ν] dH
N−1,

where the last equality follows from an application of the Green formula. Now observe
that (z, DTk(u)) ≤ |DTk(u)| as measures since ‖z‖∞ ≤ 1; then one gets

∫

∂Ω

(T1(λ sign u− g) + [z, ν])Tk(u) dH
N−1 ≤ 0. (4.10)

Now observe that (T1(λ sign u− g) + [z, ν]) has the same sign of u forHN−1–almost every
point on ∂Ω. Indeed, assume first that x ∈ ∂Ω satisfies u(x) > 0. Then λ(x)−g(x) ≥ −1
by Lemma 4.5. If λ(x)−g(x) ≤ 1, then Lemma 3.5 gives λ−g+[z, ν] = λ−g+g−λβ =
λ − λβ ≥ 0 since |βχ{λ>0}| ≤ 1. Otherwise let x be such that λ(x) − g(x) > 1 then
1 + [z, ν] ≥ 0 since |[z, ν]| ≤ 1. A similar argument holds when u(x) < 0.
Thus, (4.10) implies that (T1(λ sign u − g) + [z, ν])u = 0 HN−1–almost everywhere on
∂Ω. Moreover since [z, ν] = g − λβ it follows (4.5). �

Now we focus on proving (4.3).

Lemma 4.7. Under the assumptions of Theorem 4.3 let up be a solution of (3.1) and let
z be the vector field found in Lemma 3.5. Then it holds

(z, Du) = |Du| as measures in Ω.

Proof. Let us take Tk(up)ϕ (k > 0, 0 ≤ ϕ ∈ C1
c (Ω)) as a test function in (3.1) yielding to

∫

Ω

|∇Tk(up)|
pϕdx+

∫

Ω

Tk(up)|∇up|
p−2∇up · ∇ϕdx =

∫

Ω

fTk(up)ϕdx,

which, from an application of the Young inequality, implies
∫

Ω

|∇Tk(up)|ϕdx+

∫

Ω

Tk(up)|∇up|
p−2∇up · ∇ϕdx ≤

∫

Ω

fTk(up)ϕdx+
p− 1

p

∫

Ω

ϕdx.

By taking p→ 1+ in the previous inequality, one obtains that
∫

Ω

|DTk(u)|ϕ+

∫

Ω

Tk(u)z · ∇ϕdx ≤

∫

Ω

fTk(u)ϕdx.

Hence, letting k → +∞,
∫

Ω

|Du|ϕ+

∫

Ω

uz · ∇ϕdx ≤

∫

Ω

fuϕ dx.

Now, recalling that −div z = f one has that
∫

Ω

|Du|ϕ ≤ −

∫

Ω

uz · ϕdx−

∫

Ω

div zuϕ dx =

∫

Ω

(z, Du)ϕ.

This concludes the proof being the reverse inequality trivial since ||z||∞ ≤ 1. �

Proof of Theorem 4.3. Let up be a solution to (3.1). Then it follows from Lemma 3.5
that there exist u ∈ BV (Ω) and z ∈ X(Ω) with ||z||∞ ≤ 1 such that (4.2) and (4.4) hold.
Moreover Lemmas 4.7 and 4.6 give that (4.3) and (4.5) hold respectively. This concludes
the proof. �
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4.2. The case ∂Ω Lipschitz. In the previous subsection we required that Ω has C1

boundary. This fact is due to the application in Lemma 4.6 of Modica’s semicontinuity
result that needs this hypothesis. Nevertheless, as Modica himself points out, certain
functionals are lower semicontinuous with respect to the L1-convergence even when the
Lipschitz-continuous setting is considered.
We prove the following result.

Lemma 4.8. Let H : BV (Ω) → R be a functional defined as

H(u) =

∫

Ω

|Du|+

∫

∂Ω

ψ(x)|u| dHN−1

where ψ ∈ L∞(∂Ω) satisfies 0 ≤ ψ ≤ 1.
Then H is lower semicontinuous with respect to the L1-convergence.

