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SINGULAR ELLIPTIC EQUATIONS HAVING A GRADIENT

TERM WITH NATURAL GROWTH

A. FERONE, A. MERCALDO AND S. SEGURA DE LEÓN

Abstract. We study a class of Dirichlet boundary value problems whose pro-
totype is







−∆pu = h(u)|∇u|p + uq−1 + f(x) in Ω ,

u ≥ 0 , in Ω
u = 0 on ∂Ω ,

(0.1)

where Ω an open bounded subset of RN , 0 < q < 1, 1 < p < N , h is a
continuous function and f belongs to a suitable Lebesgue space. The main
features of this problem are the presence of a singular term and a first order
term with natural growth in the gradient. A priori estimates and existence
results are proved depending on the summability of the datum f .

1. Introduction

In the present paper we study the existence of a nonnegative solution u for a
nonlinear elliptic equation having both a zero order term which tends to infinity at
u = 0 and a first order term which has a natural growth in the gradient of u. More
precisely, this paper concerns with problems of the type

{

−div (aaa(x, u,∇u)) = b(x, u,∇u) + g(x, u) + f(x) , in Ω

u = 0 , on ∂Ω ,
(1.1)

Here Ω is an open bounded subset of RN , N ≥ 2, −div (aaa(x, u,∇u)) is a Leray-

Lions operator defined on W 1,p
0 (Ω), b(x, u,∇u) is a nonlinear term which grows like

|∇u|p and more precisely satisfies

|b(x, s, z)| ≤ h(s)|z|p ,

for a continuous function h : R → R. Moreover, g(x, u) is a singular term at u = 0,
that is

0 ≤ g(x, s) ≤ Λsq−1 , Λ > 0 , 0 < q < 1 .

Finally the datum f belongs to a suitable Lebesgue space.
The existence of a weak solution to problem (1.1) when the singular term g(x, u)

does not appear has been investigated by many authors starting by the 80s. In
the papers [7, 9] the existence of bounded solutions is proved when the problem
(1.1) has also a (non singular) zero-order absorption term, while in papers [6] a
more general class of equations, which have a gradient term satisfying suitable sign
conditions, is considered and existence of unbounded solutions has been proved.
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Existence and nonexistence of unbounded solutions to problem (1.1) having a
reaction gradient terms with natural quadratic growth satisfying a further suitable
condition have been faced in [21, 11, 32] by using test functions that simulate the
Cole–Hopf transformation. The more general case, where natural growth different
of the quadratic one, is treated in [22, 31]. In [31] optimal conditions on the growth
of h at infinity to ensure that, given f with a certain summability, problem (1.1)
admits a solution are given. Similar results in this order of ideas can be found in
[30].

The existence of nonnegative solutions for semilinear second order partial dif-
ferential problems singular at u = 0, without first order term, is also a classical
problem which has been considered by several authors since 70’s. In [18], it is
shown the existence and uniqueness of a nonnegative solution in a case where the
equation is not written in a divergence form and the solution is a classical solution,
i.e. it is in C2(Ω)∩C(Ω) which is strictly positive in Ω. In [17] it is considered the
case g(x, s) = 1/sγ + (λs)α with γ, λ, α > 0 and existence and nonexistence results
for classical solutions are proved (see also [34]). Looking for a nonnegative solution
in a Sobolev space, the problem has been considered in [10], where it is studied the
case g(x, u) = f(x)/sγ , with γ > 0, f ≥ 0 not identically zero and belonging to
a suitable Lebesgue space. In this paper existence, uniqueness and regularity of a
distributional solution, strictly positive in Ω is proved. The proofs of these results
are manly based on the fact that g(x, s) is a nonincreasing function in the variable
s and on the use of strong maximum principle. Uniqueness and comparison re-
sults for this type of solution has been proved in [4] and, by using symmetrization
techniques, in [12]. In order to avoid the use of strong maximum principle and
monotonicity assumption on g(x, ·), a new definition of nonnegative solutions have
been provided and existence, stability and uniqueness results for these notions are
proved in [23, 24, 25].
Further contributions to semilinear elliptic equations having this type of singularity
are contained for example in [1, 2, 3, 5, 14, 15, 16, 28, 29].

A very few results are known about existence of solutions which changes its
sign and a first paper in this direction is [13], where the authors show that if the
“singular term” goes to infinity at zero faster than 1/|u| then only nonnegative
solutions are possible, while in the other case nonpositive solution or even solutions
changing the sign are possible. In [20] the solution is defined as a minimum point
for a suitable functional and the definition of solution given by the authors uses test
functions which vanish at u = 0 and thus the equation is satisfied in Ω\{u = 0}. It
is also proved the uniqueness for nonnegative solutions when g(x, .) is decreasing.

The effects of the presence of two singularities, both in a gradient term having
natural growth and in a zero order term, has been addressed in [27]. In this paper
the function h is summable on R and the singular zero order term involves the
datum: g(x, u) = f(x)/uγ . These assumptions allow the study of the equation
with L1–data.

The novelty of this paper consists in analyzing the effects of a gradient term
having natural growth and a singular term of the type g(x, u) = 1/uγ. Following
[31], the existence of nonnegative solutions to problem (1.1) is proven depending
on the behaviour of h at +∞ (we point out that we do not assume h ∈ L1(R)) and
the summability of the datum f .
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Our approach is based on a priori estimates for weak solutions to a sequence
of approximating problems. The proof of these a priori estimates is obtained by
adapting the classical approach to study these type of equations made by a change
of unknown of Cole–Hopf type given by Lemma 2.1. These a priori estimates allow
to deduce the existence of a limit function u such that the approximate solutions
un and their gradients ∇un converge to u and ∇u respectively. A procedure of
passage to the limit permits to prove that such a function u is, indeed, a solution
of problem (1.1). The main difficulties in proving firstly the a priori estimates and
then in passing to limit in the approximating problems are due to the presence of
the singular term g(x, u) and the necessity to prove that it can really be bounded
In this paper, we consider three different types of summability for a datum f ∈
Lm(Ω): (a) m > N/p, (b) m = N/p and (c) Np

Np−N+p ≤ m < N
p , which will be

analyzed separately into three existence results, one for each. Our main results
are given by Theorem 3.1, Theorem 4.1 and Theorem 5.1 and proven in Section 3,
Section 4 and Section 5, respectively.

2. Notation, assumptions and preliminary results

Throughout this paper, Ω stands for an open bounded set of RN , with N ≥ 2.
The Lebesgue measure of E ⊂ Ω will be denoted by |E|.
On the other hand, the positive and negative part of a function u is denoted by u+

and u−, respectively. Moreover, we denote

{|u| ≥ δ} = {x ∈ Ω : |u(x)| ≥ δ} ,

for any δ > 0.
In what follows, we will also consider two auxiliary functions. For any s ∈ R and
any k > 0 we define

Gk(s) = (|s| − k)+sign (s) , (2.1)

Tk(s) = max{−k,min{s, k}} . (2.2)

From now on, we will denote by C a positive constant that only depends on the
data, not on n and that may change from line to line.

2.1. Assumptions. The aim of this subsection is to give the hypotheses on the
data of problem (1.1) which we make in the whole paper. We also introduce the
notion of weak solution which we use.

As pointed out in the Introduction we study solutions to the following singular
nonlinear problem



















−div (aaa(x, u,∇u)) = b(x, u,∇u) + g(x, u) + f(x) , in Ω

u ≥ 0 , in Ω

u = 0 , on ∂Ω .

(2.3)

We assume that, for some 1 < p < N ,

aaa : Ω× R× R
N → R

N

b : Ω× R× R
N → R

g : Ω× (R \ {0}) −→ [0,+∞)

are Carathéodory functions which satisfy the growth conditions

|aaa(x, s, z)| ≤ a0|z|
p−1 + a1|s|

p−1 + a2 , a0, a1, a2 > 0 , (2.4)
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|b(x, s, z)| ≤ h(s)|z|p , (2.5)

where h : R → R is a continuous function, and

0 ≤ g(x, s) ≤ Λsq−1 , Λ > 0 , 0 < q < 1 . (2.6)

Moreover the function aaa satisfies the ellipticity condition

aaa (x, s, z) · z ≥ λ |z|
p
, λ > 0 , (2.7)

and the monotonicity condition

(aaa (x, s, z)− a (x, s, z′)) · (z − z′) > 0 , (2.8)

These hypotheses hold for every z, z′ ∈ R
N , with z 6= z′, for every s ∈ R and for

almost every x ∈ Ω.
Finally we assume

f ≥ 0 and f ∈ Lm(Ω) , (2.9)

where m will be specified later.