Proof. We first choose an open bounded set Ω′ containing Ω. Given ψ ∈ L∞(∂Ω), we may
find φ1 ∈ C1(Ω) ∩W 1,1(Ω) such that φ1

∣

∣

∂Ω
= ψ and 0 ≤ φ1 ≤ 1. We may also consider

φ2 ∈ C1(Ω′\Ω) ∩W 1,1(Ω′\Ω) such that φ2

∣

∣

∂Ω
= ψ and 0 ≤ φ2 ≤ 1. Finally define the

following continuous extension of ψ:

ϕ(x) =

{

φ1(x) if x ∈ Ω

φ2(x) if x ∈ Ω′\Ω .

We next claim that each u ∈ BV (Ω) satisfies
∫

Ω

φ1|Du|+

∫

∂Ω

ψ|u| dHN−1 = sup

{
∫

Ω′

u div (ϕF ) dx : F ∈ C1
0(Ω

′)N ‖F‖∞ ≤ 1

}

,

where u is extended to BV (Ω′) by defining u = 0 in Ω′\Ω.
An inequality is obvious since Green’s formula implies

∫

Ω′

u div (ϕF ) dx =

∫

Ω

u div (φ1F ) dx

= −

∫

Ω

φ1F ·Du+

∫

∂Ω

ψu[F, ν] dHN−1

≤

∫

Ω

φ1|Du|+

∫

∂Ω

ψ|u| dHN−1

holds for all F ∈ C1
0 (Ω

′)N such that ‖F‖∞ ≤ 1.
To check the reverse inequality, we consider in C1

0(Ω
′)N the linear map given by

L(F ) =

∫

Ω′

u div (ϕF ) dx .

Notice that

|L(F )| =

∣

∣

∣

∣

∫

Ω′

u div (ϕF ) dx

∣

∣

∣

∣

=

∣

∣

∣

∣

−

∫

Ω

φ1F ·Du+

∫

∂Ω

ψu[F, ν] dHN−1

∣

∣

∣

∣

≤ ‖F‖∞

[
∫

Ω

φ1|Du|+

∫

∂Ω

ψ|u| dHN−1

]

.

From this inequality we deduce that L can be extended by density to a linear and con-
tinuous map in C0(Ω

′)N whose norm satisfies

‖L‖ ≤

∫

Ω

φ1|Du|+

∫

∂Ω

ψ|u| dHN−1 .
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Applying the Riesz representation Theorem, there exists a Radon measure µ on Ω′ such
that L(F ) =

∫

Ω′
F · µ for every F ∈ C0(Ω

′)N and its total variation is
∫

Ω′
|µ| = ‖L‖.

Thus,
∫

Ω′

F · µ = L(F ) =

∫

Ω′

u div (ϕF ) dx = −

∫

Ω

φ1F ·Du+

∫

∂Ω

uψ[F, ν] dHN−1

for all F ∈ C1
0(Ω

′)N . We deduce that
∫

Ω

φ1|Du|+

∫

∂Ω

ψ|u| dHN−1 =

∫

Ω′

|µ| = sup
{

L(F ) : F ∈ C0(Ω
′)N ‖F‖∞ ≤ 1

}

.

By density, we conclude that
∫

Ω

φ1|Du|+

∫

∂Ω

ψ|u| dHN−1 = sup
{

L(F ) : F ∈ C1
0(Ω

′)N ‖F‖∞ ≤ 1
}

and the claim is proven.
As a straightforward consequence the functional

u 7→

∫

Ω

φ1|Du|+

∫

∂Ω

ψ|u| dHN−1

is lower semicontinuous with respect to the L1–convergence. Therefore,

H(u) =

∫

Ω

(1− φ1)|Du|+

∫

Ω

φ1|Du|+

∫

∂Ω

ψ|u| dHN−1

is the sum of two lower semicontinuous functionals, so that Lemma is proven. �

The previous lemma can be applied to the functional

I(u) =

∫

Ω

|Du|+

∫

∂Ω

T1(λ sign (u)− g)u dHN−1, u ∈ BV (Ω) , (4.11)

as shown in Proposition 4.9 below. Here we only have to take into account the inequalities
|a+ − b+| ≤ |a− b| and |a− − b−| ≤ |a− b|, which hold for all real numbers.