Remark 2.1. It is worth remarking that no singularity occurs in the product
g(x, s)s1−q since

g(x, s) s1−q ≤ Λ . (2.10)

Obviously the product g(x, s)s has also no singularities.

Now we give the definition of weak solution to problem (2.3) whose existence is
proved in Sections 3 - 5.

Definition 2.1. A function u ∈ W 1,p
0 (Ω) is a weak solution to (2.3) if

|∇u|p

|u|q
∈ L1(Ω) , (2.11)

b(x, u,∇u) ∈ L1(Ω) , (2.12)
∫

Ω

g(x, u)v dx < +∞ , ∀v ∈ W 1,p
0 (Ω) ∩ L∞(Ω) , (2.13)

and
∫

Ω

aaa(x, u,∇u) · ∇ϕdx =

∫

Ω

b(x, u,∇u)ϕdx +

∫

Ω

g(x, u)ϕ +

∫

Ω

fϕ . (2.14)

for every ϕ ∈ W 1,p(Ω) ∩ L∞(Ω).

2.2. Auxiliary functions. In this section we recall some well-known facts which
are tools to address the study of quasi-linear elliptic equations with natural growth
in the gradient.
Denote

H(s) =
1

λ

∫ s

0

h(σ) dσ , (2.15)

Φ(s) =

∫ s

0

e
|H(σ)|
p−1 dσ . (2.16)

These auxiliary functions are used throughout the whole paper. A simple remark
is in order: every function u satisfies

|Φ(u)| =

∣

∣

∣

∣

∫ u

0

e
|H(σ)|
p−1 dσ

∣

∣

∣

∣

≥ |u| (2.17)

|Φ(u)| ≤ |u|e
|H(u)|
p−1 (2.18)
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and

|∇Φ(u)| = e
|H(u)|
p−1 |∇u| ≥ |∇u| . (2.19)

Therefore, if Φ(u) ∈ Lr(Ω) or Φ(u) ∈ W 1,r
0 (Ω) for some r ≥ 1, then u ∈ Lr(Ω) or

u ∈ W 1,r
0 (Ω) respectively.

2.3. Approximating problems. We are concerned with proving that problem
(2.3) has at least a weak solution. We will prove this result by approximations. To
do so, we consider the following problems


















−div(aaa(x, un,∇un)) = b(x, un,∇un) + gn(x, un) + fn(x) , in Ω

un ≥ 0 , in Ω

un = 0 on ∂Ω

(2.20)

where gn(x, s) = Tn(g(x, s)) and fn = Tn(f). For any fixed n, problem (2.20)

exhibits at least a weak solution un ∈ W 1,p
0 (Ω) ∩ L∞(Ω) as a consequence of the

results of [31], it is enough to take b0(x) = n in [31, Theorem 1.1].
Actually, we may straightly consider the datum f , without truncations, since

by assumptions on its summability, the datum f is always an element of the dual
space of the Sobolev space W 1

0 (Ω), W
−1,p′

(Ω). Starting from the truncated data
allows us to easily use a cancellation lemma. It is a consequence of a kind of change
of unknown obtained multiplying the equation by a suitable exponential function
of un (see, for example, [31]). Since un ∈ L∞(Ω), there is no need to worry about
whether these exponential test functions can really be chosen.

Lemma 2.1. (Cancellation lemma) Let un ∈ W 1,p
0 (Ω)∩L∞(Ω) be a weak solution

to problem (2.20).

(1) If v ∈ W 1,p
0 (Ω), then

∫

Ω

esign (v)H(un)aaa(x, un,∇un) · ∇v dx

≤

∫

Ω

esign (v)H(un)vg(x, un) dx+

∫

Ω

esign (v)H(un)vf dx.

(2) If Ψ is a locally Lipschitz continuous and nondecreasing function such that
Ψ(0) = 0, then

λ

∫

Ω

e|H(un)|Ψ′(un)|∇un|
pdx ≤

∫

Ω

e|H(un)|Ψ(un)g(x, un) dx+

∫

Ω

e|H(un)|Ψ(un)f dx .

We first apply this Lemma to check that the approximate solutions are nonneg-
ative. To this end, we choose v = −u−

n in Lemma 2.1 (1) to get
∫

{un<0}

e−H(un) aaa(x, un,∇un) · ∇un

≤ −

∫

Ω

(e−H(un)u−
n )Tn(g(x, un))−

∫

Ω

(e−H(un)u−
n )fn

By (2.7), since the right-hand side is nonpositive, we obtain

λ

∫

{un<0}

e−H(un)|∇un|
p ≤ 0
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from where un ≥ 0 a.e. in Ω follows.

3. Existence result for m > N/p

The main result of this section concerns existence of nonnegative weak solutions
to problem (2.3) when the datum f is an element of the Lebesgue space Lm(Ω),
with m > N/p. It is given by the following theorem:

Theorem 3.1. Assume (2.4)-(2.9) with

f ∈ Lm(Ω) , m >
N

p

and

lim
s→±∞

eH(s)

(1 + Φ(s))p−1
= 0 . (3.1)

Then problem (2.3) has at least a weak solution u such that Φ(u) ∈ W 1,p
0 (Ω)∩L∞(Ω)

and, consequently, u ∈ W 1,p
0 (Ω) ∩ L∞(Ω).

We prove that the sequence of approximate solutions {un}n to problem (2.20)
satisfies some a priori estimates. By these estimates we deduce that un, up to
subsequences, converges to a function u which we prove is the sought weak solution.

3.1. A priori estimates when m > N/p. In this subsection we prove that the
sequence of approximate solutions {un}n satisfies a priori estimates in L∞(Ω) and

in W 1,p
0 (Ω). As pointed out, by these estimates we deduce that un converges, up

to subsequences, to a function u which is the sought solution.

Lemma 3.1. (Estimates in L∞(Ω) and W 1,p
0 (Ω)). For any fixed n ∈ N, let un ∈

W 1,p
0 (Ω) ∩ L∞(Ω) be a weak solution to problem (2.20). Under the assumptions of

Theorem 3.1, the following estimates hold true:

‖un‖L∞(Ω) ≤ C1 , (3.2)

‖∇un‖Lp(Ω) ≤ C2 , (3.3)

where C1, C2 are positive constants which only depend on |Ω|, N , m, p, ‖f‖Lm, λ,
but do not depend on n.

Proof. Most of the proof follows that of [31, Proposition 3.1]. We insert it to
highlight that the presence of the singular term does not affect the result.

For any fixed k > 0 consider Ψ(s) = Gk(Φ(s)) in Lemma 2.1 (2) with g(x, un)
replaced by Tn(g(x, un)). By (2.7), (2.6) and Hölder’s inequality, we obtain

λ

∫

Ω

|∇Gk(Φ(un))|
p dx (3.4)

≤

∫

Ω

Tn(g(x, un)) e
H(un) |Gk(Φ(un))| dx +

∫

Ω

fn e
H(un) |Gk(Φ(un))| dx

≤ Λ

∫

Ω

uq−1
n eH(un) |Gk(Φ(un))| dx+ ‖f‖m

(
∫

Ω

em
′H(un) |Gk(Φ(un))|

m′

dx

)
1

m′
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Denote for any k,

η(k) = sup
{Φ(s)>k}

eH(s)

(1 + |Φ(s)|)p−1
. (3.5)

Since lim
s→±∞

Φ(s) = ±∞, it is easy to verify from (3.1) that

lim
k→+∞

η(k) = 0 . (3.6)

Moreover as in [31], by (3.6), we obtain

em
′H(un) ≤

em
′H(un)

(1 + |Φ(un)|)m
′(p−1)

(1 + k + |Gk(Φ(un))|)
m′(p−1) (3.7)