Proposition 4.9. The functional I defined in (4.11) is lower semicontinuous with respect
to the L1–convergence when |g| ≤ λ.

Proof. First write I = I1 + I2, where

I1(u) = I(u+) =

∫

Ω

|Du+| dx+

∫

∂Ω

T1(λ− g)u+ dHN−1

and

I2(u) = I(−u−) =

∫

Ω

|Du−| dx+

∫

∂Ω

T1(λ+ g)u− dHN−1

Take a sequence un in BV (Ω) that converges to u strongly in L1(Ω). Then u+n converges
to u+ and u−n converges to u− as n→ ∞, so that Lemma 4.8 implies that

I1(u) ≤ lim inf
n→∞

I1(un)

and
I2(u) ≤ lim inf

n→∞
I2(un) .

Therefore, its sum I is lower semicontinuous. �

Theorem 4.10. Theorem 4.3 holds even if Ω has Lipschitz boundary in case |g| ≤ λ.

Proof. The only difference with respect to the proof of Theorem 4.3 is the use of Propo-
sition 4.9 in place of Proposition 1.2 of [24]. �
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5. Remarks and examples

5.1. The case with λ ∈ L1(∂Ω). Here we briefly spend a few words for the case of a
nonnegative λ ∈ L1(∂Ω).

Indeed, let us stress that, even for λ ∈ L1(∂Ω), the quotient which appears in M is well
defined. Nevertheless, now the supremum is taken over all u ∈ W 1,1(Ω) ∩ L1(∂Ω, λ)\{0}

Then if one considers the following approximation scheme
{

−∆pup = f in Ω,

|∇up|
p−2∇up · ν + λ|up|

p−2up = g on ∂Ω,
(5.1)

where f ∈ LN,∞(Ω), g ∈ L∞(∂Ω) and 0 ≤ λ ∈ L1(∂Ω) but not identically null, the
existence of up ∈ W 1,p(Ω) ∩ Lp(∂Ω, λ) satisfying (5.1) follows from the minimization of
the following functional

Q(u) =
1

p

∫

Ω

|∇u|p dx+

∫

∂Ω

λ

p
|u|p dHN−1 −

∫

∂Ω

gu dHN−1 −

∫

Ω

fu dx.

Indeed, we consider the space W 1,p(Ω) ∩ Lp(∂Ω, λ) endowed with the norm defined as

‖u‖pp,λ =

∫

Ω

|∇u|pdx+

∫

∂Ω

λ|u|p dHN−1. We remark that ‖u‖p,λ is not anymore an equiv-

alent norm to the W 1,p–norm. By the way one can convince himself that it always holds
the inequality

‖u‖p,λ ≥ C‖u‖W 1,p(Ω),

which allows to deduce all continuous and compact embeddings which holds for W 1,p(Ω).
Since Q can be written as

Q(u) =
1

p
‖u‖pp,λ −

∫

∂Ω

gu dHN−1 −

∫

Ω

fu dx ,

it follows that these embeddings lead to coercivity. We also deduce from these embeddings
that Q is weakly lower semicontinuous. Standard results then yield the desired minimizer.
Any minimizer up of the previous functional satisfies that

∫

Ω

|∇up|
p−2∇up · ∇ϕ dx+

∫

∂Ω

λ |up|
p−2 upϕ dHN−1 =

∫

Ω

fϕ dx+

∫

∂Ω

gϕ dHN−1,

where ϕ ∈ W 1,p(Ω) ∩ Lp(∂Ω, λ). Therefore up itself can be taken as a test function.
Now similar estimates for ‖up‖λ can be obtained. Notice that ‖up‖λ ≥ C‖up‖BV (Ω) but
they are not equivalent. With this approach in mind one can show that the results of
both Sections 3 and 4 still hold if 0 ≤ λ ∈ L1(Ω) (but not identically null) with natural
modifications.