≤ Cη(k)m
′

(km
′(p−1) + |Gk(Φ(un))|

m′(p−1))

for all k ≥ 1. In analogous way we get

eH(un) ≤ Cη(k)(kp−1 + |Gk(Φ(un))|
p−1) (3.8)

for all k ≥ 1. By (3.4), we deduce

λ

∫

Ω

|∇Gk(Φ(un))|
p dx

≤ Cη(k)

∫

Ω

|Gk(Φ(un))|

u1−q
n

(kp−1 + |Gk(Φ(un))|
p−1) dx

+ Cη(k)‖f‖m

(
∫

Ω

|Gk(Φ(un))|
m′

(km
′(p−1) + |Gk(Φ(un))|

m′(p−1)) dx

)
1

m′

(3.9)

Moreover since Φ is an increasing function, we deduce

λ

∫

Ω

|∇Gk(Φ(un))|
p dx ≤

Cη(k)kp−1

[Φ−1(k)]1−q

∫

Ω

|Gk(Φ(un))| dx (3.10)

+
Cη(k)

[Φ−1(k)]1−q

∫

Ω

|Gk(Φ(un))|
p dx

+ Cη(k)kp−1‖f‖m

(
∫

Ω

|Gk(Φ(un))|
m′

dx

)
1

m′

+ Cη(k)‖f‖m

(
∫

Ω

|Gk(Φ(un))|
pm′

dx

)
1

m′

for all k ≥ 1. The monotonicity of Φ also implies that Φ−1(k) ≥ 1 for k larger
enough, so that we get rid of this coefficient for k larger than certain k′.
Denote Ak = {Φ(u) ≥ k}. Now we estimate each term in (3.10) by using Hölder’s
inequality. The following inequality holds true:

∫

Ω

|Gk(Φ(un))| dx =

∫

Ak

|Gk(Φ(un))| dx ≤ |Ak|
1− 1

p∗

(
∫

Ak

|Gk(Φ(un))|
p∗

dx

)
1
p∗

.

Thanks to these estimates and the Sobolev embedding theorem, (3.10) becomes
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λS

(
∫

Ω

|Gk(Φ(un))|
p∗

dx

)

p

p∗

(3.11)

≤ Cη(k)kp−1|Ak|
1

m′ −
1
p∗ |Ω|1−

1
m′

(
∫

Ω

|Gk(Φ(un))|
p∗

dx

)
1
p∗

+ Cη(k)|Ω|1−
p

p∗

(
∫

Ω

|Gk(Φ(un))|
p∗

dx

)

p

p∗

+ Cη(k)kp−1|Ak|
1

m′ −
1
p∗ ‖f‖m

(
∫

Ω

|Gk(Φ(un))|
p∗

dx

)
1
p∗

+ Cη(k)‖f‖m|Ω|
1

m′ −
p

p∗

(
∫

Ω

|Gk(Φ(un))|
p∗

dx

)

p

p∗

for all k > k′. Since η(k) goes to 0 when k tends to +∞, it yields that the second
and the fourth terms on the right hand side can be absorbed by the left hand side.
Then there exists k0 > 0 such that, for k > k0, we obtain:

(
∫

Ω

|Gk(Φ(un))|
p∗

dx

)

p−1
p∗

≤ Cη(k)kp−1|Ak|
1

m′ −
1
p∗ (3.12)

This is the same inequality as in [31, Proposition 3.1]. So, following its proce-
dure, we deduce that {Φ(un)}n, and consequently {un}n, is bounded in L∞(Ω).
Therefore, there exists a positive constant C1 > 0 satisfying ‖un‖∞ ≤ C1 for all
n ∈ N.

Now we prove the a priori estimates in W 1,p
0 (Ω) given by (3.3).

Consider Ψ(s) = s in Lemma 2.1 (2) with g(x, un) replaced by Tn(g(x, un)). By
(2.7), (2.6), (3.2) and Hölder’s inequality, we obtain

λ

∫

Ω

|∇un|
p dx ≤

∫

Ω

Tn(g(x, un)) e
H(un) un dx+

∫

Ω

fn e
H(un) un dx (3.13)

≤ Λ

∫

Ω

|un|
q eH(un) dx +

∫

Ω

f eH(un) un dx

Thus,
∫

Ω

|∇un|
p dx ≤

1

λ

[

ΛCq
1e

H(C1)|Ω|+ eH(C1)C1‖f‖L1

]

and estimate (3.3) is proven.

3.2. Strong convergence of ∇un. In this subsection we prove that the sequence
of the approximate solutions {un}n and their gradients converge to a function u
and its gradient ∇u respectively. Moreover we also prove that the different terms
appearing in equation (2.20) converge.
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For any fixed n ∈ N, let un ∈ W 1,p
0 (Ω) ∩ L∞(Ω) be a weak solution to problem

(2.20). As a consequence of Lemma 3.1 we deduce that there exists a nonnegative

function u ∈ W 1,p
0 (Ω) ∩ L∞(Ω) such that, up to subsequences,

∇un ⇀ ∇u , weakly in Lp(Ω;RN ) , (3.14)

un → u , strongly in Lr(Ω) for 1 ≤ r < p∗ , (3.15)

un(x) → u(x) , a.e. in Ω . (3.16)

Actually, the L∞–estimate (3.2) implies that

un → u , strongly in Lr(Ω) for 1 ≤ r < +∞ . (3.17)

Lemma 3.2. (Strong convergence of ∇un ). Under the assumptions of Theorem
3.1,

∇un → ∇u , strongly in (Lp(Ω))N (3.18)

aaa(x, un,∇un) → aaa(x, u,∇u) , strongly in Lp′

(Ω;RN ) , (3.19)

b(x, un,∇un) → b(x, u,∇u) strongly in L1(Ω) . (3.20)

Proof. We proceed to check all the conditions by dividing the proof in several steps.
Step 1. Strong convergence of the gradients. In order to prove (3.18), we check
that (see [8, Lemma 5])

lim
n→+∞

∫

Ω

[aaa(x, un,∇un)− aaa(x, un,∇u)] · ∇(un − u) dx = 0 . (3.21)

Consider v = un − u ∈ W 1,p
0 (Ω) in Lemma 2.1 (1) to obtain

∫

Ω

esign (un−u)H(un)aaa(x, un,∇un) · ∇(un − u) dx

≤

∫

Ω

Tn(g(x, un))e
sign (un−u)H(un)(un−u) dx+

∫

Ω

fne
sign (un−u)H(un)(un−u) dx .

(3.22)

Since un − u = (un − u)+ − (un − u)− and −(un − u)− ≤ 0 a.e. in Ω, we obtain

∫

Ω

esign (un−u)H(un)aaa(x, un,∇un) · ∇(un − u) dx

≤

∫

Ω

Tn(g(x, un))e
sign (un−u)H(un)(un−u)+ dx+

∫

Ω

fne
sign (un−u)H(un)(un−u) dx .

(3.23)
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Now let us analyze the following integral
∫

Ω

esign (un−u)H(un)[aaa(x, un,∇un)− aaa(x, un,∇u)] · ∇(un − u) dx (3.24)

≤ −

∫

Ω

esign (un−u)H(un)aaa(x, un,∇u) · ∇(un − u) dx

+

∫

Ω

Tn(g(x, un))e
sign (un−u)H(un)(un − u)+ dx

+

∫

Ω

fne
sign (un−u)H(un)(un − u) dx

= I1n + I2n + I3n .

Let us evaluate I1n. We prove

lim
n→+∞

I1n = lim
n→+∞

∫

Ω

esign (un−u)H(un)aaa(x, un,∇u) · ∇(un − u) dx = 0 (3.25)

Indeed, first we split

∫

Ω

esign (un−u)H(un)aaa(x, un,∇u) · ∇(un − u) dx

=

∫

Ω

eH(un)aaa(x, un,∇u)·∇(un−u)+ dx−

∫

Ω

e−H(un)aaa(x, un,∇u)·∇(un−u)− dx

We remark that, owing to (3.14),

∇(un − u)+ ⇀ 0 weakly in Lp(Ω;RN ) . (3.26)

In fact, if ϕ ∈ C∞
0 (Ω), then
∫

Ω

∂(un − u)+
∂xi

ϕdx = −

∫

Ω

(un − u)+
∂ϕ

∂xi
dx

tends to 0 for all i = 1, . . . , N , by (3.15).
Since

eH(un)|aaa(x, un,∇u)|

≤ eH(C1)(a0|∇u|p−1 + a1|un|
p−1 + a2) , a.e. in Ω ,

it follows from (3.15) that the right hand side converges in Lp′

(Ω), so that the left
hand side is equiintegrable. Therefore by (3.16) and Vitali’s convergence theorem
we deduce

eH(un)aaa(x, un,∇u) → eH(u)aaa(x, u,∇u) , strongly in Lp′

(Ω)N (3.27)

Combining (3.27) and (3.26), we infer that

lim
n→+∞

∫

Ω

eH(un)aaa(x, un,∇u) · ∇(un − u)+ dx = 0
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Analogously,

lim
n→+∞

∫

Ω

e−H(un)aaa(x, un,∇u) · ∇(un − u)− dx = 0

and (3.25) is proven.
Let us evaluate I2n. By the growth condition on g (2.6), for any fixed δ > 0, we get:

I2n ≤ Λ

∫

Ω

esign (un−u)H(un)(un − u)+u
q−1
n dx

≤ Λδq−1

∫

{un≥δ}

esign (un−u)H(un)(un − u)+ dx+ Λ

∫

{un≤δ}∩{un≥u}

eH(un)uq
n dx

≤ Λδq−1eH(C1)

∫

Ω

|un − u| dx+ ΛδqeH(C1)|Ω|

It yields

lim sup
n→∞

I2n ≤ ΛδqeH(C1)|Ω| (3.28)

for all δ > 0, so that limn→∞ I2n = 0.
Finally we evaluate I3n. By (3.15), our assumption of summability on f and the

L∞ estimate, we have

lim
n→+∞

I3n = lim
n→+∞

∫

Ω

esign (un−u)H(un)f(un − u) dx = 0 (3.29)

By (3.24), combining (3.25), (3.28) and (3.29), we get

lim sup
n→+∞

∫

Ω

esign (un−u)H(un)[aaa(x, un,∇un)− aaa(x, un,∇u)] · ∇(un − u) dx ≤ 0 .

Since by (2.7)

esign (un−u)H(un)[aaa(x, un,∇un)− aaa(x, un,∇u)] · ∇(un − u) ≥ 0

we deduce

lim
n→+∞

∫

Ω

esign (un−u)H(un)[aaa(x, un,∇un)−aaa(x, un,∇u)] ·∇(un−u) dx = 0 . (3.30)

Therefore by (3.30), we have

lim
n→+∞

∫

Ω

[aaa(x, un,∇un)− aaa(x, un,∇u)] · ∇(un − u) dx (3.31)

= lim
n→+∞

∫

Ω

esign (un−u)H(un)e−sign (un−u)H(un)aaa(x, un,∇u) · ∇(un − u) dx

≤ eH(C1) lim
n→+∞

∫

Ω

esign (un−u)H(un)aaa(x, un,∇u) · ∇(un − u) dx = 0 .

This proves (3.21) and therefore (3.18).

Step 2. Strong convergence of aaa(x, un,∇un) and b(x, un,∇un) A straightforward
conseguence of (3.18) is that, up to subsequences,

∇un → ∇u , a.e. in Ω . (3.32)
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Easy consequences of the pointwise convergence of the gradients are

aaa(x, un,∇un) → aaa(x, u,∇u) , a.e. in Ω,

and

b(x, un,∇un) → b(x, u,∇u) , a.e. in Ω .

Furthermore, the strong convergence of the gradients (3.18) jointly with (3.17)
imply that the sequence

a0|∇un|
p−1 + a1|un|

p−1 + a2

is equi-integrable. So, our hypothesis (2.4), gives the equiintegrability of aaa(x, un,∇un)
and, by Vitali’s Theorem, (3.19) follows. On the other hand, the L∞–estimate leads
to the boundedness of h(un). Hence, it follows from (2.4) and the strong conver-
gence of the gradients that the sequence b(x, un,∇un) is equiintegrable. Applying
again Vitali’s Theorem, we get (3.20). Additionally, we also obtain

b(x, u,∇u) ∈ L1(Ω). (3.33)

3.3. Existence: proof of Theorem 3.1. In this subsection, we prove that the
function u is a weak solution to problem (2.3) according to Definition 2.1.
Since we have proved (3.33), condition (2.12) is satisfied. Therefore we proceed to
check the other conditions in Definition 2.1.
Step 1. u satisfies (2.11)
Let us consider the weak solution un to the approximate problem (2.20). For any
fixed k > 0 we take v = Gk(u

1−q
n ) in Lemma 2.1 (1) and so

(1− q)λ

∫

{u1−q
n >k}

eH(un) aaa(x, un,∇un) · ∇un u
−q
n dx

≤

∫

Ω

eH(un)Tn(g(x, un))Gk(u
1−q
n ) dx+

∫

Ω

eH(un)fn Gk(u
1−q
n ) dx .

By assumption on g (2.6), since un is a nonnegative function, we have:

Tn(g(x, un))Gk(u
1−q
n ) ≤ g(x, un)u

1−q
n ≤ Λ ,

a.e. in {u1−q
n ≥ k}.

By ellipticity condition (2.7), Remark 2.1 and estimate (3.2), we get

(1− q)λ

∫

{u1−q
n >k}

eH(un)u−q
n |∇un|

p dx

≤ C

∫

Ω

Tn(g(x, un))Gk(u
1−q
n ) dx+ C

∫

Ω

fn Gk(u
1−q
n ) dx

≤ CΛ|Ω|+ C

∫

Ω

f Gk(u
1−q
n ) dx

≤ CΛ|Ω|+ C‖un‖∞

∫

Ω

f dx ≤ C .

Since eH(un) ≥ 1, we obtain
∫

{u1−q
n >k}

|un|
−q|∇un|

p dx ≤ C .
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So, owing to the Fatou Lemma,
∫

{u1−q>k}

|u|−q|∇u|p dx ≤ C . (3.34)

Now we let k go to 0 on the left-hand side, by monotone convergence Theorem,

lim
k→0

∫

{u1−q>k}

u−q|∇u|pdx =

∫

{u>0}

u−q|∇u|pdx < +∞ .

Applying [26, Lemma 2.5], we obtain that u1− q
p ∈ W 1,p

0 (Ω) and
∫

{u>0}

u−q|∇u|pdx =

∫

Ω

u−q|∇u|pdx ,

so that u−q|∇u|p ∈ L1(Ω).

Step 2. u satisfies (2.13)

Consider v ∈ W 1,p
0 (Ω) ∩ L∞(Ω), v ≥ 0 a.e. in Ω as test function in (2.20), we get

∫

Ω

aaa(x, un,∇un) ·∇v dx =

∫

Ω

b(x, un,∇un)v dx+

∫

Ω

Tn (g(x, un)) v dx+

∫

Ω

fnv dx .

Therefore passing to the limit for n which goes to +∞, by (3.16), (3.20) and
Fatou’s lemma, we get

lim
n→+∞

∫

Ω

aaa(x, un,∇un) · ∇v dx

− lim
n→+∞

(
∫

Ω

b(x, un,∇un)v dx+

∫

Ω

fnv dx

)

≥

∫

Ω

g(x, u)v dx . (3.35)

that is
∫

Ω

aaa(x, u,∇u) · ∇v dx −

∫

Ω

b(x, u,∇u)v dx −

∫

Ω

fv dx ≥

∫

Ω

g(x, u)v dx . (3.36)

This yields the conclusion for v ≥ 0. The general case follows from the decomposi-
tion v = v+ − v−.