5.2. The radial case. Here we deal with the case Ω as a ball of radius R centered at
the origin, namely:

Ω = BR := {x ∈ R
N : |x| < R}.

Hence let us consider the following problem






−∆pup =
A

|x|
in Ω,

|∇up|
p−2∇up · ν + λup−1

p = γ on ∂Ω ,

where A, λ and γ are positive constants, and we are firstly interested in the asymptotic
behaviour of up as p→ 1+. We explicitly observe that the datum A/ |x| ∈ LN,∞(Ω).
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Hence we look for a function up(r) (r = |x|) satisfying

−
1

rN−1

(

rN−1|u′p(r)|
p−2u′p(r)

)′

=
A

r
,

which gives

[rN−1(−u′p(r))
p−1]′ =

A

r2−N

and

− u′p(r) =

(

A

N − 1

)
1

p−1

. (5.2)

Now integrating between r and R (with an abuse of notation) one has

up(r) = up(R) +

(

A

N − 1

)
1

p−1

(R− r) ,

and since it follows from the boundary condition and from (5.2) that

up(R) =

{

1

λ

[

A

N − 1
+ γ

]}
1

p−1

then one also has

up(r) =

{

1

λ

[

A

N − 1
+ γ

]}
1

p−1

+

(

A

N − 1

)
1

p−1

(R − r) .

Let us underline that:

(1) if A > N − 1, then up → +∞ in Ω;
(2) if A = N − 1, then

(a) if λ < 1 + γ, then up → +∞;
(b) if λ = 1 + γ, then up → 1 + (R− r);
(c) if λ > 1 + γ, then up → R− r;

(3) if A < N − 1, then
(a) if λ < A

N−1
+ γ, then up → +∞ in Ω̄;

(b) if λ = A
N−1

+ γ, then up → 1;

(c) if λ > A
N−1

+ γ, then up → 0.

Remark 5.1. Let Ω = BR and A, γ ≥ 0. A posteriori from Lemma 3.4 and 3.7, last
example assures what follows.

• In the cases: A > N − 1; A = N − 1 and λ < 1+ γ; (N − 1)(λ− γ) < A < N − 1, then

M(A/ |x| , γ, λ) > 1.

• In the cases: A = N − 1 and λ ≥ 1 + γ; A = (λ− γ)(N − 1) < N − 1, then

M(A/ |x| , γ, λ) = 1.

• In the case A < min{N − 1, (λ− γ)(N − 1)} then

M(A/ |x| , γ, λ) < 1.

We conclude that

M(A/ |x| , γ, λ) = max

{

A

N − 1
,
1

λ

[

A

N − 1
+ γ

]}
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5.3. A variational approach. In the case λ(x) = λ positive constant, and g ≡ 0, the
argument used in [12] allows to prove that the functional

Jp(u) =
1

p

∫

Ω

|∇u|p dx+
λ

p

∫

∂Ω

|u|p dHN−1 −

∫

Ω

fu dx

Γ-converges in BV (Ω) to

J(u) =

∫

Ω

|Du|+min{λ, 1}

∫

∂Ω

|u| dHN−1 −

∫

Ω

fu dx.