Step 3. Proof of (2.14) by passing to the limit in the approximate problems.
Let ϕ be any nonnegative function belonging to W 1,p(Ω) ∩ L∞(Ω). Taking

Tk(un)ϕ as test function in (2.20) and disregarding a nonnegative term, we have
∫

Ω

Tk(un) (aaa(x, un,∇un) · ∇ϕ) dx ≤

∫

Ω

b(x, un,∇un)Tk(un)ϕdx

+

∫

Ω

Tn (g(x, un)) Tk(un)ϕdx+

∫

Ω

fnTk(un)ϕdx . (3.37)

Now we let n go to +∞ in the inequality (3.37). On the left-hand side we use the

strong convergence of
{

aaa(x, un,∇un)
}

n
in Lp′

(Ω), (3.19), the pointwise convergence

of un (3.16) and Lebesgue’s dominated convergence theorem in order to obtain

lim
n→+∞

∫

Ω

Tk(un) (aaa(x, un,∇un) · ∇ϕ) dx =

∫

Ω

Tk(u) (aaa(x, u,∇u) · ∇ϕ) dx .

In analogous way, we evaluate the first term on the right-hand side (3.37). We apply
the strong convergence of

{

b(x, un,∇un)
}

n
in L1(Ω) given by (3.33), the pointwise
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convergence of un (3.16) and Lebesgue’s dominated convergence theorem in order
to obtain

lim
n→+∞

∫

Ω

b(x, un,∇un)Tk(un)ϕdx =

∫

Ω

b(x, u,∇u)Tk(u)ϕdx .

Concerning the second term on the right-hand side of (3.37), we observe that

Tn (g(x, un)) Tk(un)

= Tn (g(x, un)) Tk(un)
∣

∣

{un≤k}
+ Tn (g(x, un))Tk(un)

∣

∣

{un>k}

≤ Λuq−1
n un

∣

∣

{un≤k}
+ Λkuq−1

n

∣

∣

{un>k}
≤ Λkq .

Therefore we can apply Lebesgue’s dominated convergence Theorem and we get

lim
n→+∞

∫

Ω

Tn (g(x, un))Tk(un)ϕdx =

∫

Ω

g(x, u)Tk(u)ϕdx .

Finally it is easy to verify that

lim
n→+∞

∫

Ω

fnTk(un)ϕdx =

∫

Ω

fTk(u)ϕdx.

Hence, passing to the limit for n which goes to +∞ in (3.37), we get

∫

Ω

Tk(u) (aaa(x, u,∇Gk(u)) · ∇ϕ) dx

≤

∫

Ω

b(x, u,∇u)Tk(u)ϕdx+

∫

Ω

g(x, u)Tk(u)ϕdx+

∫

Ω

fTk(u)ϕdx

≤

∫

Ω

b(x, u,∇u)Tk(u)ϕdx+ k

∫

Ω

g(x, u)ϕdx+ k

∫

Ω

fϕ dx .

Dividing by k and letting k go to 0, it follows that
∫

{u6=0}

(aaa(x, u,∇u) · ∇ϕ) dx

≤

∫

{u6=0}

b(x, u,∇u)ϕdx+

∫

Ω

g(x, u)ϕdx+

∫

Ω

fϕ dx

holds true. As a consequence of Stampacchia’s Theorem (cf. [33]), we obtain
∫

Ω

(aaa(x, u,∇u) · ∇ϕ) dx

≤

∫

Ω

b(x, u,∇u)ϕdx+

∫

Ω

g(x, u)ϕdx+

∫

Ω

fϕ dx

Since (3.36) yields the reverse inequality, we conclude
∫

Ω

(aaa(x, u,∇u) · ∇ϕ) dx

=

∫

Ω

b(x, u,∇u)ϕdx+

∫

Ω

g(x, u)ϕdx+

∫

Ω

fϕ dx

for all ϕ ≥ 0. The general case is now straightforward.
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4. Existence result for m = N/p

The main result of the section concerns existence of nonnegative weak solutions
to problem (2.3) when the datum f is an element of the Lebesgue space Lm(Ω),
with m = N/p. Its statement is the following.

Theorem 4.1. Assume (2.4) - (2.9) with

f ∈ L
N
p (Ω)

and

lim
s→±∞

eH(s)

(1 + Φ(s))p−1
= 0 . (4.1)

Then problem (2.3) has at least a weak solution u such that Φ(u) ∈ W 1,p
0 (Ω)∩Lr(Ω),

and hence u ∈ W 1,p
0 (Ω) ∩ Lr(Ω), for all 1 ≤ r < ∞.

As in the previous case, we consider the approximate problems (2.20), which

for any fixed n, has at least a nonnegative bounded weak solution un ∈ W 1,p
0 (Ω) ∩

L∞(Ω). We begin by proving a priori estimates for weak solutions un which implies
the existence of a limit function u which is proven to be a weak solution to problem
(2.3).

4.1. A priori estimates when m = N/p. In this subsection we prove that the se-
quence of approximate solutions {un}n satisfies a priori estimates in Lr(Ω), for any

r > 1, and in W 1,p
0 (Ω). By these estimates we deduce that un, up to subsequences,

converges to a limit function u which is the sought solution.

Lemma 4.1. (Estimates in Lr(Ω) for all 1 ≤ r < ∞ and in W 1,p
0 (Ω)). For any

fixed n ∈ N, let un ∈ W 1,p
0 (Ω)∩L∞(Ω) be a weak solution to problem (2.20). Under

the assumptions of Theorem 3.1, the following estimates hold true:

‖un‖Lr(Ω) ≤ C3 1 ≤ r < ∞ , (4.2)

‖∇un‖Lp(Ω) ≤ C4 , (4.3)

where C3, C4 are positive constants which only depend on |Ω|, N , m, p, ‖f‖Lm, λ
and on r, but do not depend on n.

Furthermore, it is also satisfied

lim
k→∞

sup
n∈N

∫

Ω

|∇Gk(un)|
p dx = 0 . (4.4)

Proof. For any γ ≥ 1, consider Ψ(s) = Φ(s)γ in Lemma 2.1 (2). Then, since

e
pH(un)

p−1 ≥ 1, we get

λ

∫

Ω

γΦ(un)
γ−1|∇Φ(un)|

pdx ≤ λ

∫

Ω

γe
pH(un)

p−1 Φ(un)
γ−1|∇un|

pdx

≤

∫

Ω

eH(un)Φ(un)
γg(x, un) dx+

∫

Ω

eH(un)Φ(un)
γf dx
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This inequality and Sobolev’s imbedding Theorem lead to

(
∫

Ω

Φ(un)
γ+p−1

p
p∗

dx

)

p

p∗

≤ C

∫

Ω

|∇Φ(un)
γ+p−1

p |pdx

≤ C

∫

{Φ(un)>k}

eH(un)Φ(un)
γg(x, un) dx+ C

∫

{Φ(un)>k}

eH(un)Φ(un)
γf dx

+ C

∫

{Φ(un)≤k}

eH(un)Φ(un)
γg(x, un) dx+ C

∫

{Φ(un)≤k}

eH(un)Φ(un)
γf dx (4.5)

where k ≥ 1. We handle the integrals over {Φ(un) > k} employing the function η
defined in (3.5). Notice that, since k ≥ 1, it results 1 + Φ(un) ≤ 2Φ(un) on the set
{Φ(un) > k} and therefore, we deduce

∫

{Φ(un)>k}

eH(un)Φ(un)
γg(x, un) dx

≤

∫

{Φ(un)>k}

η(k)(1 + Φ(un))
p−1Φ(un)

γg(x, un) dx

≤

∫

{Φ(un)>k}

η(k)2p−1Φ(un)
γ+p−1g(x, un) dx

Thus, we get
∫

{Φ(un)>k}

eH(un)Φ(un)
γg(x, un) dx ≤ Cη(k)

∫

{Φ(un)>k}

Φ(un)
γ+p−1uq−1

n dx (4.6)

≤ C
η(k)

[Φ−1(k)]1−q

∫

{Φ(un)>k}

Φ(un)
γ+p−1 dx

≤ C
η(k)

[Φ−1(k)]1−q
|Ω|p/N

(
∫

Ω

Φ(un)
(γ+p−1) p∗

p dx

)

p

p∗

.

Moreover by Hölder inequality, we get
∫

{Φ(un)>k}

eH(un)Φ(un)
γf dx ≤ Cη(k)

∫

{Φ(un)>k}

Φ(un)
γ+p−1f dx (4.7)

≤ Cη(k)‖f‖N/p

(
∫

Ω

Φ(un)
(γ+p−1) p∗

p dx

)

p

p∗

.

Arguing as in Lemma 3.1, since η(k) goes to zero when k tends to +∞, the terms
in the right-hand side of (4.6) and (4.7) can be absorbed by the left-hand side of
(4.5). Hence, there exists k larger enough such that (4.5) becomes

(
∫

Ω

Φ(un)
γ+p−1

p
p∗

dx

)

p

p∗

≤ C

∫

Ω

|∇Φ(un)
γ+p−1

p |pdx

≤ C

∫

{Φ(un)≤k}

eH(un)Φ(un)
γg(x, un) dx+ C

∫

{Φ(un)≤k}

eH(un)Φ(un)
γf dx .

(4.8)
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Now observe that the right hand side is bounded. Indeed, since by (2.6) and (2.18),
it follows that

eH(un)Φ(un)
γg(x, un) ≤ Λuq−1

n eH(un)Φ(un)
γ

= ΛeH(un)uγ+q−1
n

(

Φ(un)

un

)γ

≤ ΛeH(un)uγ+q−1
n eγ

H(un)
p−1 ,

Thus, we get
∫

{Φ(un)≤k}

eH(un)Φ(un)
γg(x, un) dx ≤ C|Ω|eH(Φ−1(k))Φ−1(k)γ+q−1eγ

H(Φ−1(k))
p−1 .

The remainder term in (4.8) is obviously bounded, that is
∫

{Φ(un)≤k}

eH(un)Φ(un)
γf dx ≤ CeH(Φ−1(k))Φ−1(k)γ‖f‖L1 .

Therefore, it follows from (4.8) that

(
∫

Ω

Φ(un)
γ+p−1

p
p∗

dx

)

p

p∗

≤ C

∫

Ω

|∇Φ(un)
γ+p−1

p |pdx ≤ C ,

for all γ ≥ 1. Hence by the arbitrary of γ and therefore of γ+p−1
p p∗ ≥ 1, the

sequence {Φ(un)}n is bounded in every Lr(Ω) such that 1 ≤ r < ∞ and, taking

γ = 1, in W 1,p
0 (Ω). We conclude that the same features hold for {un}n.

Condition (4.4) follows from

lim
k→∞

sup
n∈N

∫

Ω

|∇Gk(Φ(un))|
p dx = 0 .

and it yields from performing the following computations (with some γ > 1):
∫

Ω

|∇Gk(Φ(un))|
p dx ≤

∫

Ω

Φ(un)
γ−1

kγ−1
|∇Gk(Φ(un))|

p dx ≤
C

kγ−1
.

Remark 4.1. In the previous proof, we have seen that the sequence {Φ(un)}n is
bounded in every Lr(Ω), with 1 ≤ r < +∞. As a consequence of assumption (4.1),
we deduce that {eH(un)}n is also bounded in every Lr(Ω) with 1 ≤ r < +∞.

4.2. Strong convergence of ∇un. In this subsection we prove that the sequence
of the approximate solutions {un}n and their gradients converge to a function u
and its gradient ∇u respectively. Moreover we prove that every term in equation
(2.20) converges.

For any fixed n ∈ N, let un ∈ W 1,p
0 (Ω) ∩ L∞(Ω) be a weak solution to problem

(2.20). By Lemma 4.1 there exists a nonnegative function u ∈ W 1,p
0 (Ω)∩Lr(Ω) for

all 1 ≤ r < +∞ such that, up to subsequences, the convergences in (3.14), (3.15)
and (3.16) hold true. In this limit case, we also obtain the convergence appearing
in (3.17). Furthermore, the pointwise convergence allows us to obtain the strong
convergence of eH(un) to eH(u) in any 1 ≤ r < ∞.
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Lemma 4.2. (Strong convergence of ∇un ). Under the assumptions of Theorem
4.1,

∇un → ∇u , strongly in (Lp(Ω))N (4.9)

aaa(x, un,∇un) → aaa(x, u,∇u) , strongly in Lp′

(Ω;RN ) , (4.10)

b(x, un,∇un) → b(x, u,∇u) strongly in L1(Ω) . (4.11)

Proof. We proceed to check all the conditions by dividing the proof in several steps.
Step 1. Strong convergence of the gradients. We explicitly point out that we cannot
apply the same proof of the previous case because now we do not have an L∞–bound
for {un}n.
As in the previous case, in order to prove (4.9), we are proving that (recall [8,
Lemma 5])

lim
n→+∞

∫

Ω

[aaa(x, un,∇un)− aaa(x, un,∇u)] · ∇(un − u) dx = 0 (4.12)

holds true. To this aim we write

∇(un − u) = ∇Tk(un − Th(u)) +∇Gk(un − Th(u)) +∇(Th(u)− u) ,

for certain k and h, with k > h, to be chosen. Hence
∫

Ω

[aaa(x, un,∇un)− aaa(x, un,∇u)] · ∇(un − u) dx =

∫

Ω

[aaa(x, un,∇un)− aaa(x, un,∇u)] · ∇Tk(un − Th(u)) dx

+

∫

Ω

[aaa(x, un,∇un)− aaa(x, un,∇u)] · ∇(Th(u)− u) dx

+

∫

Ω

[aaa(x, un,∇un)− aaa(x, un,∇u)] · ∇Gk(un − Th(u)) dx (4.13)

Let us begin by proving the following equality

lim
n→+∞

∫

Ω

[aaa(x, un,∇un)− aaa(x, un,∇u)] · ∇Tk(un − Th(u)) dx = 0 (4.14)

We may take v = Tk(un−Th(u)) ∈ W 1,p
0 (Ω) in Lemma 2.1 (1). Then we proceed as

in the previous case. Actually we integrate over {|un| ≤ k + h} and we may argue
as above replacing C1 with k + h. This yields (4.14).

Let us evaluate the second integral on the right-hand side of (4.13). Fix ǫ > 0.

Taking into account that the sequence {un}n is bounded in W 1,p
0 (Ω), it follows from

condition (2.4) that {aaa(x, un,∇un)}n is bounded in Lp′

(Ω)N . Hence, there exists
h > 0 satisfying
∫

Ω

|[aaa(x, un,∇un)− aaa(x, un,∇u)] · ∇(Th(u)− u)| dx

≤
(

‖aaa(x, un,∇un)‖p′ + ‖aaa(x, un,∇u)‖p′

)

(

∫

{u>h}

|∇u|p

)1/p

< ǫ/3 ∀n ∈ N .

(4.15)

Having fixed h, we determine k. To this end, notice that
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∫

Ω

|[aaa(x, un,∇un)− aaa(x, un,∇u)] · ∇Gk(un − Th(u))| dx

=

∫

{|un−Th(u)|>k}

|[aaa(x, un,∇un)− aaa(x, un,∇u)] · ∇Gk(un − Th(u))| dx

=

∫

{un>k−h}

|[aaa(x, un,∇un)− aaa(x, un,∇u)] · ∇Gk(un − Th(u))| dx . (4.16)

Therefore by growth condition (2.4) and a priori estimates (4.3), we have

∫

Ω

|[aaa(x, un,∇un)− aaa(x, un,∇u)] · ∇Gk(un − Th(u))| dx

≤
(

‖aaa(x, un,∇un)‖p′+‖aaa(x, un,∇u)‖p′

)





(

∫

{un>k−h}

|∇un|
p

)1/p

+

(

∫

{un>k−h}

|∇u|p

)1/p




≤ C





(

∫

{un>k−h}

|∇un|
p

)1/p

+

(

∫

{un>k−h}

|∇u|p

)1/p




Taking into account (4.4), we may find k such that

∫

Ω

|[aaa(x, un,∇un)− aaa(x, un,∇u)] · ∇Gk(un − Th(u))| dx < ǫ/3 ∀n ∈ N. (4.17)

Combining (4.13), (4.14), (4.15) and (4.17), we conclude that (4.12) holds.