Let us observe that the minimizers of Jp inW
1,p(Ω) are solutions to (3.1). Formally, (4.1)

is the Euler-Lagrange equation related to J . Then, if M(f, 0, λ) ≤ 1 it follows that the
minimizers of Jp converge (in BV (Ω)) to a minimizer of J .
Actually, the truncation appearing in the boundary datum seems to be natural. If one
considers λ > 1 and the functional

J̃(u) =

∫

Ω

|Du|+ λ

∫

∂Ω

|u| dHN−1 −

∫

Ω

fu dx,

it is easy to convince that

min
u∈BV (Ω)

J̃(u) = min
u∈BV (Ω)

J(u) . (5.3)

Indeed, if v is a minimum for J , Theorem 3.1 of [19] assures the existence of a se-
quence vk ∈ C∞

c (Ω) which converges to v in Lq(Ω) for any q ≤ N
N−1

and such that
∫

Ω
|∇vk| dx converges to

∫

RN |Dv| as k → ∞. Hence J̃(vk) = J(vk) for all k > 0 and

minu∈BV (Ω) J̃(u) ≤ limk→+∞ J(vk) = minu∈BV (Ω) J(u). Being the reverse inequality triv-
ial, it holds (5.3).

5.4. A sharp estimate on M(f, g, λ). Let f ≡ 1, g ≡ 0, λ ≥ 0 and let Ω be a Lipschitz
bounded domain. Then, by pointing out the dependence of M by Ω,

M(1, 0, λ) =M(1, 0, λ,Ω) = sup
u∈W 1,1(Ω)\{0}















∫

Ω

|u| dx
∫

Ω

|∇u| dx+ λ

∫

∂Ω

|u| dHN−1















.

In this case we denote by Λ(Ω, λ) = 1
M(1,0,λ,Ω)

, and the value Λ(Ω, λ) is the limit, as

p → 1, of the first Robin p-Laplace eigenvalue (see [12]). It has been proved in [12] that
when λ > 0 and Ω is a Lipschitz bounded domain, then Λ(Ω, λ) ∈]0,+∞[ and

Λ(Ω, λ) ≥ min{λ, 1}
N

R
, (5.4)

where R is the radius of the ball having the same volume than Ω. Moreover, for any
λ ≥ 0, inequality (5.4) is an equality when Ω is a ball. Then (5.4) gives an explicit
upper bound for M(1, 0, λ,Ω), and then an explicit condition in order to obtain that the
solutions up of (3.1), for this particular choice of the coefficients, go to zero in Ω as p→ 1.

Appendix A. Some auxiliary lemmas

For the convenience of the reader, here we consider some technical lemmas used through-
out the paper.
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Proposition A.1. Let 1 < p, p′ <∞ be such that
1

p
+

1

p′
= 1. Assume that f1, f2 : Ω → R

and g1, g2 : ∂Ω → R are measurable functions satisfying f1 ∈ Lp(Ω), f2 ∈ Lp′(Ω),
g1 ∈ Lp(∂Ω, λ) and g2 ∈ Lp′(∂Ω, λ). Then f1f2 ∈ L1(Ω), g1g2 ∈ L1(∂Ω, λ) and

∫

Ω

|f1f2| dx+

∫

∂Ω

λ(x)|g1g2| dH
N−1

≤

[
∫

Ω

|f1|
p dx+

∫

∂Ω

λ(x)|g1|
p dHN−1

]
1

p
[
∫

Ω

|f2|
p′ dx+

∫

∂Ω

λ(x)|g2|
p′ dHN−1

]
1

p′

.