Step 2. Strong convergence of aaa(x, un,∇un) A straightforward conseguence of
(4.9) is that, up to subsequences,

∇un → ∇u , a.e. in Ω . (4.18)

Moreover, we also infer

b(x, un,∇un) → b(x, u,∇u) , a.e. in Ω

and

aaa(x, un,∇un) → aaa(x, u,∇u) , a.e. in Ω .

Now, as in the proof of Step 2 of Lemma 3.2, it follows from (2.4) and (4.9) that

aaa(x, un,∇un) → aaa(x, u,∇u) , strongly in Lp′

(Ω;RN ) . (4.19)

Step 3. Strong convergence of b(x, un,∇un) to b(x, u,∇u) Now we prove (4.11).
Since no L∞–estimate is available, we are not able to prove that {h(un)}n is
bounded, so that the proof given in the previous section is not possible.
Consider the function

Ξ(s) =

∫ s

0

h(σ)χ{σ>k}dσ (k ≥ 1)
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and note that Ξ(s) ≤ H(s)χ{s>k} holds. Taking Ψ(s) = Ξ(s) in Lemma 2.1 (2), we
obtain

λ

∫

{un>k}

eH(un)h(un)|∇un|
pdx

≤

∫

Ω

eH(un)Ξ(un)g(x, un) dx+

∫

Ω

eH(un)Ξ(un)f dx

≤ Λ

∫

{un>k}

eH(un)H(un)k
q−1 dx+

∫

{un>k}

eH(un)H(un)f dx (4.20)

We note that kq−1 ≤ 1 and use the fact that {eH(un)}n, and hence {H(un)}n, is
bounded in any Lr(Ω), 1 ≤ r < ∞, to get

∫

{un>k}

eH(un)h(un)|∇un|
pdx ≤ C‖(1 + f)χ{un>k}‖Lm(Ω),

so that the right hand side tends to 0 uniformly on n. Therefore,

lim
k→∞

sup
n∈N

∫

{un>k}

eH(un)h(un)|∇un|
p dx = 0

and, since eH(un) ≥ 1,

lim
k→∞

sup
n∈N

∫

{un>k}

h(un)|∇un|
p dx = 0 (4.21)

The main consequence is that the sequence {h(un)|∇un|
p}n is equiintegrable. In-

deed, if E ⊂ Ω, then

∫

E

h(un)|∇un|
pdx

=

∫

E∩{un≤k}

h(un)|∇un|
pdx+

∫

E∩{un>k}

h(un)|∇un|
pdx

≤
[

max
s∈[0,k]

h(s)
]

∫

E

|∇un|
pdx+

∫

{un>k}

h(un)|∇un|
pdx (4.22)

Now let ǫ > 0. Keeping in mind (4.21) and choosing k large enough, we may obtain
that

∫

{un>k}

h(un)|∇un|
pdx < ǫ/2

for all n ∈ N. Fixed k, we may use the strong convergence of gradients to deduce
that there exists δ > 0 such that, for any set E having |E| < δ,

[

max
s∈[0,k]

h(s)
]

∫

E

|∇un|
pdx < ǫ/2

for all n ∈ N. Therefore by (4.22), |E| < δ implies
∫

E h(un)|∇un|
pdx < ǫ for

all n ∈ N, which provides the equiintegrability of the sequence {h(un)|∇un|
p}n.

Then by (2.5) we conclude that the sequence {b(x, un,∇un)}n is equiintegrable.
Applying Vitali’s Theorem, (4.11) follows.
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4.3. Existence: proof of Theorem 4.1. We prove that the function u is a weak
solution to problem (2.3) according to Definition 2.1. The proof of Theorem 4.1
prooceds exactly as the proof of Theorem 3.1 in subsection 3.3. We explicitely
remark that the strong convergence in (4.11) obviously implies (2.12).

5. Existence result for Np
Np−N+p ≤ m < N

p

The main result of the section, concerning existence of nonnegative weak so-
lutions to problem (2.3) when the datum f is an element of the Lebesgue space

Lm(Ω) with Np
Np−N+p ≤ m < N

p , is stated as follows:

Theorem 5.1. Assume (2.7) - (2.9) with

f ∈ Lm(Ω) ,
Np

N(p− 1) + p
≤ m <

N

p
.

Moreover assume that there exist a constant 0 < θ < p∗

pm′ and constants 0 < M1 ≤

M2 satisfying

M1 ≤
eH(s)

(1 + Φ(s))(p−1)θ
≤ M2 ∀s ≥ 0 . (5.1)

Then problem (2.3) has at least a weak solution such that u ∈ W 1,p
0 (Ω)∩L

Nm(p−1)
N−pm (Ω).

As in the previous cases, we consider problems (2.20), which for any fixed n, has

at least a nonnegative bounded weak solution un ∈ W 1,p
0 (Ω)∩L∞(Ω) and we prove

a priori estimates for these approximate solutions un.

5.1. A priori estimates. In this subsection we prove that the sequence of approx-

imate solutions {un}n satisfies a priori estimates in L
Nm(p−1)
N−pm (Ω) and in W 1,p

0 (Ω).

We point out that Nm(p−1)
N−pm tends to ∞ as m → N

p and so there is no solution of

continuity with the estimates of the previous section. Observe, in addition, that
m = Np

Np−N+p yields an estimate in Lp∗

(Ω), as expected.

Lemma 5.1. (Estimates in L
Nm(p−1)
N−pm (Ω) and W 1,p

0 (Ω)). For any fixed n ∈ N, let

un ∈ W 1,p
0 (Ω)∩L∞(Ω) be a weak solution to problem (2.20). Under the assumptions

of Theorem 5.1, the following estimates hold true:

‖un‖
L

Nm(p−1)
N−pm (Ω)

≤ C5 , (5.2)

‖∇un‖Lp(Ω) ≤ C6 , (5.3)

where C5, C6 are positive constants which only depend on |Ω|, N , m, p, ‖f‖Lm, λ,
but do not depend on n.

Furthermore, it also holds

lim
k→∞

sup
n∈N

∫

Ω

|∇Gk(un)|
p dx = 0 . (5.4)
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Proof. For any r > p − 1, consider Ψ(s) = (1 + Φ(s)r−pΦ(s) in Lemma 2.1 (2).
Since Ψ′(un) ≥ min{r + 1− p, 1}(1 + Φ(un))

r−pΦ′(un), we get

∫

Ω

(1 + Φ(un))
r−p|∇Φ(un)|

pdx = C

∫

Ω

e
pH(un)

p−1 (1 + Φ(un))
r−p|∇un|

pdx

≤ C

∫

Ω

eH(un)(1 + Φ(un))
r−pΦ(un)g(x, un) dx

+ C

∫

Ω

eH(un)(1 + Φ(un))
r−pΦ(un)fn dx . (5.5)

This inequality and Sobolev’s imbedding Theorem lead to

(
∫

Ω

[(1 + Φ(un))
r
p − 1]p

∗

dx

)

p

p∗

≤ C

∫

Ω

(1 + Φ(un))
r−p|∇Φ(un)|

pdx (5.6)

≤ C

∫

{Φ(un)>k}

eH(un)(1 + Φ(un))
r−p+1g(x, un) dx

+ C

∫

{Φ(un)≤k}

eH(un)(1 + Φ(un))
r−pΦ(un)g(x, un) dx

+ C

∫

Ω

eH(un)(1 + Φ(un))
r−p+1f dx ,

where k ≥ 1. Now we evaluate the integral over {Φ(un) > k} in (5.6). Since k ≥ 1,
by assumption (5.1), we have
∫

{Φ(un)>k}

eH(un)(1 + Φ(un))
r−p+1g(x, un) dx (5.7)

≤ M2Λ

∫

{Φ(un)>k}

(1 + Φ(un))
r−(p−1)(1−θ)uq−1

n dx

≤
M2Λ

[Φ−1(k)]1−q

∫

{Φ(un)>k}

(1 + Φ(un))
r−(p−1)(1−θ) dx

≤
M2Λ

[Φ−1(k)]1−q
|Ω|1−

1
m

(
∫

Ω

(1 + Φ(un))
[r−(p−1)(1−θ)]m′

dx

)
1

m′

.