Proof. For every ǫ > 0, we apply Young’s inequality to get

∫

Ω

|f1f2| dx+

∫

∂Ω

λ(x)|g1g2| dH
N−1 ≤

ǫp

p

∫

Ω

|f1|
p dx+

1

ǫp′p′

∫

Ω

|f2|
p′ dx

+
ǫp

p

∫

∂Ω

λ(x)|g1|
p dHN−1 +

1

ǫp′p′

∫

∂Ω

λ(x)|g2|
p′ dHN−1 ,

Denoting

Ap =

∫

Ω

|f1|
p dx+

∫

∂Ω

λ(x)|g1|
p dHN−1

and

Bp′ =

∫

Ω

|f2|
p′ dx+

∫

∂Ω

λ(x)|g2|
p′ dHN−1

we have obtained that
∫

Ω

|f1f2| dx+

∫

∂Ω

λ(x)|g1g2| dH
N−1 ≤

ǫp

p
Ap +

1

ǫp′p′
Bp′

for all ǫ > 0. Minimizing in ǫ, it follows that
∫

Ω

|f1f2| dx+

∫

∂Ω

λ(x)|g1g2| dH
N−1 ≤ AB

as desired. �

Proposition A.2. Assume that f ∈ Ls(Ω) and g ∈ Ls(∂Ω, λ) for all 1 ≤ s <∞. If
∫

Ω

|f |s dx+

∫

∂Ω

λ(x)|g|s dHN−1 ≤ Cs ∀s <∞

for some constant C > 0, then

(1) There exists lim
s→∞

[
∫

Ω

|f |s dx+

∫

∂Ω

λ(x)|g|s dHN−1

]
1

s

;

(2) f ∈ L∞(Ω) and gχ{λ>0} ∈ L∞(∂Ω);

(3) max{‖f‖∞, ‖gχ{λ>0}‖∞} = lim
s→∞

[
∫

Ω

|f |s dx+

∫

∂Ω

λ(x)|g|s dHN−1

]
1

s

.

Proof. (1) Let Λ = |Ω|+
∫

∂Ω
λ(x) dHN−1. Observe that the family

[

1

Λ

(
∫

Ω

|f |s dx+

∫

∂Ω

λ(x)|g|s dHN−1

)]
1

s
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is increasing in s as a consequence of Proposition A.1. On the other hand, it is bounded

by
C

Λ1/s
≤ C + 1 for s large enough. Hence, it converges. Denote

Γ = lim
s→∞

[

1

Λ

(
∫

Ω

|f |s dx+

∫

∂Ω

λ(x)|g|s dHN−1

)]
1

s

and notice that it leads to

lim
s→∞

[
∫

Ω

|f |s dx+

∫

∂Ω

λ(x)|g|s dHN−1

]
1

s

= Γ.

(2) We are proving that |f(x)| ≤ Γ a.e. in Ω. For every ǫ > 0, define

Aǫ = {x ∈ Ω : |f(x)| > Γ + ǫ}.

If |Aǫ| > 0, then

[
∫

Ω

|f |s dx+

∫

∂Ω

λ(x)|g|s dHN−1

]
1

s

≥

[
∫

Aǫ

|f |s dx

]
1

s

≥ (Γ + ǫ)|Aǫ|
1

s .

Letting s go to ∞, we arrive at Γ ≥ Γ + ǫ, which is a contradiction. So Aǫ is a null set
and consequently |f(x)| ≤ Γ + ǫ a.e. for every ǫ > 0, wherewith |f(x)| ≤ Γ a.e.
We next check that |g(x)| ≤ Γ HN−1–a.e. on {λ > 0} following a similar argument. For
every ǫ > 0, define

Bǫ = {x ∈ ∂Ω : λ(x) > 0 , |g(x)| > Γ + ǫ}.

If
∫

Bǫ
λ dHN−1 > 0, then

[
∫

Ω

|f |s dx+

∫

∂Ω

λ(x)|g|s dHN−1

]
1

s

≥

[
∫

Bǫ

λ|g|s dHN−1

]
1

s

≥ (Γ + ǫ)

∫

Bǫ

λ dHN−1.

When s goes to ∞, this inequality becomes Γ ≥ Γ + ǫ, which is a contradiction. So
∫

Bǫ
λ dHN−1 vanishes. Hence |g(x)|χ{λ>0} ≤ Γ + ǫ for all ǫ > 0, so that |g(x)|χ{λ>0} ≤ Γ.

(3) By the previous point, we already know that max{‖f‖∞, ‖gχ{λ>0}‖∞} ≤ Γ. The
reverse inequality follows from the inequality

[
∫

Ω

|f |s dx+

∫

∂Ω

λ(x)|g|s dHN−1

]
1

s

≤ max{‖f‖∞, ‖gχ{λ>0}‖∞}Λ
1

s

by taking the limit as s tends to ∞. �
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