Next we analyze the second integral over {Φ(un) ≤ k} in (5.6). Taking into account
(2.6), (2.18) and (5.1), we get

eH(un)(1 + Φ(un))
r−pΦ(un)g(x, un) ≤ ΛeH(un)(1 + Φ(un))

r−puq
n

(

Φ(un)

un

)

≤ ΛeH(un)(1 + Φ(un))
r−puq

ne
H(un)
p−1
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Consequently, we get

∫

{Φ(un)≤k}

eH(un)(1 + Φ(un))
r−pΦ(un)g(x, un) dx

≤ Λ|Ω|eH(Φ−1(k))(1 + k)r−pΦ−1(k)qe
H(Φ−1(k))

p−1 . (5.8)

Regarding the third term on the right hand side of (5.6), we apply (5.1) and the

H’́older inequality to obtain

∫

Ω

eH(un)(1 + Φ(un))
r−p+1f dx ≤ M2

∫

Ω

(1 + Φ(un))
r−(p−1)(1−θ)f dx

≤ ‖f‖Lm(Ω)

(
∫

Ω

(1 + Φ(un))
[r−(p−1)(1−θ)]m′

dx

)
1

m′

(5.9)

Owing to (5.7), (5.8) and (5.9), inequality (5.6) becomes

(
∫

Ω

[(1 + Φ(un))
r
p − 1]p

∗

dx

)

p

p∗

≤ C + C

(
∫

Ω

(1 + Φ(un))
[r−(p−1)(1−θ)]m′

dx

)
1

m′

(5.10)

Now it follows from m < N
p that m′ > p∗

p . This fact allows us to choose r such that

r =
(p− 1)(1− θ)m′

m′ − p∗

p

, (5.11)

so that

[r − (p− 1)(1− θ)]m′ =
rp∗

p
=

Nm(p− 1)(1− θ)

N − pm
.

Therefore, we infer from (5.10) that there exists a constant C > 0 satisfying
∫

Ω

(1 + Φ(un))
Nm(p−1)(1−θ)

N−pm dx ≤ C (5.12)

and, going back to (5.5), that
∫

Ω

(1 + Φ(un))
r−p|∇Φ(un)|

pdx ≤ C (5.13)

for all n ∈ N.
To go from these estimates on {Φ(un)}n to estimates on {un}n, we first apply

(5.1) to get

M
1

p−1

1 ≤
Φ′(s)

(1 + Φ(s))θ
(5.14)

and so

M
1

p−1

1 s ≤
1

1− θ
(1 + Φ(s))1−θ

holds for all s ∈ R. On the one hand, this last inequality, jointly with (5.12), gives

an estimate of {un}n in L
Nm(p−1)
N−pm (Ω), so that (5.2) is proven. On the other, (5.14)
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and (5.13) imply

M
p

p−1

1

∫

Ω

(1 + Φ(un))
r−p(1−θ)|∇un|

pdx ≤

∫

Ω

(1 + Φ(un))
r−pΦ′(un)

p|∇un|
pdx

=

∫

Ω

(1 + Φ(s))r−p|∇Φ(un)|
pdx ≤ C .

Since r − p(1− θ) =
p∗ −m′

m′ − p∗

p

(1 − θ) ≥ 0, the estimate (5.3) follows.

It remains to check (5.4). Having already determined r by (5.11), we now choose
Ψ(s) = (1 + Φ(Gk(s))

r−pΦ(Gk(s)) in Lemma 2.1 (2), with k ≥ 1, getting
∫

Ω

eH(un)e
H(Gk(un))

p−1 (1 + Φ(Gk(un)))
r−p|∇Gk(un)|

pdx

≤

∫

Ω

eH(un)(1 + Φ(Gk(un)))
r−pΦ(Gk(un))g(x, un) dx

+

∫

Ω

eH(un)(1 + Φ(Gk(un))
r−pΦ(Gk(un))fn dx

≤

∫

{un>k}

eH(un)(1 + Φ(un))
r−p+1g(x, un) dx

+

∫

{un>k}

eH(un)(1 + Φ(un))
r−p+1f dx .

Arguing as above, we deduce that
∫

Ω

|∇Gk(un)|
pdx ≤ C

∫

{un>k}

(kq−1 + f)eH(un)(1 + Φ(un))
r−p+1 dx

≤ C‖(1 + f)χ{un>k}‖Lm(Ω)

(
∫

Ω

(1 + Φ(un))
[r−(p−1)(1−θ)]m′

dx

)
1

m′

≤ C‖(1 + f)χ{un>k}‖Lm(Ω) .

due to kq−1 ≤ 1. Since the right hand side tends to 0 as k → ∞, condition (5.4)
follows.

Remark 5.1. We point out that we have obtained (5.12), an estimate on {Φ(un)}n,
which leads, thanks to (5.1), to an estimate on {eH(un)}n, namely:

∫

Ω

(

eH(un)
)

Nm(1−θ)
θ(N−pm)

dx ≤ C . (5.15)

5.2. Existence: proof of Theorem 5.1. By Lemma 5.1 there exists a nonnega-

tive function u ∈ W 1,p
0 (Ω)∩L

Nm(p−1)
N−pm (Ω) such that, up to subsequences, conditions

(3.14), (3.15) and (3.16) hold true. Actually, and owing to (5.2), we have that

the strong convergence in (3.15) holds for every 1 ≤ r < Nm(p−1)
N−pm . Moreover, the

pointwise convergence (3.16), (5.15) and

m′ <
Nm(1− θ)

θ(N − pm)

imply that

eH(un) → eH(u) in Lm′+ǫ(Ω) . (5.16)
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for some ǫ > 0 small enough.
As in the previous case the proof of Theorem 5.1 needs

(1) the strong convergence of ∇un to ∇u in Lp(Ω)N

(2) the strong convergence of b(x, un,∇un) to b(x, u,∇u) in L1(Ω)

As far as the strong convergence of ∇un concerns, the proof proceeds exactly as in
Step 1 of the proof of Lemma 4.2, bearing in mind that (5.4) holds.

In an analogous way the proof of the strong convergence of b(x, un,∇un) to
b(x, u,∇u) proceeds as in Step 3 of the proof of Lemma 4.2. Just replace, on the
right hand side of (4.20), the fact that {eH(un)}n is bounded in any Lr(Ω), r < ∞

with the fact that {eH(un)}n is bounded in Lm′+ǫ(Ω). Then it is enough to perform
the following inequalities over the set {un > k}:

eH(un)H(un) ≤
2m′

ǫ
e(1+(ǫ/2m′))H(un) ≤

2m′

ǫ
e(1+ǫ/m′)H(un) 1

eǫH(k)/m′

wherewith

em
′H(un)H(un)

m′

χ{un>k} ≤ Ce(m
′+ǫ)H(un)

1

eǫH(k)
χ{un>k} .

Finally the conclusion of the proof of Theorem 5.1 follows the argument given in
Subsection 3.3.
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tiques quasilinéaires, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser., 11 (1984), 213–235.
[8] L. Boccardo, F. Murat, J.P. Puel, Existence of bounded solutions for nonlinear elliptic

unilateral problem, Ann. di Mat. Pura ed Appl., 152 (1988), 183–196.
[9] L. Boccardo, F. Murat, J.P. Puel, L∞–estimate for some nonlinear elliptic partial dif-

ferential equations and application to an existence result., SIAM J. Math. Anal., 23, no 2,
(1992), 326–333.

[10] L. Boccardo and L. Orsina: Semilinear elliptic equations with singular nonlinearities,
Calc. Var. Partial Differential Equations, 37 (2010), no 3–4, 363–380.

[11] L. Boccardo, S. Segura de León and C. Trombetti: Bounded and unbounded solutions

for a class of quasi-linear elliptic problems with a quadratic gradient term, J. Math. Pures
Appl., 80 (2001), no 9, 919–940.

[12] B.Brandolini, F. Chiacchio and C. Trombetti, Symmetrization for singular semilinear

elliptic equations, Ann. Mat. Pura Appl., (4) 193 (2014), 389–404.
[13] J.Casado-Dı́az and F.Murat: Semilinear problems with right-hand sides singular at

u = 0 which change sign, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 38 no. 3, (2021),
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Dr. Moliner 50, 46100 Burjassot, València, Spain.
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